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Abstract

We study how transparency, modeled as information about one’s counterparty

liquidity needs, affects the functioning of an over-the-counter market. In our

model, investors hedge endowment risk by trading bilaterally in a search-and-

matching environment. We construct a bargaining procedure that accommodates

information asymmetry regarding investors’ inventories. Both the trade size and

the trade price are endogenously determined. Increased transparency improves the

allocative efficiency of the market. However, it simultaneously increases inventory

costs, and leads to a higher cross-sectional dispersion of transaction prices. For

investors with large risk exposure, the increase of the inventory costs dominates

the benefits of the market efficiency. We link the model’s predictions to recent

empirical findings regarding the effect of the TRACE reporting system on bond

market liquidity.
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1 Introduction

A common concern about over-the-counter (OTC) markets is their opaqueness—

investors transact, often unaware of prices available from other counterparties and

with little knowledge of trades negotiated recently.1 Given the important role that

OTC markets played in the global financial crisis, many regulators have attempted to

shed some light on those so-called dark markets.2 Perhaps the most notable reform

aiming at an increased transparency was the Dodd-Frank Act.3

There are costs and benefits associated with an increased transparency. For

instance, post-trade transparency—the availability of past transaction data—may

lead to a more efficient asset allocation. It may, however, expose dealers to predatory

behaviors and significantly reduce their incentives to take on inventory risk and

provide liquidity. An important question is therefore to whom the costs and benefits

of transparency accrue?

To address this question, we develop a general equilibrium model of an OTC

market in which investors trade an asset to share endowment risk. Trading the asset

first requires finding a counter-party, and we follow the search-and-matching approach

developed by Duffie, Garleanu, and Pedersen (2005, 2007). Upon matching, agents

bargain on the conditions of the transaction. To model transparency, we introduce

information asymmetry among traders. We define transparency as a traders’ ability to

get information about their counterparties’ inventory. Information asymmetry creates

an adverse selection problem that makes it more difficult to execute large trades.4

This aspect allows us to determine how regulatory requirements (e.g., TRACE) make

inventories riskier.

In the presence of asymmetric information, the usual Nash bargaining solution

characterizing bilateral trades is inadequate. We select an alternative bargaining

protocol, which resembles the real-world mechanism used in the dealership market.

Namely, one agent (say agent 1) posts a quote and the other (say agent 2) decides

how many shares to buy or sell at that price.5 We assume that, before posting the

quote, agent 1 receives a signal about the inventory of agent 2. We view this signal as

an attempt of agent 1 to extract information about agent 2’s liquidity needs from past

trading data, a natural outcome of post-trade transparency. The quality of this signal

1For a reference, see Duffie (2012).
2For example, the Financial Stability Board names transparency and the public dissemination of

trade data as a main objective of introducing trade repositories for OTC derivatives trading. See, for
instance, Board (2013) for more detail.

3The corresponding regulation for the US Bond market, the Trade Reporting And Compliance
Engine (TRACE) exists since 2002. The corresponding European reform is the Market in Financial
Instruments Directive (MiFID II).

4A quote request is usually followed by both a bid and an ask price being quoted. In this case,
both prices would probably be tilted to disguise the attempted rip-off.

5Quotes on bond markets do not usually depend on the quantity exchanged. See, Li and Schüerhoff
(2012).
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precisely captures the notion of transparency we pursue: the more detailed trading

data is available, the better the information about inventory concerns of any given

trader is.6

Information asymmetry significantly complicates the analysis of the model. Our

model, however, remains very tractable. We first solve for an investor’s optimal trading

strategies taking the cross-sectional distribution of inventories as given. Second, we

endogenize this cross-sectional distribution. In particular, optimal trading strategies

define the inventory dynamics, which, in turn, determine the cross-sectional distribution

of inventories. We demonstrate that optimal strategies are linear in the inventory and

signal of investors, making it possible to solve for a stationary equilibrium in closed

form.

We show that an increase in transparency has 3 main implications for inventory

costs and several dimensions of liquidity.7 First, we show that transparency always

increases inventory costs. This happens via two different channels. On the one hand,

transparency exposes any given investor with large inventories to predatory pricing.

On the other hand, as transparency improves the allocative efficiency of the market, it

becomes more difficult for an investor with excessive exposure to find a counter-party

with large and opposite liquidity needs. This second effect exacerbates the first one

and is driven by the endogenous distribution of inventories.

Second, we get the more intuitive result that increased transparency always leads

to a more efficient allocation of the asset, leading to less dispersion in inventory risk

across the population of investors. As a consequence, we show that the cross-sectional

variance of the trade sizes at any given moment is monotone decreasing in the degree

of transparency of the OTC market.8

These 2 implications together imply that the effect of transparency on investors’

value function is ambiguous. On average, investors benefit from an increased trans-

parency and the resulting improvement in the allocative efficiency. In particular,

transparency improves welfare. However, those investors with a sufficiently large

(long or short) exposure find it increasingly costly to liquidate their position and

would benefit from a more opaque market. We obtain an explicit expression for the

exposure levels starting from which investors prefer opacity to transparency. This

result is in line with the heterogeneous reactions to the introduction of TRACE, with

6The effects of post-trade transparency on inventory risk are particularly strong is markets with
moderate/slow trading activity. In this case, even anonymized post-trade transparency can make it
possible to infer traders’ identities from post-trade data.

7We define the inventory costs as the reservation value of an investor who deviates from a zero
risk exposure.

8A more natural measure of the trade sizes would be the average size. This is, actually, the average
across all the trades of the absolute value of the quantity exchanged. Due to technical difficulties, we
cannot characterize this quantity analytically.
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negative reactions on the part of many institutional investors.9 As our model predicts,

transparency is detrimental to agents facing large exposures.

Finally, we show that the price dispersion—the cross-sectional variance of the

transaction prices at a given moment—on the OTC market is increasing in the

transparency of that market. Two opposite channels operate to generate this result.

First, investors being risk averse, the price of a transaction depends on investors’

reservation values for trading. As transparency tends to make risk sharing more efficient

and to reduce the dispersion of the reservation values, there is a first channel whereby

transparency reduces the cross-sectional dispersion of prices. Second, transparency

simultaneously increases inventory costs, and the price of a given transaction will

therefore drift away from the competitive price when transparency increases. In

equilibrium, this second effect dominates, and the dispersion of prices increases with

the transparency of the market.

Literature review Our model builds on the literature modeling OTC markets.

This literature started, to a large extent, with Duffie et al. (2005) and Duffie et al.

(2007). The bilateral trades in these models are characterized by the Nash bargaining

solution and, as a result, not naturally suited to accommodate information asymmetry,

inter-dealer market but no inventories. Furthermore, the transaction size is exogenously

fixed, which prevents a discussion of the different costs and benefits to agents with

moderate and large liquidity needs.

An alternative strand of literature considers the equilibrium effect of an intermittent,

and sometimes costly, access to a centralized market. This literature started with

Lagos and Rocheteau (2007) and Lagos and Rocheteau (2009). These models allow

for portfolio decisions, but the inter-dealer is assumed to be competitive and dealers

do not keep any inventories.

Our model is also related to classical references on inventory risk such as Ho and

Stoll (1980) and Ho and Stoll (1981). These references do not consider, however, the

feedback effect of the intermediation on the liquidity needs of the investors. This

equilibrium effect is at the core of our analysis.

The explicit bargaining procedure that we devise means that our model is also

related to Samuelson (1984), Grossman and Perry (1986), Mailath and Postlewaite

(1990). In these references, just like in the classical references on inventory risk, there

is no feedback effect of the quoting strategy on the distribution of valuations.

References such as Blouin and Serrano (2001), Duffie and Manso (2007), Duffie

et al. (2009), and , Duffie et al. (2010) consider asymmetric information in decentralized

markets. However, these references focus on common value asymmetry whereas we

9See, for instance, Decker (2007) and Bessembinder and Maxwell (2008).
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analyze a setting with private value asymmetric information. Also the references do

not consider portfolio decisions.

To obtain the equilibrium expressions in closed-form, we assume that agents are

only risk-averse with respect to certain risks. The same procedure was used, for

instance, by Biais (1993), Duffie et al. (2007), Vayanos and Weill (2008), Gârleanu

(2009). Other references using “source-dependent” risk-aversions include Hugonnier

et al. (2013) and Skiadas (2013).

Finally, in terms of formalism, the interaction between the distribution of types,

the individual policies, and the value functions, means that our model is related to

the literature on mean-field games, as introduced by Lasry and Lions (2007).

The outline of the paper is as follows. Section 2 describes the assets, investors,

and other exogenous elements of our model. Section 3 solves for the optimal policy

of an individual. Section 4 maps a certain trading pattern on the OTC market to a

consistent cross-sectional distributional distribution of types. Section 5 solves for the

equilibrium of the model and discusses its properties. Section 6 concludes.

2 Model

In this section, we present the various exogenous elements of our model economy.

Assets and Investors

In our model, investors trade bilaterally to share risks. Our model is based on Lo et al.

(2004), from whom we borrow the specification of the trade motives, and on Duffie

et al. (2005), from whom we borrow the meeting technology on the OTC market. The

exact bargaining procedure that defines the trade details is original.

There are two assets. First, there is a risk-free bond freely traded and whose rate

of return r is exogenously given. Second, there is a risky asset (“the stock”) whose

cumulated payouts

(Dt)t≥0

is an arithmetic Brownian motion. Namely,

dDt = md dt+ σddBt, t ≥ 0,

with µ and σ being two constants and (Bt)t≥0 being a Brownian motion.

The economy is populated by a normalized continuum of investors. The investors

trade the stock for risk-sharing motives. Namely, each investor a receives an endowment

(ηat )t≥0
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whose dynamics are given by {
dηat = Zat dDt

dZat = σadB
a
t

,

with (Ba
t )t≥0 being an “idiosyncratic” Brownian motion independent from the one

driving the dividends of the stock. By idiosyncratic we mean that there is one such

process per investor and that these processes are sufficiently independent for a version

of the Strong Law of Large Numbers (SLLN) to hold cross-sectionally.

To sum up, the same aggregate risk factor drives the payouts of the stock and

the endowment of the agents over the short-term. However, the level to which an

endowment is exposed to this aggregate risk factor evolves in an idiosyncratic way.

Trading

Illiquidity on an OTC market materializes in that a counter-party is only infrequently

available, does not necessarily want to trade the right quantity, and not necessarily at

the right price. We capture the first of these aspects by assuming that an investor can

only contact a counter-party at the jump times of a Poisson process with intensity λ.

The counter-party who is contacted is drawn uniformly from across the population.

Once two investors are in contact, they must evaluate whether or not they wish to

trade the stock and, if so, what the exact terms of the transaction should be.

On actual OTC markets, a common procedure to arrange a deal with a dealer is

to ask the dealer for a quote and, assuming that the quote is deemed good enough,

indicate how much of the asset one would like to either buy or sell. The quote usually

consists of both a bid and an ask price.

For the trading in our model, we assume a stylized version of the previous procedure.

Namely, once two investors are in contact, one of them quotes a binding price and

the other one chooses a quantity to be exchanged at the quoted price. The exact

bargaining procedure follows.
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Bargaining 1:

Assume that the investors a (like “asks”) just contacted the investor q (like

“quotes”). These investors are identified with their “types” za, zq, respectively.

The distribution of the types across the population is µ.

(i) a asks q for a quote.

(ii) if q finds it optimal to quote a price then

1. q receives a signal sa regarding the type of a. Namely,

sa = Xza + (1−X)ζ, (1)

with X ∼ B(1, τ) and ζ ∼ µ being independent of each other and of both za

and zq. Intuitively, the signal is exact with a probability τ which we call the

transparency of the OTC market. In the other case, the signal is a pure noise.

2. q quotes a price p = p(q, sa) at which she is willing to trade with a

3. a chooses which quantity q(a, p) she would like to buy (if q ≥ 0) or sell (if

q < 0).

4. q gives q units of the stock to a, a pays the amount pq(a, p) to q

end

(iii) the two investors part ways.

Two comments are in order. First, when quoting the price p, the investor q may

not be fully aware of the characteristics of a. This uncertainty regarding the valuation

of one’s counter-party is the type of opacity that our model captures.

Second, we assume that q quotes a unique price instead of both a bid and an ask

price, as actual dealers would do. This assumption is made for the sake of tractability.

This, said, as long as q has an accurate enough guess of a’s valuation for the asset,

q knows with some confidence whether the trade is going to be a buy or a sell. In

particular, even if both a bid and an ask prices are quotes, only one of them is truly

relevant.

Preferences

The investors maximizes their expected utility from consumption and have a utility

function with constant absolute risk-aversion (CARA, or exponential, utility). Namely,

an investor a solves the individual optimization problem

sup
(c̃t)t≥0

E

[∫ ∞
0

e−ρtU (c̃t) dt

]
(ip)
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with the utility function

U(x)
∆
= −e−γx

over the “admissible” consumption policies. The constant γ > 0 is the coefficient of

absolute risk-aversion. A consumption policy (c̃t)t≥0 is admissible if it satisfies two

conditions.

1. The consumption policy can be financed, meaning that it satisfies the budget

constraint

dw̃at = rw̃tdt− c̃tdt+ dηat + θ̃tdDt − P̃ddθ̃t, t ≥ 0. (bc)

In this last expression, the quantities with a tilde (̃·) are endogenously chosen,

whereas the other ones are fully exogenous. The interpretations of the endogenous

quantities are as follows. w̃at denotes the amount invested in the bond and θ̃t

the number of stock shares held. The holdings θ̃t can only be adjusted when

another investor is met and, during such a meeting, both the change in holdings

dθ̃t and the payment P̃d dθ̃t are defined by the bargaining procedure described

in Table 1. That is, P̃d is not a unique price in that it is contingent on the types

of agents involved in a particular meeting.

2. The wealth process (w̃t)t≥0 satisfies the transversality condition

lim
T→∞

E
[
e−rγw̃T

]
= 0. (tc)

This regularity condition forbids the “financing” of consumption by an ever

increasing amount of debt.

An agent is exposed to risky cash-flows both via her endowment and via her stock

holdings. However, both of these exposures are driven by the same risk factor. For

convenience and ease of interpretation, we thus define the actual exposure of the

investor a as

zat
∆
= Zat + θt

and rewrite the budget constraint as

dw̃at = rw̃tdt− c̃tdt+ zat dDt − Pddθt.

The actual exposure follows a jump diffusion,

dzat = dθt + σa dBa
t , (2)

with the jump part stemming from the trading and the diffusion part stemming form

the idiosyncratic variation of the endowment exposure.

The actual exposure of an investor will define both her bargaining behavior and

her value function. Consequently, the actual exposure of an investor is also referred to
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as the type of an investor. Also, during the bargaining procedure, the signal received

by the quoter is about the type of her counter-party.

3 Individual Problem

A given investor takes as given the aggregate quantities of the model and chooses her

consumption and bargaining policies to solve her individual problem (ip). Aggregating

these individual “best responses” yields new aggregate quantities. When we will solve

for an equilibrium, we will solve for a fixed point over these aggregate quantities.

In this section, we solve for the individual policies of the agents and do so by

the dynamic programming approach, meaning by solving a Hamilton-Jacobi-Bellman

(HJB) equation.

First, we define the value function at time t of an investor a by

V (t, w, z)
∆
= sup

(c̃s)s≥t

E

[∫ ∞
t

e−ρ(s−t)U (c̃s) ds

∣∣∣∣wat = w, zat = z

]
,

with wat standing for a’s wealth at time t and zat standing for a’s type at time t. Let

us take as given an optimal consumption policy (ct)t≥0 and make two assumptions.

First, the environment is stationary, meaning that the beliefs regarding the aggregate

quantities are constant over time. Second, in terms of expected utility, an agent is

fully described by her current wealth wat and current type zat .10 Then, one can write(∫ t

0
e−ρsU (cs) ds+ e−ρtV (wt, zt)

)
t≥0

=

(
E

[∫ ∞
0

e−ρsU (cs) ds

∣∣∣∣Fat ])
t≥0

, (3)

with Fat standing for the information available to a at time t. We left out the time as

an argument of the value function because of the stationarity assumption.

As the process on the right-hand side of (3) is a martingale, so is the one on the

left-hand side, and its expected rate of change must be zero. Now, assuming that

the value function is regular enough for Itô’s lemma for jump-diffusions to hold, the

expected rate of change of the process on the left-hand side is

1

dt
E

[
d

(∫ t

0
e−ρsU (cs) ds+ e−ρtV (wt, zt)

)]

= e−ρt



U (cs)− ρV (w, z) + Vw(w, z) (rw − c+ zmd)

+1
2(Vww(w, z)z2σ2 + Vzz(w, z)σ

2
z)

+λEL(zq ,sz)

[
1{zq∈A}

(
V (w − qP (zq, sz) , z + q)

−V (w, z)

)]

+λ

[
EL(za,sa) [V (w +Q (za, p) p, z −Q (za, p))]

−V (w, z)

]+


.

(4)

10These assumptions will be justified ex-post.
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On the right-hand side, the first line corresponds to the utility from current consump-

tion and the drift term of the value function. On this line, the consumption rate ct is

chosen by the investor.

The second line corresponds to the diffusion of the value function. There is no

choice variable on this line.

The third line corresponds to the jump resulting from asking another investor for

a quote. Namely, zq is the type of the investor who was contacted and is drawn from

the cross-sectional distribution of types µ. This distribution µ is taken as given by

the individual investors. On this same line, sz is the signal received by the potential

quoter. In line with the definition (1),

sz = Xzz + (1−Xz)ζz,

with the two random variables Xz ∼ B(1, τ) and ζz ∼ µ being independent of each

other and of all the other random quantities. The set A appearing in the indicator

function represents the types of the investors who are ready to offer a quote. This set

is also taken as given. The function

A× R → R
(zq, sz) 7→ P (zq, sz)

represents the quoting strategy adopted by the other investors, and is also taken as

given. On this third line, the purchase q is chosen by the investor after observing the

quote P (zq, sz).

The fourth line corresponds to the jump resulting from receiving a quote request.

Namely, za is the type of the investor who asked for a quote and is also distributed

according to µ. The signal regarding za, sa is given by

sa = Xaza + (1−Xa)ζa,

with Xa ∼ B(1, τ), ζa ∼ µ, and the same independence assumptions as above. The

function
R2 → R

(za, p) 7→ Q (za, p)

represents the purchase strategy adopted by the other investors, and is also taken as

given. In this line, the quote p is chosen by the investor. The positive part in the

expectation (“[·]+”) represents the optimal decision of quoting or not.

Combining the martingale property of the processes in (3), the expected dynamics in

(4), and the intuition that the optimal policy should be locally given by a maximization

of these expected dynamics over the choice variables, we derive the HJB equation for
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the individual problem (ip). Namely,

ρV (w, z) = sup
c̃
{U (c̃s)− Vw(w, z)c̃}

+ Vw(w, z) (rw + zmd)

+
1

2

(
Vww(w, z)z2σ2 + Vzz(w, z)σ

2
z

)
+ λEL(zq ,sz)

[
1{zq∈A}

(
supq̃ V (w − q̃P (zq, sz) , z + q̃)

−V (w, z)

)]

+ λ

[
EL(za,sa)

[
supp̃ EL(za,sa) [V (w +Q (za, p̃) p̃, z −Q (za, p̃))| sa]

]
−V (w, z)

]+

,

(5)

with the random variables zq, sz, za, sa, and set A satisfying the same distributional

assumptions as above.

To analyze the HJB equation (5), we proceed in two steps. First, we assume

a certain functional form (“Ansatz”) for the solution to (5). Then, for tractability

reasons, we focus on a certain asymptotic case.

Assumption 1. The value function can be written as

V (w, z) = − exp{−α (w + v(z) + v̄)},

with α > 0, v ∈ C2 and v̄ ∈ R.

Such a functional form is common in models of consumption-portfolio choice with

CARA investors. See, among many others, Wang (1994), Duffie et al. (2007), or

Gârleanu (2009). Further, in an asymptotic case, this assumption will be justified

ex-post by an explicit solution.

Note that the function v(·) and the constant v̄ cannot be identified independently

that v̄ is only introduced for convenience.

With Assumption 1, the various derivatives appearing in (5) are all proportional

to the value function itself. Namely,

Vw(w, z) = (−α)V (w, z)

Vww(w, z) = α2V (w, z)

Vz(w, z) = (−αv′(z))V (w, z)

Vzz(w, z) =
(

(−αv′(z))2 − αv′′(z)
)
V (w, z).

(6)

This homogeneity of the problem will simplify its treatment. First, we can characterize

the optimal consumption.
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Lemma 2. The optimal consumption in the HJB equation (5) is

c =
α

γ
(w + v(z) + v̄)− 1

γ
log

(
α

γ

)
.

It corresponds to a utility

U(c) =
α

γ
V (w, z),

which is thus proportional to the value function.

Proof. The proofs are in Appendix C.

Injecting the expressions for the derivatives of the value function in (6) and the

optimal consumption stated in Lemma 2 into the HJB equation (5), and simplifying

by V (w, z), which is negative, yields

ρ =
α

γ
+ α

(
α

γ
(w + v(z) + v̄)− 1

γ
log

(
α

γ

))
− α (rw + zmd)

+
1

2

(
α2z2σ2 +

((
−αv′(z)

)2 − αv′′(z))σ2
z

)
+ λEL(zq ,sz)

[
1{zq∈A}

(
inf
q̃

V (w − q̃Pd (zq, sz) , z + q̃)

V (w, z)
− 1

)]
+ λ

[
EL(za,sa)

[
inf
p̃

EL(za,sa)

[
V (w +Q (za, p̃) p̃, z −Q (za, p̃))

V (w, z)

∣∣∣∣ sa]]− 1

]+

.

(7)

As this equation must hold for any wealth w and as, by Assumption 1, α > 0,

α

(
α

γ
− r
)
w = 0

⇔ α = rγ. (8)

Now, injecting (8) into (7), choosing

v̄
∆
=

1

rγ

(ρ
r
− 1 + log(r)

)
to get rid of the constant terms, and normalizing by −α = −rγ, yields

rv(z) =zmd −
1

2

(
rγz2σ2 +

(
rγ
(
v′(z)

)2 − v′′(z))σ2
z

)
+

λ

−rγ
EL(zq ,sz)

[
1{zq∈A}

(
inf
q̃
e−rγ(−q̃Pd(zq ,sz)+v(z+q̃)−v(z)) − 1

)]
+

λ

−rγ

[
EL(za,sa)

[
inf
p̃

EL(za,sa)
[
e−rγ(Q(za,p̃)p̃+v(z−Q(za,p̃))−v(z))

∣∣∣ sa]]− 1

]+

.
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Rearranging the terms representing the trading now yields

rv(z) =zmd −
1

2

(
rγz2σ2 +

(
rγ
(
v′(z)

)2 − v′′(z))σ2
z

)
+ λEL(zq ,sz)

[
1{zq∈A} sup

q̃

1− e−rγ(−q̃Pd(zq ,sz)+v(z+q̃)−v(z))

rγ

]

+ λ

[
EL(za,sa)

[
sup
p̃

EL(za,sa)

[
1− e−rγ(Q(za,p̃)p̃+v(z−Q(za,p̃))−v(z))

rγ

∣∣∣∣∣ sa
]]]+

.

(9)

In this last equation (9), the first line of the right-hand side balances the instantaneous

benefits (expected payouts) and costs (variance of payouts scaled by the risk-aversion)

of having a certain exposure z to the aggregate risk factor. The second and third

line corresponds to the benefits induced by the possibility to adjust one’s exposure by

trading the stock.

Analyzing equation (9) is difficult because of the non-linearity of the terms related

to trading, those on the second and third line. This non-linearity itself stems from the

risk-aversion toward the non-fundamental risks.

For the sake of tractability, and following arguments in Duffie et al. (2007), Vayanos

and Weill (2008), and, to mention two particularly transparent examples, Biais (1993)

and Gârleanu (2009), we will make the investors risk-neutral with respect to the

trading risks while maintaining the risk-aversion with respect to the fundamental risk.

The proper way to achieve this “focused risk-aversion” is to let the risk-aversion

coefficient go to zero,

γ → 0,

while scaling up the fundamental aggregate risk

σ ∼ 1
√
γ

γ→0−→ +∞.

As a result, the “quantity” of fundamental risk contained in any stock holding is

maintained, but any other type of risk-aversion vanishes. The next assumption

formalizes the asymptotic case that we will characterize explicitly.

Assumption 3. The volatility of the dividends is inversely proportional to the risk-

aversion of the investors. Namely,

σ
∆
=

1
√
γ
σ̄,

with σ̄ > 0. Further, we assume that

v(z) = v0(z) +O(γ),
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implicitly assuming that a solution v(·) to (9) exists for any sufficiently small value of

γ.

As it turns out, focusing on the asymptotic behavior of the model significantly sim-

plifies the analysis. Combining the HJB equation (9) and Assumption 5 characterizes

the asymptotic function v0(·) as a solution to

rv0(z) =zmd −
1

2

(
rγz2σ2 − v′′0(z)σ2

z

)
+ λEL(zq ,sz)

[
1{zq∈A} sup

q̃
(−q̃Pd (zq, sz) + v0 (z + q̃)− v0(z))

]

+ λ

[
EL(za,sa)

[
sup
p̃

EL(za,sa) [Q (za, p̃) p̃+ v0 (z −Q (za, p̃))− v0(z)| sa]

]]+

.

(10)

We can characterize v0(·) explicitly and, following the examples of Biais (1993),

Duffie et al. (2007), Vayanos and Weill (2008), and Gârleanu (2009), we will focus on

the analysis of the asymptotic, but much more tractable, value function v0(·) instead

of the general v(·). For convenience, we will thus abuse our notations and, from now

on, write v(·) for v0(·).
At this stage, we would like to state more formally what we are searching for.

The equation (10) relies on beliefs regarding two types of aggregate quantities.

These aggregate quantities are, first, the cross-sectional distribution of types µ and,

second, the quoting and purchasing policies P (·, ·) and Q(·, ·) adopted by the other

investors. The combination of these beliefs and the equation (5) define new, individually

optimal, policies. Then, the aggregation of these individually optimal policy defines a

certain type dynamics. Finally, a certain stationary distribution of types results from

the type dynamics.

We want to solve for a rational expectations equilibrium of the model, meaning

that we want the beliefs and the actual quantities to be consistent. We solve for such

a rational expectations equilibrium in two steps. First, we take the type distribution

as exogenous and ensure the rationality of the beliefs regarding the quoting and

purchasing policies. We call such a solution, conditional on the type distribution, a

“partial equilibrium” of the model. Then, we will ensure the rationality of the beliefs

regarding the type distribution, and this will define an “equilibrium” of the model.

The formal definition of a partial equilibrium follows.

Definition 4 (Partial Equilibrium). Let a cross-sectional distribution of types µ be

given. Then, a partial equilibrium of the model consists of a triplet of functions and a

set A ⊂ R2. The three functions are

z 7→ v(z)

13



that describes how the value function of an investor depends on her type,

P : (z, s) 7→ P (z, s),

that describes the quote provided by an investor of type z after receiving the signal s,

and

Q : (z, p) 7→ V (w, z)

that describes the number of shares purchased by an investor of type z after receiving

a quote p.

The partial equilibrium quantities must be a “best-response” to themselves. Namely,

1. v(·) satisfies the HJB equation (9), given A, Q(·, ·), and P (·, ·);

2. the purchasing policy Q(·, ·) satisfies

Q(z, p) ∈ arg max
q̃

(−q̃Pd (zq, sz) + v (z + q̃)− v(z)) ,

meaning that it is optimal, given v(·);

3. the set A satisfies

A =

{
z : EL(za,sa)

[
sup
p̃

EL(za,sa) [Q (za, p̃) p̃+ v (z −Q (za, p̃))| sa]

]
≥ v(z)

}
,

meaning that it contains the types of the investor who are willing to issue a quote,

given Q(·, ·) and v(·);

4. the quoting policy P (·, ·) satisfies

P (z, sa) ∈ arg max
p̃

EL(za,sa) [Q (za, p̃) p̃+ v (z −Q (za, p̃))| sa]

on the set A× R, meaning that it is optimal, given A, Q(·, ·) and v(·).

The equilibrium is partial because there is no connection between, on the one hand,

the trading pattern induces by P (·, ·), Q(·, ·), and A and, on the other hand, the

distribution of types µ.

Note that, strictly speaking, we are interested in the solutions to the individual

problem (ip) and not in the solutions to the HJB equation (9). As these two sets need

not be identical, this calls for a verification argument.

Proposition 5. Let us assume that the transparency of the market is high enough,

meaning that

τ ∈

[√
3

2
, 1

]
≈ [0.866, 1] , (11)
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and let us take as given the cross-sectional distribution of types µ and write M for its

mean and V for its variance. Then, there exists a partial equilibrium for which the

value functions are characterized by the quadratic function

v(z) = v0 + v1z + v2z
2,

with 
v0 =

γσ2(4λM2((τ−3)τ2+3)−9σ2
z−4λ((τ−4)τ2+2)V)

8λ((τ−3)τ2+3)+18r

v1 = µ
r −

4γλMσ2((τ−3)τ2+3)
4λ((τ−3)τ2+3)+9r

v2 = − 9γrσ2

8λ((τ−3)τ2+3)+18r

.

The corresponding optimal purchasing policy is

Q : (z, p) 7→ p− v1

2v2
− z.

All the agents quote a price when being asked for one, meaning that

A
(∆)
=

{
z : EL(za,sa)

[
sup
p̃

EL(za,sa) [Q (za, p̃) p̃+ v (z −Q (za, p̃))| sa]

]
≥ v(z)

}
= R.

And the function

P : (z, sa) 7→ v1 + 2v2

(
1

3
z +

2

3
(τsa + (1− τ)M)

)
describes the optimal quoting policy.

Remark 6. Without the assumption (11), no quadratic partial equilibrium exists. In

the proof of Proposition 5, this assumption is critical in step (iv). If this assumption is

relaxed, the term describing the utility benefits resulting from being asked for a quote

will not be quadratic in the current type anymore, and the quadratic assumption in

step (i) will not be consistent.

In order to characterize an equilibrium of the model, we still need the cross-sectional

distribution of types or, as seen in Proposition 5, its two first moments. The next

corollary is the first step in this direction.
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Corollary 7. The dynamics of the type z of a given agent a is

dzt = σz dBt

+

 Xr,t

(
1
3zq,t + 2

3 (τzt− + (1− τ)M)
)

+ (1−Xr,t)
(

1
3zq,t + 2

3 (τζr,t + (1− τ)M)
)

− zt−

 dN r
t

+

 Xq,t

(
zr,t + 2

3 (τzt− − (τzr,t + (1− τ)M))
)

+ (1−Xq,t)
(
zr,t + 2

3 (τzt− − (τζq,t + (1− τ)M))
)

− zt−

 dN q
t ,

(12)

with the following distributional assumptions.

1. N r is a Poisson process with jump intensity λ. N c jumps when a requests a

quote from another investor.

2. zq,t ∼ µ is the type of the investor from whom a requests a quote at time t.

3. Xr,t ∼ B(1, τ) is the Bernoulli random variable indicating whether the signal

about a at time t is correct (Xa,t = 1) or uninformative (Xa,t = 0).

4. ζr,t ∼ µ is the uninformative signal about a.

5. N q is a Poisson process with jump intensity λ. N q jumps when a is asked for a

quote by another investor.

6. zr,t ∼ µ is the type of the investor who requested a quote from a at t.

7. Xr,t ∼ B(1, τ) is the Bernoulli random variable indicating whether a observes

the current type zr,t or the agent who requested a quote at time t (Xr,t = 1) or

an uninformative signal (Xr,t = 0).

8. ζr ∼ µ is the uninformative signal about the agent who requested a quote.

Furthermore, the processes

B,N r, N q

and random variables

(zq,t, Xr,t, ζr,t, zr,t, Xq,t, ζq,t)t≥0

are all independent of each others.

4 Stationary Type Distribution

The calculation of the individual value functions in Section 3 relies on exogenous beliefs

regarding the distribution of types across the investors. However, these individual
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value functions themselves induce a certain trading pattern on the OTC market, and

this trading pattern generates a certain type distribution. In this section we intend to

make the beliefs regarding the type distribution rational. We formalize the rationality

of the beliefs with the following definition.

Definition 8 (Consistent Type Distribution). A distribution of types µ is consistent

if

1. the trading pattern induced by the partial equilibrium corresponding to µ generates

a stationary distribution of types µout(µ);

2. the assumed and actual distributions of types are identical, meaning that µ =

µout(µ).

As it turns out, there is a unique consistent distribution of types.11

Proposition 9. There exists a unique equilibrium stationary distribution of types µ.

µ solves the equation

µ̂(w) =
1

1 +
1
2
σ2
z

2λ w
2


τ
2 ei

2
3

(1−τ)Mw π̂
(

1
3w
)

π̂
(

2
3 tw

)
+1−τ

2 ei
2
3

(1−τ)Mw π̂
(

1
3w
)

π̂
(

2
3 tw

)
τ
2 e−i

2
3

(1−τ)Mw π̂
(

2
3w
)

π̂
((

1− 2
3 t
)
w
)

+1−τ
2 e−i

2
3

(1−τ)Mw π̂
(

2
3w
)

π̂ (w) π̂
(
−2

3 tw
)

 , w ∈ R,

with µ̂(w) being the Fourier transform of µ. Namely, if z ∼ µ, then

µ̂(w)
∆
= E

[
eiwz

]
.

Furthermore, the first two moments of µ are

E [z] = S

Var [z] =
9σ2

z

4λ (1 + τ2)
.

At this stage, we can already describe certain characteristics of the distribution of

trades.

Corollary 10. The average transaction price is

µ

r
− γSσ2.

The variance of the transaction prices is

81γ2r2σ4σ2
z(4τ + 1)

λ (τ2 + 1) (8λ ((τ − 3)τ2 + 3) + 18r)2

11The exact sense in which the trading pattern “generates” a stationary type distribution is clear
from the proof of the next proposition.
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and is increasing in the transparency levels whenever

λ ≥
6
(
131
√

3− 101
)

20641
r ≈ 0.037r

and the transparency τ is high enough. The variance of the transaction sizes is(
10− 8τ2

)
σ2
z

4λ (1 + τ2)

and is decreasing over the relevant range of transparency levels.

Finally, an ordinary least-squares regression of the transaction prices against the

transaction sizes yields the constant coefficient

µ

r
− γSσ2

and the slope coefficient

9

10

2

3

(
1

3v2
(4τ + 1)− 2v2τ

2

)
.

The slope coefficient is increasing in τ over the relevant range when λ is not too small

when compared to r.12

Interestingly, the variance of the transaction prices is typically increasing in the

transparency of the market. It is true that a more transparent market leads to a more

efficient allocation of the stock, to smaller liquidity needs, and to more homogeneous

valuations across the population of investors. This should tend to decrease the cross-

sectional variance of the transaction prices. However, more transparency leads to

predatory quotes, which increases the inventory costs. This second effect increases

the unit price of a transaction of a given size, increases the dispersion of prices, and

dominates the first effect.

5 Equilibrium

Putting together the results of Section 3 regarding the individual optimality and

Section 4 regarding the type distribution, the characterization of an “equilibrium” of

the model is immediate. We first formally define our equilibrium concept.

12The exact condition is

2
(

71 + 40
√

3
)
λ3 + 108r3

(
3
√

3γ2σ4 − 8
)

+ 9λr2
((

48
√

3− 9
)
γ2σ4 − 64

√
3 + 72

)
+ 120

(
3 +
√

3
)
λ2r > 0

and is satisfied when we let either λ→∞ or r → 0.
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Definition 11 (Equilibrium). An equilibrium of the model consists of a consistent

distribution of types µ, in the sense of Definition 8, and the corresponding partial

equilibrium, in the sense of Definition 4.

Corollary 12. There exists exactly one quadratic equilibrium.

Proof. Immediate from Proposition 5 and Proposition 8.

We can characterize the links between the expected utility of the investors and

the transparency of the OTC market.

Corollary 13. The relationship between transparency, as measured by the parameter

τ measuring the quality of the signal, and expected utility, as measured by the function

v(·), is ambiguous. Namely,

lim
τ→1

∂

∂τ
v(z)


> 0 , |z −M| <

√
rλ(9r+λ)σ2

z√
6rλ

= 0 , |z −M| =

√
rλ(9r+λ)σ2

z√
6rλ

< 0 , |z −M| >

√
rλ(9r+λ)σ2

z√
6rλ

.

In particular, more transparency benefits those investors with a moderate exposure to

the aggregate risk but more opacity benefits those investors having either a sufficiently

large or sufficiently low exposure. Overall, more transparency is socially desirable in

the sense that

∂τ Eµ(z) [v(z)] =
9γσ2σ2

zτ

4λ (1 + τ2)2 > 0.

The intuition behind the last proposition is that transparency increases the

inventory costs.13 This happens via two different channels. On the one hand,

transparency exposes any given investor with large inventories to predatory pricing.

On the other hand, as transparency improves the allocative efficiency of the market, it

becomes more difficult for an investor with an excessive exposure to find a counterparty

with large and opposite liquidity needs. This second effect exacerbates the first one

and is driven by the endogenous distribution of types.

These results imply that the effect of transparency on the value function of the

investors is ambiguous. First, on average, investors benefit from an increase of the

transparency and the resulting improvement in the allocative efficiency. In particular,

transparency is welfare improving. However, those investors with a sufficiently large

(positive) or small (negative) exposure find it increasingly costly to liquidate this

exposure and would benefit from a more opaque market. We characterize explicitly

the exposure levels starting from which investors prefer opacity to transparency. This

result is in line with the heterogeneous reactions to the introduction of TRACE, with

13We define the inventory costs as the reservation value of an investor who deviates from a zero
risk exposure.
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quite negative reactions of many institutional investors. Indeed, as our model predicts,

transparency is a disadvantage for agents facing large inventory risk, such as, e.g.,

certain institutional investors.

6 Conclusion

We study a general equilibrium model in which agents share risks by trading on

an OTC market. Both the transaction size and the transaction price are bargained

bilaterally, and we analyze the equilibrium effect of asymmetric information regarding

one’s counter-party liquidity needs. We call the quality of this information the

transparency of the market. We solve for both the value functions and the moments

of the endogenous distribution of types in closed-form. Increased transparency has

two main effects on the equilibrium of the model. On the one hand, it makes the asset

allocation more efficient. On the other hand, it induces agents to adopt predatory

quoting policies. These two effects both tend to increase the inventory costs, and we

show how transparency is beneficial to those agents with moderate liquidity needs but

detrimental to the rest of the population. We characterize the threshold starting from

which investors value opacity in closed-form. Overall, however, more transparency is

welfare improving. Our conclusions are in line with a number of sources documenting

the mixed effects of transparency on the liquidity of certain OTC markets.14

One natural extension of our model is to consider two classes of agents. Agents in

the first class, representing the dealers, trade both among themselves and with the

agents of the second class. Agents in the second class, representing the end-users, can

only trade with the dealers. In this setting, one can analyze the heterogeneous effects

of transparency. Indeed, post-trade transparency makes the valuations of the asset

across the end-users more homogeneous, but, for the dealers and as in the current

model, it makes the information regarding one’s counter-party inventory more accurate.

Transparency may impact the entry decision of dealers. Understanding the interaction

between these two sides of transparency is critical if one wants to evaluate the new

regulatory reforms regarding the transparency of OTC markets.

14See Appendix A.
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Appendices

A TRACE

The Trade Reporting And Compliance Engine (TRACE) is a program initiated in 2002

by the National Association of Security Dealers (NASD). This program collects and

disseminates anonymized bond transaction data. This program is aimed at introducing

post-trade transparency on US bond markets, a major OTC market. A number of

empirical studies find that TRACE made it possible for all investors to trade at prices

closer to the inter-dealer price. TRACE is thus generally considered to have been a

positive development, and similar programs have been initiated.15,16

However, some recent evidence indicates that TRACE may have reduced trading

volumes for certain types of bonds. Hence, on certain bond markets, post-trade

transparency moved two popular measures of liquidity in opposite directions. Namely,

bid-ask spreads dropped, as did trading volumes. Furthermore, certain bond market

participants expressed the view that TRACE had been detrimental to market liquidity.

A transparent OTC market, these market participants argue, reduces the incentives

to hold inventories and “make the market.”17

B OTC Nash Bargaining

Nash solution to bargaining. First: when is there a surplus? Let (wa, za) and (wb, zb)

meet (wlog: za < zb). There is a surplus exactly when

∅ 6=

{
(P,∆z) ∈ R2 :

α(wa − P ) + v(za + ∆z) ≥ αwa + v(za)

α(wb + P ) + v(zb −∆z) ≥ αwb + v(zb)

}
=
{

(P,∆z) ∈ R2 : v(za + ∆z)− v(za) ≥ αP ≥ v(zb)− v(zb −∆z)
}

Picking ∆z = 1
2(za + zb) the concavity of v ensures that this set is never empty.

15Apparently, the reduction of the bid-ask spreads after the introduction of TRACE was driven
by the improved bargaining power of the bond investors. See Goldstein et al. (2007), Bessembinder
et al. (2006), and Edwards et al. (2007) for empirical discussing TRACE and bid-ask spreads.
Bessembinder and Maxwell (2008) provides a non technical discussion on the same topic, with a
number of institutional details. Green et al. (2007) discuss bid-ask spreads on the OTC market for
municipal bonds.

16For example, the Financial Industry Regulatory Authority (FINRA) now collects transaction
data for securitized products. See Hollifield et al. (2012) for an empirical analysis of opacity on the
markets for securitized products.

17Asquith et al. (2013) find that TRACE decreased the trading volumes by up to 41.3% for
certain categories of bonds. Das et al. (2013) argues that TRACE made bond markets less liquid.
Bessembinder and Maxwell (2008) reports complaints by bond market investors about the introduction
of TRACE and its adverse effect on liquidity. Finally, bond dealers lobbied against the introduction
of TRACE. Their main arguments are summarized in NASD (2006) and largely overlap with the
complaints in Bessembinder and Maxwell (2008).
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In particular, any two agents will always trade, and the terms of the transaction

will be dictated (under symmetric bargaining powers) by

(V (wa − P, za + ∆z)− V (wa, za)) (V (wb + P, zb −∆z)− V (wb, zb))→ max
P,∆z

The first order necessary conditions w.r.t. P yields

0 =
Vw(wa − P, za + ∆z)(−1)

(V (wa − P, za + ∆z)− V (wa, za))
+

Vw(wb + P, zb −∆z)

(V (wb + P, zb −∆z)− V (wb, zb))
,

as

Vw = −αV,

this becomes

− v(za) + v(za + ∆z)− αP = −v(zb) + v(zb −∆z) + αP (13)

The FOC on ∆z is

0 =
Vw(wa − P, za + ∆z)v

′(za + ∆z)

(V (wa − P, za + ∆z)− V (wa, za))
+
Vw(wb + P, zb −∆z) (−v′(zb −∆z))

(V (wb + P, zb −∆z)− V (wb, zb))
,

From the FOC on P , this simplifies to

v′(za + ∆z) = v′(zb −∆z),

and from the concavity of v, this means that

za + ∆z = zb −∆z =
1

2
(za + zb).

Injecting this into (13) yields

αP =
1

2
(v(zb)− v(za)) .

As expected both terms of the exchange are independent of the wealth.

Note: this “we move together to the center” is reminiscent of Afonso & Lagos,

Trade Dynamics in the Market for Federal Funds (WP). What is critical is that the

population dynamics can be determined without any specific reference to the function

v.
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C Proofs

Proof 14 (Proof of Lemma 2 ). In the HJB equation (5), the first-order condition

for the optimization over the consumption rate c̃ is

U ′(c)− Vw(w, z) = 0

⇔ −γU(c) = −αV (w, z)

⇔ U(c) = α
γ V (w, z),

which is the second statement above. Solving for the optimal consumption now yields

U(c) = α
γ V (w, z)

⇔ −e−γc = −α
γ e
−α(w+v(z)+v̄)

⇔ c = α
γ (w + v(z) + v̄)− 1

γ log
(
α
γ

)
.

Also, the concavity of the utility function U(·) ensures that the solution of the first-order

condition is a point of maximum. Q.E.D.

Proof 15 (Proof of Proposition 5). The proof of Proposition 5 is in six steps and

proceeds along the lines of Definition 4, the definition of a partial equilibrium.

step (i) We first assume that the function v(·) that characterizes the value

functions is quadratic. Namely,

v(z) = v0 + v1z + v2z
2

defines a partial equilibrium. Let us also assume that v2 < 0, meaning that v(·) is

strictly concave.

step (ii) We derive the optimal purchasing policy, given v(·). Namely, a z-agent

who was offered to trade at the price p solves the optimization

sup
q̃
{v (z + q̃)− q̃p} .

The first-order condition yields a unique candidate,

q =
(
v′
)(−1)

(p)− z =
p− v1

2v2
− z ∆

= Q(z, p).

By the concavity assumption on v(·), this candidate is a point of maximum, and Q(·, ·)
is the optimal purchase policy.

step (iii) We derive the optimal quoting policy given the purchasing policy Q(·, ·)
and v(·). Let us consider a z-investor who was contacted by a za-investor, accepted to

provide a quote, and observes the signal

sa = Xza + (1−X)ζ
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with

X ∼ B(1, τ); ζ ∼ µ; X, ζ : independent. (14)

The optimal quote solves the maximization

sup
p̃

EL(za,sa) [Q (za, p̃) p̃+ v (z −Q (za, p̃))| sa] .

The first-order condition for this maximization is

EL(za,sa)

[
Qp (za, p) p+Q (za, p)

+v′ (z −Q (za, p)) (−Qp(za, p))

∣∣∣∣∣ sa
]

= 0

⇔ EL(za,sa)

 1
2v2
p+

(
p−v1
2v2
− za

)
+
(
v1 + 2v2

(
z −

(
p−v1
2v2
− za

)))(
− 1

2v2

) ∣∣∣∣∣∣ sa
 = 0

⇔ EL(za,sa)

[
1

2v2
p+

p− v1

2v2
− za −

v1

2v2
− z +

p− v1

2v2
− za

∣∣∣∣ sa] = 0

⇔ 3

2v2
(p− v1)− z − 2 EL(za,sa) [za| sa] = 0. (15)

Now, given the definition of the signal in (14) and choosing s ∈ R, Bayes’ rule yields

EL(za,sa) [za| sa = s]

= P [X = 1] EL(za,sa) [za| sa = s, X = 1]

+ P [X = 0] EL(za,sa) [za| sa = s, X = 0]

=τ EL(za,sa) [za| za = s, X = 1]

+ (1− τ) EL(za,sa) [za| ζ = s, X = 0]

=τs+ (1− τ) EL(za,sa) [za]

=τs+ (1− τ)M.

(16)

Injecting (16) into (15) and solving for p yields

p = v1 + 2v2

(
1

3
z +

2

3
(τsa + (1− τ)M)

)
∆
= P (z, sa) .

Again, the concavity of v(·) makes this candidate a point of maximum, and P (·, ·) is

the optimal quoting policy.

step (iv) We derive the expected benefits resulting from providing a quote. Namely,

let us assume that a z-investor was asked for a quote by a za-investor. If the z-investor

accept to issue a quote, she will receive the signal

sa(ω) = X(ω)za + (1−X(ω))ζ = s (17)
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and the optimal quote will be P (z, s), as defined in the step (iii). As a result, the

expected benefits resulting from providing a quote are

EL(za,sa)

[
sup
p̃

EL(za,sa) [Q (za, p̃) p̃+ v (z −Q (za, p̃))− v(z)| sa = s]

]
= EL(za,sa)

[
EL(za,sa) [Q (za, P (z, s))P (z, s) + v (z −Q (za, p̃))− v0(z)| sa = s]

]
= − v2

3
EL(za,sa)


(
4M2(1− τ)2 − 3(1− τ)

(
M2 + V

)
− 2M(1− τ)z + z2

)
+2τ(4M(1− τ)− z)sa
+(4τ − 3)τs2

a


∆
= (∗).

Given the definition of the signal sa in (17), the law of sa is µ, the cross-sectional

distribution of types.18 Plugging in the moments of sa, we can rewrite (∗) as

(∗) = −v2

3

(
4M2

(
1− τ2

)
+
(
M2 + V

) (
4τ2 − 3

)
− 2Mz + z2

)
,

which is a quadratic expression in z with a positive leading coefficient and a determinant

equal to

−4

9

(
4τ2 − 3

)
v2

2V.

In particular, under the assumption (11), this determinant is always non-positive and

the expected benefits from quoting are always non-negative. In particular,

A
(∆)
=

{
z : EL(za,sa)

[
sup
p̃

EL(za,sa) [Q (za, p̃) p̃+ v (z −Q (za, p̃))| sa]

]
≥ v(z)

}
= R

and, in the third line of the right-hand side of the HJB equation (10), taking the

positive part has no effect.

step (v) We derive the expected benefits resulting from asking for a quote.

Combining the results from steps (ii), (iii), and (iv), we calculate the expected benefits

18Choosing x ∈ R,

P [sa ≤ x] = E [P [sa ≤ x|X]]

= P [X = 1] E [P [sa ≤ x|X = 1]] + P [X = 0] E [P [sa ≤ x|X = 0]]

= τ P [za ≤ x] + (1− τ) P [ζ ≤ x]

=µ ((−∞, x]) .

As a result, sa ∼ µ.

28



to a z-agent who just asked another agent for a quote to be

EL(zq ,sz)

[
1{zq∈A} sup

q̃
(−q̃P (zq, sz) + v (z + q̃)− v(z))

]

= EL(zq ,sz)

[
EL(zq ,sz)

[
−Q(zq, P (zq, sz))P (zq, sz)

+v (z +Q(zq, P (zq, sz)))− v(z)

∣∣∣∣∣X
]]

= P [X = 1] EL(zq ,sz)

[
−Q(zq, P (zq, sz))P (zq, sz)

+v (z +Q(zq, P (zq, sz)))− v(z)

∣∣∣∣∣X = 1

]

+ P [X = 0] EL(zq ,sz)

[
−Q(zq, P (zq, sz))P (zq, sz)

+v (z +Q(zq, P (zq, sz)))− v(z)

∣∣∣∣∣X = 0

]

= τ EL(zq ,sz)

[
−Q(zq, P (zq, za))P (zq, za)

+v (z +Q(zq, P (zq, za)))− v(z)

]

+ (1− τ) EL(zq ,sz)

[
−Q(zq, P (zq, ζ))P (zq, ζ)

+v (z +Q(zq, P (zq, ζ)))− v(z)

]

= − 1

9
v2

 M
2
(
4(τ − 3)τ2 + 9

)
+ V

(
4(1− τ)τ2 + 1

)
−M

(
4(τ − 3)τ2 + 9

)
z

+
(
4(τ − 3)τ2 + 9

)
z2



,

which is quadratic in the current type z.

step (vi) Using the assumption regarding v(·) in step (i) along with results in

steps (iv) and (v), we rewrite the HJB equation (10) as

0 =
1

9
v2

(
−4λM2

(
(τ − 3)τ2 + 3

)
+ 9σ2

z + 4λ
(
(τ − 4)τ2 + 2

)
V
)
− rv0

+

(
µ+

8

9
λM

(
(τ − 3)τ2 + 3

)
v2 − rv1

)
z

+

(
−1

2
γrσ2 − 1

9
v2

(
4λ
(
(τ − 3)τ2 + 3

)
+ 9r

))
z2.

For the equation to hold for any type z, it must be that
0 = 1

9v2

(
−4λM2

(
(τ − 3)τ2 + 3

)
+ 9σ2

z + 4λ
(
(τ − 4)τ2 + 2

)
V
)
− rv0

0 = µ+ 8
9λM

(
(τ − 3)τ2 + 3

)
v2 − rv1

0 = −1
2γrσ

2 − 1
9v2

(
4λ
(
(τ − 3)τ2 + 3

)
+ 9r

)
This system is linear in the coefficients v0, v1, and v2 and admits the unique solution

v0 =
γσ2(4λM2((τ−3)τ2+3)−9σ2

z−4λ((τ−4)τ2+2)V)
8λ((τ−3)τ2+3)+18r

v1 = µ
r −

4γλMσ2((τ−3)τ2+3)
4λ((τ−3)τ2+3)+9r

v2 = − 9γrσ2

8λ((τ−3)τ2+3)+18r

.

29



In particular, for these values of v0, v1, and v2, the function v(·) defined in step (i),

the function Q(·, ·) defined in step (ii), the function P (·, ·) defined in step (iii), and

the set A = R defined in step (iv) satisfy all the conditions in Definition 4 and, thus,

define a partial equilibrium of the model.

Proof 16 (Proof of Corollary 7). The type dynamics of a are given by (2), meaning

by

dzt = σ dBt + dθt, (18)

with the first term being the idiosyncratic variation of the exposure and the second

term being the discontinuous changes of exposure induced by trading.

Combining the trading strategy summarized in Section 2 and the equilibrium

quoting and purchasing strategies stated in Proposition 5, we characterize the possible

jumps as follows.

1. When a requests a quote at time t and the signal about her is correct, a’s type

becomes

zt− +Q (zt−, P (zq, zt−)) =
1

3
zq +

2

3
(τzt− + (1− τ)M) ,

with zq being the type of the quoter.

2. When a requests a quote at time t and the signal about her is uninformative,

a’s type becomes

zt− +Q (zt−, P (zq, ζr)) =
1

3
zq +

2

3
(τζr + (1− τ)M) ,

with zq being the type of the quoter and ζr being the uninformative signal.

3. When a is asked for a quote at time t and receives an informative signal, a’s

type becomes

zt− −Q (zr, P (zt−, zr)) =zr +
2

3
(zt− − (τzr + (1− τ)M)) ,

with zr being the type of the investor who requested a quote.

4. When a is asked for a quote at time t and receives an uninformative signal, a’s

type becomes

zt− −Q (zr, P (zt−, ζq)) =zr +
2

3
(τzt− − (τζq + (1− τ)M)) ,

with zr being the type of the investor who requested a quote and ζq being the

uninformative signal.

Combining (18), the four possible jumps we just characterized, and the distributional

assumptions in Section 2 yields the dynamics (12). Q.E.D.
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notation parameter value

r risk-free rate 0.037
µ expected dividend of the risky asset 0
σ volatility of the dividends of the risky asset 0.285
σz volatility of the idiosyncratic exposure 1
γ absolute coefficient of risk-aversion 5
M1 net supply of the risky asset 0
λ meeting intensity on the OTC market 50

Table 1: Baseline parameter values for the numerical examples.

-0.5 0.5

inventory z

-0.00035

-0.00030

-0.00025

-0.00020

value function vHzL

Τ=0.87

Τ=0.93

Τ=1

Figure 1: Value function as a function of the inventories for three
levels of transparency τ . Note the non-monotone effect of

transparency on the value function. The baseline parameters value
are in Table 1.

-0.5 0.5

inventory z

-0.0004

-0.0002

0.0002

0.0004

marginal valuation v'HzL

Τ=0.87

Τ=0.93

Τ=1

Figure 2: Marginal valuation of the risky asset as a function of
the inventories for three levels of transparency τ . Transparency

increases the dispersion of the valuations. The baseline parameters
value are in Table 1.
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