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Abstract

A pervasive empirical finding is that mutual fund managers do not maintain their
performance. In this paper, I show that social interactions can explain this fact. To do
so, I allow a “crowd” of managers to meet at random times and exchange ideas within a
rational-expectations equilibrium model. I show that social interactions simultaneously
allow prices to become more efficient and better-informed managers to reap larger
profits. Yet, social interactions cause managers’ alpha to become insignificant. The
main implication is that increased efficiency causes managers to implement passive
investment strategies for which they should not be rewarded. In addition, by increasing
price informativeness, social interactions produce momentum in stock returns and induce
most managers to become momentum traders, consistent with empirical findings.
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1 Introduction
There is ample evidence that the performance of mutual fund managers does not
persist.1 The vast majority of managers are unable to generate abnormal returns and a
significant fraction even underperforms passive benchmarks. The handful of managers
who outperform seldom maintain their performance.

That performance does not persist is usually taken to imply that managers do not
possess superior information (e.g., Carhart (1997)). In this paper, I show that a manager
who possesses superior information does not necessarily maintain her performance if
she interacts socially with other managers. To do so, I develop a rational-expectations
equilibrium à la Grossman and Stiglitz (1980) and Wang (1993), in which agents gather
information from both prices and social interactions. In the “noisy rational-expectations”
literature, the typical setting involves a population of agents endowed with private
information, who attempt to infer the information of other agents from prices. Other
learning channels are absent. In my model, social interactions account for an alternative
channel whereby information gets passed from one agent to another through private
conversations, naturally complementing the price-learning channel. Social interactions
simultaneously allow prices to become more efficient and better-informed managers to
reap larger profits, and yet cause their performance, as traditionally measured (e.g.,
alpha of Jensen (1968)), not to persist. The main implication is that increased efficiency
induces managers to implement passive investment strategies for which they should not
be rewarded.

My model builds on a large literature arguing that social interactions play an
essential role in the marketplace.2 For instance, a survey by Shiller and Pound (1989)
shows that interpersonal communications are an important component of institutional
investors’ decisions. To the question “Was the fact that someone (whom you know or
may know of) bought stock in the company influential in getting you to buy the stock ?”,
44% answered “yes”. While the empirical prevalence of word-of-mouth communication
is increasingly acknowledged, theory has made little headway in this direction.

In this paper, I show that social interactions allow to explain, within a unified
model, a number of stylized facts in the mutual fund literature. To do so, I consider a

1Barras, Scaillet, and Wermers (2010) find that the fraction of skilled managers has dropped from
14% in the early 90s to a mere 2% in the last decade. Jensen (1968), Malkiel (1995), Gruber (1996)
and Carhart (1997) find that most mutual funds fail to outperform, and often underperform, passive
benchmarks, even before transactions costs. See Wermers (2000) for a literature review.

2See Hong, Kubik, and Stein (2005) and Cohen, Frazzini, and Malloy (2008) for references related
to the mutual fund industry. Massa and Simonov (2011) show that college-based interactions influence
portfolio decisions. Hong, Kubik, and Stein (2004) show that investors find the market more attractive
when more of her peers participate. Brown, Ivkovic, Smith, and Weisbenner (2008) reach similar
conclusions. Other evidence includes Grinblatt and Keloharju (2001) or Ivkovic and Weisbenner (2005).
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rational-expectations equilibrium model in which a crowd of fund managers attempt
to forecast some fundamental, while noise traders continuously blur the price signal
about this fundamental. As in prior contributions, managers initially develop a working
idea regarding the fundamental. In contrast to prior contributions, however, managers
interact socially and refine their initial idea through both prices and word-of-mouth
communication. Specifically, managers meet at random times and share their ideas
until the fundamental is revealed. When two managers meet, information flows in both
directions as managers bounce ideas off of one another. After the meeting, managers
wind up with new pieces of information and post an order. By clearing the market,
prices centralize the outcome of conversations, albeit imperfectly due to noise trading.

This process leads to a novel form of learning, which includes a common and a
private channel. What makes learning unique in my model is the way in which the
private channel fits into the learning process and how the private channel affects the
common channel. The pattern of information arrival is as follows. When a manager
is socially inactive, she analyzes the price—the common channel—in an effort to infer
private conversations among other managers. Information aggregated through the price
flows tick-by-tick, which induces continuous updates in a manager’s views. By contrast,
conversations—the private channel—take place every once in a while. But upon meeting
someone, a manager obtains large pieces of information, which she incorporates by
updating her expectations in a discontinuous way. Private conversations ultimately
feed back into the price and thereby make the public channel increasingly effective. If
social interactions are sufficiently intense, the market learning process improves at great
speed; a manager becomes progressively unable to preserve her informational advantage
before the market catches up with her (that is, her performance does not persist).

Consistent with empirical findings, this mechanism applies to most managers in
my model except a small group of top performers.3 This result is perhaps surprising
considering the rich information heterogeneity triggered by social interactions. While
managers hold one idea initially, some may entertain many meetings but others may
be less successful. Therefore, only a subset of managers eventually get a “good” idea—
many pieces of information—about the fundamental. Building on Stein (2008), good
ideas do not travel all over the marketplace. Good ideas rather remain localized. In
my model, managers with good ideas do not talk with those who hold inferior ideas.
This segmentation of information allows managers with good ideas to preserve their
informational advantage over a longer time period. Yet, even if a manager gets a
good idea, market efficiency eventually offsets her informational advantage so that her

3Kosowski, Timmermann, Wermers, and White (2006), Barras, Scaillet, and Wermers (2010) and
Fama and French (2010) find no evidence of skill, except in the upper tail of the cross-sectional
distribution of managers.
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alpha rapidly becomes insignificant. Only exceptionally good ideas allow a manager to
consistently generate abnormal returns.

This result, however, does not imply that managers with good ideas do not extract
large rents. Before accelerating the information flow through prices, private conversations
first allow managers to improve their market-timing ability. As social interactions
intensify, managers with good ideas speculate more aggressively and rapidly accumulate
large profits in dollar value. Hence, even if price informativeness eventually weakens
their timing ability, these managers pocket substantial profits in the meantime. In
contrast, managers with inferior ideas immediately rally to the market consensus and
lose their timing ability. Information heterogeneity therefore creates large and persistent
spreads in trading gains across managers.

Overall, social interactions do not prevent managers with good ideas from accumu-
lating large trading gains, but cause their performance, as measured by their alpha,
not to persist. The reason is that social interactions induce most managers—even
those with good ideas—to progressively implement passive investment strategies for
which they should not be rewarded. As a result, not only does their performance
become non-persistent, but their alpha becomes even negative. This mechanism may
be powerful enough to make it literally impossible to distinguish alphas generated by
managers with good ideas from alphas generated by managers with inferior ideas.

The model offers two additional empirical implications. First, social interactions
produce momentum in stock returns, one of the most pervasive facts in Financial
Economics.4 That my model generates momentum is intriguing for two reasons. First,
in a rational-expectations equilibrium, returns usually exhibit reversal (e.g., Wang
(1993)). Second, in my model, momentum is a rational phenomenon that is not simply
driven by a risk factor (noise trading). Indeed, momentum hinges upon the diffusion
of information through private conversations.5 Carhart (1997) argues that the weak
evidence of performance persistence in the mutual fund industry is the sole result of the
one-year momentum effect. By providing a new theory for momentum based on social
interactions, my model suggests that momentum profits are rather modest and that
managers pursuing momentum strategies are unlikely to maintain their performance.

Second, social interactions give rise to trading patterns that are consistent with
those identified in the mutual fund industry. By increasing price informativeness, social

4See Poterba and Summers (1988), Jegadeesh and Titman (1993), Rouwenhorst (1998), Menzly
and Ozbas (2010) and Moskowitz, Ooi, and Pedersen (2011), among others. This result is consistent
with Wermers (1999) who argues that mutual fund managers are likely to play an important role in
the momentum mechanism.

5See Daniel, Hirshleifer, and Subrahmanyam (1998), Barberis, Shleifer, and Vishny (1998) or Hong
and Stein (1999) for behavioral explanations. See Berk, Green, and Naik (1999) and Johnson (2002)
for rational risk-based accounts.
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interactions encourage lesser-informed managers to chase the trend in an attempt to
“free-ride” on the information of others. Instead, managers with superior information
tend to break away from the herd to exploit their informational advantage, as in Coval
and Moskowitz (2001).6 As social interactions intensify, the market processes more and
more information so that even well-informed managers eventually align with the market
consensus. For most managers, momentum trading becomes sooner or later an optimal
strategy. This result is in line with Grinblatt, Titman, and Wermers (1995) who find
that 77% of mutual funds in their sample are momentum investors.

After discussing related works, the balance of the paper is as follows. Sections 2
and 3 respectively present and solve the model. Sections 4, 5 and 6 contain the results.
Section 7 concludes. Mathematical derivations are collected in the technical appendix.

Review of the Literature

My model relates to three strands of literature. First, in the absence of social interactions,
my model nests the “noisy rational-expectations” setup of He and Wang (1995), except
for allowing trading to be continuous. This model serves as a natural benchmark against
which to evaluate the effects of social interactions. Private information is dispersed
among investors and learning is exclusively guided by prices. This model has two
additional advantages: first, it involves an economy with a finite horizon, a convenient
framework to study performance persistence. Second, the model involves long-lived
information, a necessary feature for social interactions to impact prices. My paper
differs from He and Wang (1995) in two respects, though. While He and Wang (1995)
investigate the effect of dispersed information on trading volume, my main focus is on
performance. But more important, unlike He and Wang (1995), my purpose is to let
agents interact socially.

Second, in my model, social interactions are based on the recent developments in
the “information-percolation” literature initiated by Duffie and Manso (2007). While
information percolation is usually applied to decentralized markets, Andrei and Cujean
(2011) show that information percolation is equally relevant when markets are centralized
but information is not—agents meet to share their information. This approach to
modeling social interactions is also advocated by Andrei (2012). Unlike Andrei and
Cujean (2011) and Andrei (2012), agents in my model are free to trade whenever they
receive new information. As a result, public information continuously flows from prices,
while private information flows at discrete, random points in time. This reconciles the
meeting and the trading frequency, changes the pattern of information arrival, and leads
to a novel form of learning. As a technical contribution, the learning process requires a

6See also Brennan and Cao (1997) and Feng and Seasholes (2004).
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new filtering technique. Furthermore, unlike Andrei (2012), information is inherently
long-lived in my model, allowing me to study how long informational advantages subsist.
Finally, unlike Andrei and Cujean (2011) and Andrei (2012), I adapt the percolation
mechanism to embed the finding of Stein (2008) that good ideas remain localized. I
show that even if good ideas remain localized, the market rapidly catches up. Therefore,
good ideas only provide a short-lived informational advantage.

Finally, a well-accepted explanation for the lack of performance persistence in the
mutual fund industry is that of Berk and Green (2004). If the provision of funds by
investors is competitive and superior managerial ability is scarce, abnormal performance
attracts flows of funds that compete away subsequent abnormal returns. The view
expressed in this paper is distinct in several respects. First, the mechanism I highlight
does not rely on fund flows: performance becomes non-persistent, even in the absence
of flows into and out of the fund. Second, while Berk and Green (2004) build their
explanation on the notion of “superior ability”, the source of which they do not model,
mine is based on the familiar notion of informational heterogeneity: some managers are
endogenously better informed than others.7 Lastly, the model of Berk and Green (2004)
is partial equilibrium (trading does not affect benchmark returns). Instead, my results
rely on an equilibrium mechanism whereby prices become gradually more efficient.

2 A Model of Socially-Interacting Fund Managers
The goal of this section is to introduce social interactions in an otherwise standard
Grossman and Stiglitz (1980) framework. Subsections 2.1 and 2.2 present the economy
and its information structure. Subsection 2.3 describes how fund managers interact
socially and then derives the resulting distribution of information in the economy.

2.1 Assets, Trading, and the Economy

The economy has a finite horizon T <∞ and trading continuously occurs on [0, T ). An
economy with a finite horizon offers a convenient framework to study the persistence of
performance. Moreover, because my purpose is to introduce social interactions whereby
agents meet and share information on the time span [0, T ), it is important to let agents
trade when they receive new information.

The market consists of two assets. The first asset is a riskless claim with perfectly
elastic supply. Its rate of return is normalized to r = 0, as in He and Wang (1995).8

7See Chevalier and Ellison (1999a), Coval and Moskowitz (2001), Cohen, Frazzini, and Malloy
(2008) and Christoffersen and Sarkissian (2009).

8See also Admati (1985), Wang (1993), He and Wang (1995) or Brennan and Cao (1996). However,
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The second asset is a risky stock with equilibrium price Pt at time t. The stock pays a
liquidating dividend Π + δ to be revealed at date T and which I regard as the stock’s
fundamental value.

The supply Θ of the stock is stochastic and follows an Ornstein-Uhlenbeck process:

dΘt = −aΘΘtdt+ σΘdBΘ
t (1)

where (BΘ
t )t≥0 is a Brownian shock with amplitude σΘ > 0 and mean-reversion speed

aΘ > 0. As is customary, I interpret Θ as the supply of the stock available to the
market, while noise traders—agents who trade for reasons unrelated to fundamental
information—have inelastic demands of 1 − Θ units of the stock (in total supply of
1).9 Trades posted by noise traders make the supply Θ noisy through (1) and thereby
prevent prices from fully revealing the fundamental.

The economy is populated with a continuum of fund managers. Each manager j in
the crowd attempts to predict the fundamental value of the stock. Manager j does so
by analyzing the tape, and by privately discussing with other managers. Information
collected by manager j up to time t is contained in her information set F jt .

I am interested in the heterogeneity of information Fj = (F jt )t≥0 generated by social
interactions among fund managers. Differences in risk aversion is not my main focus. I
thus assume that managers share a common absolute risk aversion γ and, for simplicity,
exhibit CARA utility. The problem of a manager j is to find a predictable portfolio
strategy θj maximizing her expected utility over terminal wealth

E
[
−e−γW j

T

∣∣∣F jt
]

subject to the constraint

W j
T = W j

0 +
∫

[0,T )
θjtdPt + θjT∆PT . (2)

I make two modeling choices regarding (2). First, I neglect fund flows. One may
think of funds in my model as closed-end funds.10 Second, for simplicity, I follow Koijen
(2012) and do not impose short-sales or borrowing constraints, although managers may
face certain trading restrictions.11 Finally, notice that trading in (2) allows for a jump
in prices of size ∆PT at the announcement date. I elaborate on this price jump in the
next subsection.
see Loewenstein and Willard (2006) for the implications of endogenizing the riskfree rate.

9Performance will be measured not including the losses of noise traders.
10See Chevalier and Ellison (1997) and Sirri and Tufano (1998) for empirical treatments.
11See, for instance, Almazan, Brown, Carlson, and Chapman (2004).
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2.2 The Information Structure

The fundamental value of the stock consists of two parts, Π and δ. Managers do
not observe δ, nor do they get information about it. They view δ ∼ N (0, σ2

δ ) as
an independently-drawn normal variable. I refer to δ as residual uncertainty, since
managers cannot possibly learn about it.12 I need this feature to keep managers with
highly accurate information from posting massive orders at the announcement date,
i.e., an equilibrium would not exist without residual uncertainty.13 Overall, residual
uncertainty accounts for a surprise at the announcement date, which entails a price
jump ∆PT in (2).

Managers only get information about Π, the other part of the stock’s fundamental
value. This information is organized as follows. Consider the crowd (I, I, ι) of managers
and split it into two groups I = I1 ∪ I2. Managers in the first group I1 observe Π and
constitute an initial fraction 1− ω0.14 These managers are informed and are therefore
labelled by i (that is, j = i). Managers in the second group I2 represent the remaining
fraction ω0. They do not observe Π and thus need to learn about it. As learning
individuals, they are indexed by l (that is, j = l). Managers l assume that Π and
the initial supply Θ0 are independent and start with prior beliefs Π ∼ N (0, σ2

Π) and
Θ0 ∼ N (0, σ

2
Θ

2aΘ
).15 In addition, each manager l is endowed with an initial signal about

Π:
Sl1 = Π + εl, (3)

which I view as a working idea that managers l have privately developed. Working
ideas are imperfect, as they contain an agent-specific error εl ∼ N (0, σ2

S).16

Now comes the central feature of my model. From the initial date onwards, managers
l interact through private meetings and socially refine their idea in (3) they initially
developed on their own. In particular, a manager l builds a collection {Slk}

nl
t
k=1 of ideas,

where the number nlt of ideas she collected increases through the vagaries of her meetings.
This meeting process constitutes a central component of my model, which I describe in
the next subsection.

12See Grundy and McNichols (1989), Hirshleifer, Subrahmanyam, and Titman (1994), He and Wang
(1995) or Manela (2011) for other references making use of residual uncertainty.

13One can regard residual uncertainty as capturing a failure of information to completely flow
through prices, e.g., the post-earning announcement drift of Bernard and Thomas (1989). Alternatively,
δ may account for a shortfall in forecasting a firm’s default. The price of bonds or equities often drops
precipitously at or around the time of default, as in Duffie and Lando (2001).

14(I, I, ι) is a nonatomic space with ι(I) = 1, i.e. its size is 1. See Duffie (2011) for further details.
Managers i represent a fraction ι({j : j0 ∈ I1}) = 1− ω0 with ω0 ∈ [0, 1].

15As in He and Wang (1995), the prior variance of the noisy supply is set to its stationary level.
16Errors are initially independent among the crowd; εk ⊥ εj , ∀k 6= j ∀j ∈ I2, εl ⊥ (BΘ

t )t≥0 and
εl ⊥ Π. Their magnitude is controlled by managers’ precision 1

σ2
S

> 0.
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2.3 Modeling the Social Network of Fund Managers

Mutual fund managers interact socially in several ways. Evidence indicates that
managers keep in touch with CEOs or chairmen who were former classmates (Cohen,
Frazzini, and Malloy (2008)) and conduct conversations with other managers who operate
in the same city (Hong, Kubik, and Stein (2005)). But all types of social interactions
do not result in the same information quality. For instance, ideas exchanged on large-
access investment forums, such as Yahoo groups or Motley Fool, are presumably less
valuable than those exchanged on highly-selective on-line communities of top investors,
such as The Value Investor Club or The Alburn Village. In the same manner, direct
interactions with firm insiders and so-called “expert networks”, another example of
social interactions, deliver highly accurate information.17

To reproduce this kind of information heterogeneity, I acknowledge that “good”
ideas do not travel all over the marketplace. Building on Stein (2008), I assume that
good ideas stay confined to a small group of managers. I also allow some managers
to acquire “perfect” information, which they do not circulate. This segmentation of
information allows better-informed managers to keep their informational advantage over
a longer time period. I use this property to highlight the impact of social interactions on
price informativeness—even if a manager gets good ideas, market efficiency eventually
offsets her informational advantage.

To formalize this idea, I adapt the “information-percolation” mechanism developed
by Duffie, Malamud, and Manso (2009). This approach to modeling word-of-mouth
communication circumvents many issues associated with alternative formulations in
the literature.18 In particular, in my model, information percolation accommodates
both Bayesian learning and learning from prices. Moreover, information percolation is
tractable and leads to strong information heterogeneity.

17Expert networks are controversial firms that link managers with firm insiders. During the trial of
one such firm, a former hedge-fund executive testified that the information provided was “absolutely
perfect”. Source: “Linking Expert Mouths with Eager Ears”, The Economist, June 16th, 2011.

18Some researchers use graph theory to model the information structure—agents are “nodes” of
a network. The resulting network is often admittedly complex and the results are sensitive to its
specification (see Ozsoylev and Walden (2011)). See Colla and Mele (2010) for a cyclical network,
Acemoglu, Bimpikis, and Ozdaglar (2010) for an endogenous network structure and DeMarzo, Vayanos,
and Zwiebel (2003) for results sensitivity regarding the network specification. Another strand of the
literature resorts to epidemiological models—agents typically progress from “susceptible” to “infected”
and back to “recovered”. Because learning is tantamount to the spread of a disease, this approach
does not accommodate Bayesian updating nor learning from prices. Additionally, generating a wide
heterogeneity among agents is challenging. See, Hong, Hong, and Ungureanu (2010) who use such
models to explain the dynamics of trading volume and Burnside, Eichenbaum, and Rebelo (2010) who
model the booms in the housing market.
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2.3.1 Information Percolation and Information Segmentation

I first describe the segmentation of information and the meeting process. I then derive
the resulting distribution of information. At any date t, a fraction 1− ωt of managers
are perfectly informed and do not communicate. Communication exclusively takes
place among imperfectly informed managers l. The population of managers l is further
divided into two networks: Networks A and B. Managers of Network B do not talk
to those of Network A (and vice-versa). The fraction of managers positioned within
each network is given by qAt and qBt , respectively. Each manager l is initially part of
Network A. Network B arises through the meeting process, which I now present.

A manager l meets other managers at Poisson arrival times with intensity ηt. When
two managers meet, they are randomly selected from the crowd. Since managers belong
to a continuum, they cannot meet more than once, nor can they individually influence
prices. Therefore, they have no incentives to lie and, as they run into each other, I
assume that they truthfully exchange their entire set of ideas.19

This matching procedure implies that information sharing is additive-in-types. If
two managers respectively have n−m and m ideas, then they both wind up with n
ideas after they meet. Therefore, one does not need to keep track of the whole history
of their meetings and only their current number nlt of ideas is relevant. Moreover, by
Gaussian theory, their set of ideas {Slk}n

l

k=1 can be conveniently summarized by their
average idea S̄ln ≡ 1

nl

∑nl

k=1 S
l
k, i.e., a single but more precise idea.

I now introduce the notion of “good” ideas. I define good ideas as those composed
of K(≥ 2) or more pieces of information. To prevent good ideas from traveling over
the whole network of managers, I assume that managers who gather good ideas leave
Network A and enter Network B. Managers with good ideas keep talking but only
to those of Network B, thus causing good ideas to remain localized. Furthermore,
managers of Network B can potentially hold any number of ideas between K and
infinity, which precludes a tractable solution to the model. To limit the number of
types within Network B, I assume that managers eventually become perfectly informed
after collecting a large number N(≥ 2K) of ideas.

Overall, managers of Network A have at least their working idea, but do not hold
good enough ideas to be part of Network B. As a result, the set of ideas exchanged
in this network is given by A = {1, ..., K − 1}. Managers of Network B only exchange

19Agents do not attempt to hide part of their information, nor to add noise to their set of ideas.
Strategic considerations only enter in networks comprised of a finite number of agents. Heuristically,
one can think of truth-telling as follows. Kosowski, Timmermann, Wermers, and White (2006) show
that active management skills not only generate higher performance but also superior cost efficiencies.
This evidence can be combined with the result of Stein (2008)—competitors choose to share their
information if more information generates lower costs, which induces strategic complementarity.
Acemoglu, Bimpikis, and Ozdaglar (2010) show that truth-telling can be an equilibrium outcome.
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Figure 1: Configuration of Social Dynamics

# of ideas:

qAt

Network A

[1, ..., K − 1]

qBt

Network B

[K, ..., N − 1]

1− ωt

Managers i

∞

switch
at ≥ K

informed
at ≥ N

Network Configuration. Figure 1 shows the pattern of information transmission along with
the segmentation of information.

valuable ideas, but, once they become perfectly informed, they stop communicating
with other managers and leave Network B. As a result, the set of ideas exchanged in
this network is given by B = {K, ..., N − 1}. Finally, a manager l evolves through each
network according to a Poisson counter (N l

t)t≥0; it records her number of meetings (up to
time t), which take place with a network-specific intensity ηt ≡ η(qAt 1{nl

t∈A}+q
B
t 1{nl

t∈B}).
This pattern of information transmission is summarized in Figure 1.

Having described the meeting process, the goal now is to determine the resulting
distribution of information in Networks A and B. Consider first the distribution µA of
ideas within Network A. To determine how µA behaves over time, two observations are
needed: first, Network A has its own endogenous size qA and, second, managers in this
network meet with intensity ηqAt . The reason is that managers of Network A only share
information with others of their own network. I adapt Boltzmann’s equation for µA in
Duffie and Manso (2007) accordingly and highlight the result in the proposition below.

Proposition 1. Let µAt (A) = ι ({j : jt ∈ A}) be the cross-sectional distribution of types
in Network A where A ⊆ A. Let qAt = ∑K−1

n=1 µ
A
t (n) be the mass of managers in Network

A. For any n ∈ A, µA(·) obeys

d
dtµ

A
t (n) = −ηqAt µAt (n) + η

n−1∑

m=1
µAt (n−m)µAt (m) (4)

with initial conditions µA0 (n) = δ1 where δ1 is a Dirac mass at n = 1.

Proof. See Appendix A. Q.E.D.

Meetings have two effects on the evolution of the distribution of ideas in Network A.
First, meetings cause managers to change their type, the first term in (4). Specifically,
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if a manager holding n ideas meets someone, she ends up with n+m ideas and leaves
type n. Her new number n+m of ideas can be in either A or B. Second, by delivering
m new ideas, meetings cause managers formerly holding n−m ideas to enter type n.
The second term in (4) accounts for all the meetings that result in gathering n ideas.

Finally, consider the distribution µB of ideas in Network B. This distribution evolves
according to the dynamics that I report in Proposition 2 below.

Proposition 2. Let µBt (B) = ι ({j : jt ∈ B}) be the cross-sectional distribution of types
in Network B where B ⊆ B. Let qBt = ∑N−1

n=K µ
B
t (n) be the mass of managers in Network

B. For any n ∈ B, µB(·) obeys

d
dtµ

B
t (n) = −ηqBt µBt (n) + η


 1{n∈[K,2(K−1)]}

∑K−1
m=n−(K−1) µ

A
t (n−m)µAt (m)

+1{n∈[2K,N−1]}
∑n−K
m=K µ

B
t (n−m)µBt (m)


 (5)

with initial conditions µB0 (n) = 0 ∀n ∈ B. The mass of managers i is then given by
1− ωt = 1− qAt − qBt .

Proof. See Appendix A. Q.E.D.

The distribution µB behaves similarly to µA. In particular, Network B also has its
own endogenous size qB and managers in this network meet with intensity ηqBt . In
addition, µB accommodates the migration of managers who develop good ideas, the
first term in the bracket in (5).

2.3.2 Illustration of the Social Dynamics

Figure 2 illustrates the evolution of the distribution µA of ideas in Network A. Network
A is initially populated with managers who only hold one idea. These managers
progressively become a minority as more and more managers eventually meet someone.
In turn, the size qA of Network A decreases over time, as successive meetings cause
some managers to gather sufficiently many ideas to enter Network B (see Figure 3).

Interestingly, Figure 3 shows that the size qB of Network B moves non-monotonically.
Network B is initially empty, as managers are either part of Network A or perfectly
informed. As information starts to percolate, Network B is fed with migrating managers
who no longer talk to managers of Network A. After a while, managers who collect
N ideas become perfectly informed and leave Network B (insider information does
not circulate), ultimately causing the size of Network B to fall and the fraction of
informed managers to rise. The distribution µB follows the same pattern. Figure
2 shows that µB has two parts that represent respectively migrating managers and
incumbents to Network B. The fraction of migrating managers progressively decreases
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Figure 2: Evolution of Cross-Sectional Densities
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Evolution of the Social Network (Part I). Figure 2 depicts the cross-sectional distribution µt
of the number nt of ideas at times t = 0, 1, 2, each corresponding to a given row. The leftmost
and center columns correspond, respectively, to the distribution of ideas within Network A
( ) and Network B ( ). The rightmost column represents the mass of managers i ( ). The
social intensity is η = 3 and the switching thresholds are K = 10 and N = 30 and ω0 = 0.

as its source—Network A—dries up, while the fraction of incumbents first increases
and then decreases.

Figure 3: Evolution of Network Masses
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each network from time t = 0 to t = 10. The leftmost and center figures show the mass of
Network A ( ) and B ( ), respectively. The rightmost figure shows the mass of managers i
( ). The social intensity is η = 3 and the switching thresholds are K = 10 and N = 30.
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3 Equilibrium with Word-of-Mouth Learning
To construct the equilibrium of the economy, I use the usual guess and verify method
(e.g., He and Wang (1995)). Specifically, I first conjecture a price function, which I
use to derive the filtering process of managers (Subsection 3.1). Second, using these
filters, I solve the optimization problem of managers (Subsection 3.2). Finally, I impose
market clearing, which allows me to validate the price conjecture (Subsection 3.3).

The main result of this section is that social interactions lead to a new pattern
of information arrival that induces managers to trade more aggressively, eventually
causing prices to become more informative.

3.1 Word-of-Mouth Learning

Social interactions give rise to a novel form of learning. This subsection shows that
learning can be neatly split into what managers learn from the tape—the public
channel—and what they learn from conversations—the private channel. The pattern of
information arrival is as follows. Information extracted from the price flows tick-by-tick,
producing small and continuous updates in managers’ estimates. By contrast, private
conversations seldom take place. But upon meeting someone, managers obtain large
pieces of information, which they incorporate by updating their expectations in a
discontinuous way.

3.1.1 Price Conjecture

A common practice in the “noisy rational-expectations” literature is to conjecture a price
that is a linear function of the state variables of the economy. In my setup, these variables
include the (second part of the) fundamental Π, the supply Θ and common expectations
Π̂c
t ≡ E [Π| F ct ]. Common expectations represent econometrician’s estimates, which are

made on the basis of past prices only, i.e., F ct = σ(Ps : 0 ≤ s ≤ t).

Definition 1. In a linear equilibrium, the stock price function has the following form:

Pt = λ1,tΠ + (1− λ1,t)Π̂c
t + λ2,tΘt (6)

over [0, T ), where λ1,t and λ2,t are deterministic functions and PT = Π + δ.

Linear prices in (6) have two parts. The first part, λ1Π + (1 − λ1)Π̂c, represents
average market expectations about the present value of future dividends Π + δ.20 It
corresponds to the price that would obtain if managers were risk-neutral. Because

20See, for instance, Campbell and Kyle (1993) or Hong and Wang (2000) and Appendix E.
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managers are risk-averse, they need to be compensated for the aggregate risk Θ they
have to bear. In equilibrium, λ2 turns out to be negative and the second term λ2Θ in
(6) therefore acts as a discount on the price that increases expected stock returns.

At the announcement date, everyone discovers the fundamental value Π + δ. In
turn, a jump occurs in managers’ information sets to include Π + δ as part of public
information.21 The equilibrium coefficients λ1 and λ2 will take this jump into account
so that the following equality PT = Π + δ holds when the stock pays out.

The linear equilibrium of Definition 1 does not directly obtain in my setting. In par-
ticular, the combination of continuous-time trading and word-of-mouth communication
leads to intractable equilibria. Yet, in Subsection 3.2, I show that it only takes a simple
and accurate approximation of managers’ portfolio for Definition 1 to apply.

3.1.2 Filtering in the Presence of Word-of-Mouth Communication

The goal now is to determine how imperfectly informed managers l update their
expectations about Π. In particular, managers l use their own information F lt to come
up with an estimate Π̂l

t ≡ E
[
Π| F lt

]
and a variance olt ≡ V

[
Π| F lt

]
at any time t. This

task is affected by the presence of noise traders through the supply of the stock, for
which they also need an estimate Θ̂l

t ≡ E
[
Θt| F lt

]
.

Managers l build their information set F lt on two sources of information: first, they
build a collection of ideas {Slk}

nl
t
k=1 through social interactions. Second, they analyze

the history of prices (Pt)t≥0 in an attempt to infer conversations among other managers.
Combining these two sources of information, an arbitrary manager l observes

F lt = σ
((
Ps, S

l
k

)
: 0 ≤ s ≤ t, k ≤ nls

)
, 0 ≤ t < T. (7)

Perhaps needless to say, informed managers i do not learn about Π, since they
observe it. Hence, their information is summarized by

F it = σ((Ps,Θs) : 0 ≤ s ≤ t) ∨ σ(Π), 0 ≤ t < T. (8)

Inspecting (8), one may be surprised that managers i observe the supply history (Θt)t≥0.
But since the price in (6) is linear, managers i can readily invert the price and observe
the current realization of the supply.22

21At time T , the information set of an agent l is given by F lT = F lT− ∨ σ(Π + δ). The same goes
with both FcT = FcT− ∨ σ(Π + δ) and F iT = F iT− ∨ σ(δ). I refer the reader to Appendix E.

22Ft represents the filtration generated by (Pt,Θt,Π) for agents i and by (Pt, {Slk}
nlt
k=1) for an agent

l who holds nlt signals at time t. Also, since an infinite number of ideas is tantamount to perfect
knowledge of Π, (8) is obtained from (7) by letting nl →∞.
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In Proposition 3 below, I show how managers l and the econometrician (with common
information c) dynamically update their expectations Π̂ and Θ̂ and their variance o. A
proof may be found in Appendix B.

Proposition 3. In a linear equilibrium, conditional expectations solve the SDEs:

d

 Π̂c

t

Θ̂c
t


 =


 0 0

0 −aΘ




 Π̂c

t

Θ̂c
t


 dt+


 octkt

σΘ − λ1,t

λ2,t
octkt


 dB̂c

t , (9)

d

 Π̂l

t

Θ̂l
t


 =


 0 0

0 −aΘ




 Π̂l

t−

Θ̂l
t−


 dt+


 olt(nlt−)kt
σΘ − λ1,t

λ2,t
olt(nlt−)kt


 dB̂l

t +

 1
−λ1,t

λ2,t


Z l

m,tdN l
t

(10)

with
kt ≡

1
σΘλ2

2,t
(λ′1,tλ2,t − λ1,t(λ′2,t − aΘλ2,t)), (11)

where the processes (B̂c
t )t≥0 and (B̂l

t)t≥0 are one-dimensional Brownian motions with

respect to F ct and F lt , and Z l
m,t ≡

S̄l
m,t−Π̂l

t−
σ2

S/mt
olt
(
nlt
)
denotes the jump occurring in con-

ditional expectations as information S̄lm collected from new conversations is processed.
The variances, oct and olt, of the respective filters satisfy

doct = −k2
t (oct)2dt, and 1

ol
t(nl

t)
= 1

oc
t

+ nl
t

σ2
S
. (12)

Proof. See Appendix B. Q.E.D.

The way managers update their expectations in (10) reflects the novel pattern of
information arrival associated with my model. In particular, managers’ expectations
involve a continuous part pertaining to the observation of prices and a discontinuous
part related to meetings. By contrast, common views in (9) are purely continuous. In
Figure 4 below, I illustrate this unique feature of my model by simulating the path
of a manager’s number nl of ideas (in Panel A), her variance ol (in Panel B), and her
expectations Π̂l (in Panel C).

Consider first the periods during which manager l does not meet anyone (the flat
parts in Panel A). In such periods, manager l is socially inactive and therefore exclusively
extracts new information from prices. Since this kind of information flows tick-by-tick,
her views Π̂l are smooth, as seen in Panel C. Consider now the times at which manager
l meets someone. These episodes are identified by sudden increases of her number
of ideas (see Panel A). Each increase in nl corresponds to new ideas collected from
a conversation. This additional information comes in large pieces, which manager l
processes in a discontinuous way. Therefore, her views jump (see Panel C). These jumps
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Figure 4: A Simulated Path
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Simulated Path of the Filter. Figure 4 plots, for an arbitrary agent l, a simulated path of
her number nl of ideas in Panel A, her individual posterior variance ol ( ) in Panel B, and
her expectations Π̂l ( ) in Panel C. The social intensity is set to one meeting every two
months on average, η = 6.

are the result of conversations that suddenly augment her set S̄ln = {Slk}nk=1 of ideas.
A manager l not only updates her views, she also becomes more precise. When

she is socially inactive, her variance ol decays deterministically according to (12). By
contrast, every random meeting (in Panel A) causes a downward jump in her variance
ol (in Panel B), reflecting a sudden increase in her precision. Meetings substantially
reduce her variance and, as she makes her way to Network B (when nl crosses K in
Panel A), her views (Panel C) become significantly less volatile. After two meetings
within Network B, she eventually gains perfect knowledge of Π. As a result, ol drops to
zero (Panel B) and her expectations hit Π (Panel C).

3.2 Optimal Portfolio Strategy

Having now derived managers’ learning process, I can determine how they trade on the
basis of their ideas. I first provide an approximation that allows me to write managers’
optimal portfolios as a linear function of the supply and their informational advantage. I
can then show that managers have two trading motives: managers simultaneously make
the market for noise traders and speculate on their informational advantage. Finally, I
show that, as social interactions intensify, managers speculate more aggressively.
3.2.1 Approximation

To keep the tractability associated with the linear equilibrium of Definition 1, I need
to approximate the optimal portfolio strategy of managers l.23 The reason is that

23An approximation is needed due to continuous trading. It is one of the kind implemented in
Duffie, Gârleanu, and Pedersen (2007). See also Appendix E.2 in Vayanos and Weill (2008).
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managers l cannot hedge the risk related to their random meetings. In particular, they
cannot prevent their marginal utility from jumping when they meet someone. Hence,
managers’ value function jumps and the usual affine-quadratic setup does not apply to
my model, precluding a tractable solution to managers’ optimization problem.

Yet, it only takes a simple log-linearization of the jump size in managers’ value
function to recover the tractability associated with traditional models. Following Haugh,
Kogan, and Wang (2006), I verify that this approximation is accurate.24 Proposition 4
below contains the resulting portfolio strategies.

Proposition 4. A fund manager l holding nlt− ideas at time t builds an approximately
optimal portfolio strategy θl given by

θlt ≡ θl(Θ̂l
t− , Π̂

l
t− − Π̂c

t , n
l
t− , t) = dlΘ,t(nlt−)Θ̂l

t + dl∆,t(nlt−)(Π̂l
t− − Π̂c

t) (13)

where dl∆,t(nlt−) and dlΘ,t(nlt−) are deterministic, network-specific coefficients that depend
on the number nlt of ideas held by agent l. Informed fund managers i build an optimal
portfolio strategy θi given by

θit ≡ θi(Θt,Π− Π̂c
t , t) = diΘ,tΘt + di∆,t(Π− Π̂c

t) (14)

where di∆,t and diΘ,t are deterministic coefficients.

Proof. See Appendix C. Q.E.D.

3.2.2 Market Making and Speculation

The portfolio of a manager l in (13) reflects a balance between her market-making
activity, dlΘ, and her speculative activity, dl∆, based on her informational advantage
Π̂l − Π̂c. I make these two trading motives further apparent by rewriting (13) as:25

θlt ≡ dlΘ,t

(
Θt + λ1,t

λ2,t
(Π− Π̂l

t−)
)

︸ ︷︷ ︸
Market-Making Position

+ dl∆,t

(
1− olt

oct

)
(S̄ln,t − Π̂c

t)
︸ ︷︷ ︸

Speculative Position

. (15)

The expression for market-making in (15) carries a central insight—market making is
obscured by the inference problem managers l face. To see this, notice that the expression
in the first bracket represents the supply as perceived by managers l. Specifically,

24Appendix D contains a formal derivation as well as an upper bound on the approximation error.
Simulations show that the upper and lower bounds on the initial value function are of the magnitude
-0.43 and -0.41 for the range of parameters considered. This implies a relative error of less than 5%.

25See Appendix F.2 for a derivation.

17



managers l attempt to distinguish trades made by noise traders Θ from those made
by better-informed managers (reflected in λ1

λ2
(Π − Π̂l)). The reason is that, to their

mind, a change in prices has two possible interpretations. One possibility is that noise
traders’ demand varied; then, managers l provide the required liquidity by adjusting
their market-making positions while keeping their speculative positions unchanged.
Alternatively, a price change reflects fundamental information. If so, managers l first
readjust their speculative positions, since they probably misevaluated Π. Second, they
readjust their market-making positions (through λ1

λ2
(Π − Π̂l)) so as to minimize the

chance that they end up on the wrong side of the trade. This intuition does not apply
to informed managers who can perfectly interpret price changes. Their portfolio in (14)
shows that they accommodate the supply and do not hedge against others’ trades.

The second expression in (15) shows that managers l speculate on their set of ideas
S̄ln,t. In particular, they speculate based on their relative precision with respect to
common uncertainty oc. If a manager has few ideas, the ratio ol

oc is close to 1 and she
gives little weight to her ideas (and vice-versa). For informed managers, this ratio
reduces to 0 and they fully exploit their informational advantage, Π− Π̂c.

3.2.3 Aggressive Speculation

Social interactions, by increasing the average precision in the market, cause managers
to speculate more aggressively. To show this, I plot the intensity dj∆ ≡

∑
n
µj(n)dl

∆(n)
qj of

speculative trading for the average manager in each group j = A,B. Figure 5 below
depicts speculative intensities, as functions of time and the intensity of meetings η.
To plot this figure, I anticipate the equilibrium behavior of prices, which will only be
available when I impose market clearing (Subsection 3.3).

When social interactions are moderate (the dotted line in Panels A, B and C),
speculative activity monotonically decreases until the announcement date. This pattern
is typically associated with residual uncertainty (e.g., He and Wang (1995)). Managers
are unwilling to speculate on residual uncertainty since they cannot learn about it.

Yet, as social interactions intensify, the speculative activity of managers l initially
increases and keeps increasing over a long time period before it eventually decreases
(see Panels A and B). This steep increase reflects managers’ aggressive speculation.
Speculation becomes more aggressive for two reasons. First, intense social interactions
cause managers l to collect a larger number of ideas and, therefore, to become more
precise. Second, intense social interactions cause managers l to rush to speculate before
informed managers arrive. Instead, informed managers intensely speculate immediately
after the initial date, taking their profits when information asymmetry is the strongest.
They sharply reduce their speculative activity as the average precision rises (Panel C).
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Figure 5: Intensity of Speculative Trading
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Speculative Intensities and Social Interactions. Figure 5 plots speculative intensities d∆

for the average manager in Network A and Network B and for manager i, in Panels A, B and
C, respectively. Each is plotted as a function of time, for a social interaction of one meeting
twice per year ( ), one meeting every quarter ( ) and one meeting every two months
( ). The calibration is reported in Table 1.

3.3 Equilibrium

The price function in Definition 1 is a conjecture that I now need to validate by imposing
market clearing. This last step allows me to solve the fixed-point problem associated
with my model and obtain the equilibrium dynamics for the coefficients λ1 and λ2.
I do so in Proposition 5 below. I then show that social interactions increase price
informativeness. Finally, I discuss the numerical implementation of the equilibrium.

Proposition 5. Given the optimal portfolio strategies in (13) and (14), the stock price
has the linear form in (6) where the equilibrium price coefficients λ1 and λ2 satisfy the
differential equations in (72) and (73) with boundary conditions in (74) and (75).

Proof. See Appendix E. Q.E.D.

3.3.1 Price Informativeness

Social interactions cause prices to become more informative. There are two ways to
see this. First, increased price informativeness is directly implied by the behavior of
the price coefficients λ1 and λ2 (plotted in Panels A and B of Figure 6, as functions of
time and social interactions η). The weight λ1 tilts average market expectations either
towards common expectations Π̂c or towards the actual Π. In an economy without
social interactions (η = 0), Panel A shows that average market expectations are strongly
biased towards common expectations, i.e., prices reveal little information about Π. As
social interactions intensify (η > 0), prices convey more information so that market
learning significantly improves, and average market expectations shift closer to Π.
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The compensation for risk, λ2, plotted in Panel B, conveys a similar intuition. The
evolution of λ2 is the result of two opposite forces. On the one hand, the more fiercely
managers speculate, the larger is the risk to be taken advantage of by better-informed
managers: the compensation for risk |λ2| rises. On the other hand, the more fiercely
managers speculate, the more information is revealed through prices: the compensation
for risk falls. Social interactions cause the latter effect to initially dominate (see Panel
B). Yet, the risk associated with residual uncertainty gives rise to an increase in |λ2|
around T .

Figure 6: Price Coefficients and Price Informativeness
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Price Coefficients, Price Informativeness and Common Uncertainty. Figure 6 plots the
evolution of the price coefficients λ1 and λ2 in Panels A and B, respectively, common
uncertainty oc in Panel C, and the speed k of information propagation through prices in Panel
D. Each is plotted for the cases of no social interaction ( ), a social interaction of two
meetings per year ( ), one meeting per quarter ( ) and one meeting every two months
( ). The calibration is reported in Table 1.

Another way to apprehend increased informativeness is through the evolution of
common uncertainty oc. Common uncertainty measures the remaining uncertainty
regarding Π given the history of prices. The evolution of common uncertainty in (12) is
driven by a key variable, k. One can view k in (11) as controlling the speed at which
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information is revealed through prices. To see this, notice that (11) may be rewritten as

kt = 1
σΘ

(
d
dt

(
λ1,t

λ2,t

)
+ aΘ

λ1,t

λ2,t

)
.

The ratio λ1
λ2

captures the price’s sensitivity to information and therefore its informa-
tiveness. As a result, d

dt
λ1
λ2

measures the speed at which price informativeness increases
over time. Since, in my model, increased price informativeness is the result of increased
speculative aggressiveness, the evolution of |k| (Panel D) follows the same pattern as
that of speculative intensities (Figure 5). Specifically, Panel D shows that social interac-
tions vastly increase price informativeness, particularly around the initial date, precisely
when managers speculate the most aggressively. By increasing price informativeness at
great speed, social interactions cause market learning to rapidly improve and common
uncertainty (Panel C) to be reduced substantially.

3.3.2 Equilibrium Implementation and Calibration

Propositions 3, 4 and 5 jointly define a system of equations whose boundary condi-
tions depend on the terminal level ocT− of common uncertainty. Since ocT− is itself an
endogenous coefficient, I need to guess a value for ocT− and then shoot towards the
initial condition oc0 = σ2

Π.26 Depending on the meeting intensity η and the magnitude
of residual uncertainty σδ, up to three equilibria are obtained for a certain range of the
parameter space.27 One of these equilibria may be immediately discarded, though. It
is an equilibrium in which the volatility of prices is constantly null and the price thus
fully reveals Π, i.e., managers do not trade.28

The other equilibria originate from the interaction between common uncertainty oc

and price informativeness k in (11). By increasing |k|, social interactions cause both
oc (in Panel C of Figure 6) to decrease substantially through (12) and speculation to
become more aggressive. Increased speculative aggressiveness further increases |k| and
this feedback eventually gives rise to two equilibria. In one equilibrium, prices are
highly informative and speculation is aggressive, while in the other equilibrium, the

26Since both boundary conditions in (74) and (75) depend on ocT− which is unknown, a shooting
procedure is needed. The system of equations may be solved using a standard finite-difference scheme
such as Runge-Kutta. For instance, the NDSolve function of Mathematica proves to work well
with the StiffnessSwitching option. To alleviate the numerical procedure, it is convenient to make
the system of equations in (47), (72) and (73) explicit. Appendix E shows how to proceed.

27Residual uncertainty is often a cause of equilibrium multiplicity: Grundy and McNichols (1989)
show that multiplicity obtains in their setting if residual uncertainty lies within a certain range. In
particular, Hirshleifer, Subrahmanyam, and Titman (1994) obtain four equilibria. He and Wang (1995)
further argue that multiplicity may not arise if aΘ is sufficiently large.

28I show this at the end of Appendix E.
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opposite happens.29 Following this intuition and Grundy and McNichols (1989), these
equilibria may be ranked according to

∣∣∣λ1
λ2

∣∣∣.
I base the equilibrium selection on a well-established fact: the empirical literature

widely documents the superior performance of aggressive growth funds. For instance,
Barras, Scaillet, and Wermers (2010) find that aggressive growth funds have the highest
proportion of skilled managers.30 Hence, I pick the equilibrium in which speculation
is the most aggressive, i.e., that in which the average speculative activity d∆ is the
highest.31 For this equilibrium to obtain and managers to trade aggressively, residual
uncertainty needs to be sufficiently low. For this reason, I set σδ below that used in He
and Wang (1995) (see Table 1).

Description Symbol Value
Time Horizon T 1
Volatility of Residual Uncertainty σδ

√
1/6

Initial Proportion of Informed Managers 1− ω0 0
Risk Aversion γ 0.5
Supply Mean-Reversion aΘ 0.2
Supply Volatility σΘ 2.5
Volatility of Dividend Π σΠ 0.6
Volatility of the Signal σS

√
2

Perfect Knowledge Threshold N 12
Good Ideas Stay Local Threshold K 5

Table 1: Benchmark Calibration
This calibration is adapted from Campbell and Kyle (1993), Wang (1993) and He and Wang (1995)
and is chosen to be consistent with empirical estimates (see Appendix G).

I consider an horizon date of one year, a relatively short-term horizon. I let the
initial fraction ω0 of fund managers l be 1 so that every manager is initially located in
Network A. Hence, managers start with one idea and become heterogeneously informed
as soon as they start to interact.

Managers’ absolute risk aversion is set below 1 to reflect the fairly high risk tolerance
of institutional investors. The remainder of the calibration is adapted from Campbell
and Kyle (1993), Wang (1993) and He and Wang (1995) and is chosen to be consistent
with empirical estimates (see Appendix G).

29This may be illustrated by means of a phase diagram.
30Daniel, Grinblatt, Titman, and Wermers (1997) find that aggressive growth funds feature significant

stock-picking skills. Hendricks, Patel, and Zeckhauser (1993) report that the performance of growth-
oriented funds persists over a one-year evaluation horizon. Kosowski, Timmermann, Wermers, and
White (2006) conclude that outperformance by aggressive growth funds is not an artifact of luck.

31 See Banerjee (2010) who describes multiple equilibria often referring to high and low volatility
equilibria. The author argues that these equilibria have both desirable theoretical and empirical
properties. See also Spiegel (1998) and Watanabe (2008).
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4 Market Timing and Performance
Can mutual fund managers time the market ? This question has been under intense
empirical investigation at least since Treynor and Mazuy (1966) and Henriksson and
Merton (1981). These early studies develop linear regression models of the CAPM-type
including an additional convex term reflecting timing skills. Doing so, they conclude in
favor of the Efficient Market Hypothesis (see also Henriksson (1984)). These studies have
largely contributed to the view that managers do not exhibit timing skills. Subsequent
works have attempted to refine these early models by addressing certain practical issues,
causing timing abilities to look somewhat better.32

The empirical literature has been equally inconclusive as to the performance of
managers. A host of empirical studies, starting with Jensen (1968) and later followed by
Carhart (1997), find that most mutual funds fail to outperform, and often underperform,
passive benchmarks, even before transactions costs.33 In general, the empirical consensus
is that performance does not persist, except for a small group of funds (e.g., aggressive-
growth funds) whose performance is, however, relatively short-lived.34

This section shows that my model can rationalize why timing skills seem to be
weak and performance not to be persistent. Social interactions cause most managers to
eventually implement passive investment strategies. As a result, the traditional measure
of performance—the alpha generated over a passive benchmark—rapidly becomes
negative, even for managers with good ideas.

4.1 Market-Timing

This subsection demonstrates that social interactions weaken managers’ timing ability.
In particular, social interactions increase price informativeness and thereby cause timing
to be short-lived. If a manager ever had good ideas, sooner or later the market catches

32Time-varying betas have been introduced (Ferson and Schadt (1996)), the dichotomy between the
rebalancing and observation frequency of holdings has been accounted for (Goetzmann, Ingersoll, and
Ivkovic (2000)), non-parametric approaches have been proposed (Kosowski, Timmermann, Wermers,
and White (2006)), while another strand of the literature has focussed on portfolio holdings (Daniel,
Grinblatt, Titman, and Wermers (1997)). See also Ferson and Khang (2002), Barras, Scaillet, and
Wermers (2010), Wermers (2000) and Kacperczyk, Sialm, and Zheng (2005).

33See also Malkiel (1995) and Gruber (1996). In contrast, alternative investigations (e.g., Grinblatt
and Titman (1992) and Hendricks, Patel, and Zeckhauser (1993)) conclude that outperformance may
persist but do not account for trading costs.

34Timing ability and performance are hardly identifiable at a monthly frequency, except perhaps for
a small subset of top performing funds. Recognizing that the observation frequency of returns affects
inferences regarding timing and performance, Bollen and Busse (2005) show that performance becomes
strikingly more apparent at a higher frequency. Chance and Hemler (2001) and Bollen (2001) further
demonstrate that timing ability reveals itself in daily tests but vanishes monthly. Other empirical
evidence includes Hendricks, Patel, and Zeckhauser (1993) who describe the "hot-hand" phenomenon
in the mutual fund industry and Graham and Harvey (1996) who consider newsletters data.
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up with her. Timing ability only persists for managers with highly accurate information.
To gauge managers’ timing ability, empiricists run performance regressions on total

returns. These regressions typically augment the CAPM with additional terms that
purport to pin down the ability of managers. Admati and Ross (1985), among others,
study the relevant performance-regression structure in a theoretical context and list
various pitfalls related to such regressions.35 Adopting their approach, my goal here is
to determine which additional factor should be added to the CAPM to identify timing
ability in my model.

To make the relevant regression structure apparent, it is convenient to focus on the
myopic part of managers’ portfolio in (13), which I denote by θ̂lt ≡ E[dPt|F l

t ]
γvar[dPt|F l

t ] . Adding
the hedging part of individual demands does not change the structure, but makes
computations less transparent. The return R̂l on manager l’s myopic portfolio writes

dR̂l
t := θ̂ltdPt = βtdPt︸ ︷︷ ︸

Market Returns

+ kt

γ
√
var[dPt]

(
1− olt

oct

)
1
λ1,t

(Pt − Π̂c
t − λ2,tΘt)dPt

︸ ︷︷ ︸
Timing Payoff

(16)

+ kt

γ
√
var[dPt]

(
1− olt

oct

)
εltdPt

︸ ︷︷ ︸
Noise Relative to Market Information

where βt ≡ AQ,tΨc
t

γvar[dPt] represents the market price of risk under common perceptions.
A fund’s returns have three components: market returns, a timing factor measuring

the additional performance a manager contributes based on her ideas, and a third term
that the econometrician treats as noise. Equation (16) contains two key elements. First,
the timing factor is proportional to 1− ol

oc , a term that relates to the market learning
process. Specifically, as social interactions intensify, market learning significantly
improves and common uncertainty oc is greatly reduced. In turn, ol

oc gets closer to 1,
which progressively erodes a manager’s ability to time the market. Second, the timing
factor is a function of PdP ≡ dP 2−d〈P 〉

2 . The quadratic term d〈P 〉 in the timing factor
originates from managers’ informational advantage. In particular, the excess returns
generated by managers i over market returns (θi − θc)dP depend on the square of their
informational advantage, Π − Π̂c. The quadratic-returns component d〈P 〉 precisely
captures this informational advantage as the stock price is itself a function of Π− Π̂c.
Since timing is quadratic in stock returns, a regression similar to that of Treynor and
Mazuy (1966) endogenously arises as a criterion to evaluate timing.

35See also Dybvig and Ross (1985) and Admati, Bhattacharya, Pfleiderer, and Ross (1986). Recently,
Detemple and Rindisbacher (2012) show that a structural approach accounting for the nature of private
information yields additional robustness.
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Noise traders act randomly. Therefore, they are “sitting ducks” for managers and
one should not give credit to a manager for making money on noise traders. For this
reason, I do not run the Treynor and Mazuy (1966) regression over manager’s total
returns. Instead, I isolate returns R̃ managers solely generate based on fundamental
information. From now on, I consider a manager’s informational holdings θ̃ ≡ θ − dΘΘ.
Informational holdings contain managers’ hedging demand (not only the myopic part),
but do not include the fraction they contribute to the supply. Informational holdings
are therefore exclusively related to managers’ information. Finally, I run the Treynor
and Mazuy (1966) regression over a rolling window, thus causing its coefficients to vary
over time as in Ferson and Schadt (1996):

R̃l
t = αlt + βlt∆Pt + γlt(∆Pt)2 + εlt, ∆ ≤ t ≤ T −∆. (17)

To evaluate managers’ timing ability, I run the regression in (17) over managers’
simulated returns.36 To focus the analysis on a restricted number of managers, I plot the
results for the average manager in each group (i.e., the average timing factor ∑n

µj(n)
qj γj ,

j = A,B) in Figure 7 below. The market coefficient β and the intercept α of (17) are
statistically insignificant and are therefore omitted.

Figure 7: Timing Coefficient

∆ 0.3 0.5 0.7 T −∆
-2

-1

0

Time

lo
ad

in
g

on
ti

m
in

g
γ

(A) Timing in Network A

η = 2
η = 4
η = 6

∆ 0.3 0.5 0.7 T −∆
−1

0

1

2

Time

lo
ad

in
g

on
ti

m
in

g
γ

(B) Timing in Network B
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(C) Timing for Managers i
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Treynor and Mazuy (1966) Regression and Timing. Figure 7 plots the loading on market
timing of the regression in (17) over a one-month ∆ rolling window for an interaction intensity
of one meeting twice per year ( ), one meeting every quarter ( ) and one meeting every
two months ( ). Panels A, B and C respectively correspond to the average manager in
Network A, in Network B, and managers i. The calibration is reported in Table 1.

When the intensity of interpersonal communications is low (the dotted lines), timing
abilities across networks are as expected. Managers in Network A (Panel A) are unable

36I simulate portfolios for each agents type using the formulae of Appendix F.2. Then, I compute
the cross-sectional average using the population dynamics.
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to time the market, while managers in Network B and informed managers come out
as successful market timers (Panels B and C). Importantly, for the latter managers,
timing ability is long-lived.

As social interactions intensify, this result is partly reversed. While managers in
Network A and informed managers respectively worsen and improve their timing ability,
managers in Network B become progressively unable to time the market—timing
vanishes (see Panel B). For an intensity of one meeting every two months (the solid
lines), it becomes rapidly impossible to tell apart managers from Networks A and B.
This result is surprising since social dynamics cluster good ideas in Network B and
thereby allow managers to preserve their informational advantage over a longer time
period. But the market learns at great speed, which progressively impairs their timing
ability through the term 1− ol

oc appearing in (16). That is, by improving the market
learning process, social interactions prevent managers of Network B from keeping their
informational advantage, despite good ideas staying localized. Only informed managers
whose views are unaffected by the market remain successful market timers.

4.2 Performance

Social interactions cause market timing to be short-lived for most managers. I shall now
show that social interactions carry similar implications regarding performance. Specif-
ically, social interactions operate on price informativeness to produce non-persistent
performance. In addition, only a small group of funds appear to be top perform-
ers, consistent with empirical findings. The underlying mechanism—word-of-mouth
communication—contrasts with alternative explanations, which are either based on the
structure of the mutual fund industry (Berk and Green (2004)), on career concerns
(Chevalier and Ellison (1999b)) or possibly on market volatility. In particular, unlike
Berk and Green (2004) whose mechanism relies on the competitive provision of funds
by investors, the mechanism I highlight ignores flows into and out of the fund.

Importantly, even though managers with good ideas accumulate large trading gains,
their performance, as measured by their alpha, does not persist. The reason is that
social interactions cause most managers—even those with good ideas—to implement
passive investment strategies for which they should not be rewarded. As a result, not
only does performance become non-persistent, but it also becomes literally impossible to
distinguish managers with good ideas from those with inferior ideas. Only exceptionally
good ideas allow a manager to consistently generate abnormal returns.

It is insightful to first consider the dollar value managers create. In my model, funds
neither pay out their income nor their capital gains and, therefore, the dollar value
managers generate coincides with the fund’s net asset value (NAV). To compute funds’
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expected NAV, E[
∫ t

0 θ̃sdPs], I assume that each fund starts with an initial wealth equal
to zero and then evaluate how much (expected) value is added by the average fund in
each group.37 I plot the expected fund’s NAV in Figure 8 below as a function of time
and the intensity of meetings η.

Figure 8: Net Asset Value (NAV)
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(B) Trading Gains in Network B
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NAV and Social Interactions. Figure 8 plots a fund’s NAV as a function of time for the
average manager in Network A (Panel A), in Network B (Panel B) and manager i (Panel C).
Each is plotted for an interaction of one meeting twice per year ( ), one meeting every
quarter ( ) and one meeting every two months ( ). Table 1 reports the calibration.

Based on funds’ NAV, managers’ performance is as expected. Panel A shows that
managers in Network A make some modest profits (on momentum; see below), but
end up destroying value. Managers in Network B make significantly more money (see
Panel B), while informed managers sharply come out as top performers (see Panel
C). Moreover, a fund’s NAV has three important properties. First, the average dollar
value generated by informed managers and managers in Network B is increasing in the
intensity of social interactions. The reason is that managers speculate more aggressively
as social interactions intensify. This aggressive speculation creates large spreads in
dollar value across networks. Second, the ranking of managers is robust to the intensity
of social interactions. Finally, for managers with superior information, performance
measured in trading gains is persistent (Panels B and C).

Although trading gains appear to provide an intuitive measure of performance, such
a measure is misleading because it does not penalize managers for implementing passive
strategies. I shall now show that, controlling for passive investment strategies, social
interactions cause performance not to persist and to rapidly converge across networks.

To evaluate performance, empiricists usually choose a passive benchmark, over which
abnormal returns added by a manager are computed. The benchmark collects returns

37In practice, one may recoup a fund’s dollar value by adding back past dividends to the fund’s
NAV. A similar exercise is conducted in Bollen and Busse (2005), for instance.
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on passive strategies for which empiricists deem managers should not be rewarded. In
my model, two passive strategies are relevant to consider. First, as (16) indicates, one
should not reward a manager for buying the market portfolio, since this strategy only
requires the observation of the tape. Second, one should not reward a manager for
pursuing a momentum strategy. Here, I anticipate the results of Sections 5 and 6, namely
that social interactions produce momentum in stock returns and cause lesser-informed
managers to implement momentum strategies; accordingly, I consider a benchmark
regression that includes market returns and the (times-series) momentum factor of
Moskowitz, Ooi, and Pedersen (2011):

R̃l
t = αlt + βlt∆Pt + δltsign(∆Pt−∆)∆Pt + εlt, ∆ ≤ t ≤ T −∆. (18)

The regression in (18) is essentially the Carhart (1997) risk-factor model without
Fama and French (1995) factors (there is only one stock in my model). Most empirical
studies use this benchmark. I plot alpha in Figure 9 below, as a function of time and
the meeting intensity η.

Figure 9: Alpha
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Benchmark Regression, Alpha and Momentum. Figure 9 plots alpha and the momentum
loading in the benchmark regression in (18) over a one-month ∆ rolling window for an
interaction of one meeting twice per year ( ), one meeting every quarter ( ) and one
meeting every two months ( ). Each column corresponds to, respectively, the average
manager in Network A, in Network B, and manager i. The calibration is reported in Table 1.
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As long as social interactions are moderate (the dotted lines), managers can be
accurately ranked based on their alpha. Managers in Network A rapidly destroy value,
while managers in Network B and informed managers persistently create value. Their
performance eventually becomes insignificant due to residual uncertainty.

As social interactions intensify, the picture becomes hazier. First, performance
becomes dramatically non-persistent expect for a small fraction of the population,
consistent with empirical findings. As seen from Panel B, managers of Network B do
not maintain their performance. Their performance ceases to persist a long time ahead
of the announcement date, which indicates that this phenomenon is exclusively driven
by social interactions. Not only does their performance become non-persistent, but
their alpha becomes negative. This implies that social interactions cause managers
of Network B to eventually implement passive investment strategies (see Section 6).
Overall, performance only persists for a small group of managers (informed managers),
as apparent from the zoom on Panel C (see the picture located below Panel C).

Second, performance converges across networks so that it becomes difficult to tell
managers apart. This is particularly striking when comparing the performance of
managers in Networks A and B. For a large meeting intensity (the solid lines), the
picture located below Panels A and B shows that it becomes literally impossible to
distinguish managers in Network A from those in Network B, despite the large spread
in trading gains across the two networks. While managers of Network B consistently
accumulate trading gains (Panel B of Figure 8), they progressively implement passive
investment strategies for which they should not be rewarded. As a result, managers of
Network B eventually align with those of Network A. Only informed managers remain
able to generate returns in excess of the passive benchmark.

I conclude this section with a comment on the implications of momentum for
performance (momentum itself is the subject of the next section). Some empirical
studies argue that managers’ performance strongly relates to momentum. For instance,
Carhart (1997) finds that the “hot hands” phenomenon of Hendricks, Patel, and
Zeckhauser (1993) is driven by the one-year momentum effect.38

In light of my model, however, this conclusion may have to be reexamined. In the
colorful words of Cohen, Coval, and Pástor (2005), “it seems hard to argue that sitting
on one’s laurels and doing nothing is a managerial skill that should be given credit”. In
particular, for managers of Network A, alpha is always negative, which indicates that
their initial trading gains are made on momentum (and penalized by the benchmark);
then, Panel A of Figure 8 clearly demonstrates that momentum profits are significantly

38Grinblatt, Titman, and Wermers (1995) and Wermers (1999) conclude that funds that invest on
momentum are more likely perform. Brown and Goetzmann (1995) report that performance persistence
is mostly accounted for by funds that repeatedly lag the S&P500 or a passive benchmark.
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lower than the profits made on fundamental information (Panels B and C).

5 Momentum in Stock Returns
In the previous section, I consider momentum as a factor to be added to a benchmark
regression, yet not eliciting the reason for its presence; this is the task of this section.
Identifying momentum in a theoretical, rational context is fundamental in many respects.
First, momentum is one of the most pervasive facts in Financial Economics.39 Second,
well-accepted explanations for momentum are mostly behavorial.40 In contrast, momen-
tum arises here as a rational phenomenon driven by social interactions, consistent with
the empirical finding of Hong, Lim, and Stein (2000). Third, mutual fund managers
are likely to play an important role in the momentum mechanism (Wermers (1999)).
Moreover, momentum provides managers with an opportunity to make profits. For
instance, Avramov and Wermers (2006) find that returns predictability is an essential
determinant of managers’ performance. Finally, the statistical properties of stock
returns are central, as empiricists use returns to compute conditional expectations of
managers’ performance. Doing so, Ferson and Schadt (1996) show that usual measures
of managers’ performance are substantially improved.

It usually takes very specific assumptions for returns to feature momentum in a noisy
rational-expectations equilibrium (REE): i) in the context of Wang (1993), momentum
mechanically arises if the supply is extremely persistent. ii) In a REE à la Wang (1993)
with a finite horizon, Holden and Subrahmanyam (2002) show that momentum obtains
if the mass of informed agents—managers i in my model—is sufficiently large. iii) In
a REE à la He and Wang (1995), Cespa and Vives (2012) demonstrate that returns
exhibit momentum if the average precision across agents shows sufficient improvement
over time. While assumptions ii) and iii) are admittedly somewhat ad-hoc, they happen
to be endogenous implications of social dynamics in my model. Specifically, social
interactions endogenously drive the mass of managers i, 1−ωt, and the average precision
∫
jt∈I(o

j
t)−1dι(jt) over time, thus addressing ii) and iii). Social interactions therefore

generate momentum in stock returns and reaffirm the role of information as a main
driver of serial correlation, as I shall now show.

To understand how social interactions produce momentum, it is first necessary to
recall how prices are formed. The discussion of Subsection 3.1 implies that the price

39See Poterba and Summers (1988), Jegadeesh and Titman (1993), Rouwenhorst (1998), Menzly
and Ozbas (2010) and Moskowitz, Ooi, and Pedersen (2011), among others.

40See Daniel, Hirshleifer, and Subrahmanyam (1998) or Barberis, Shleifer, and Vishny (1998).
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has the form

Pt =
∫

jt∈I
E[Π + δ|F jt ]dι(jt)

︸ ︷︷ ︸
Average Market Expectations about the Fundamental

+ λ2,tΘt︸ ︷︷ ︸
Compensation for Risk

(19)

where the first and the second term represent respectively the contribution of information
and risk to prices.41

To illustrate how information and risk operate on prices, I consider the following
two cases. First, let social interactions be intense, i.e., η → ∞; then, every manager
instantaneously becomes informed as soon as t > 0 and the price in (19) reduces to
Pt = Π + λ2,tΘt. That is, the price has no informational content.42 As a result, price
variations are solely driven by supply shocks and the serial correlation over a time
period ∆ writes cov(∆Pt−∆,∆Pt) = (λ2,t+∆ − λ2,t)/(λ2,t − λ2,t−∆). Hence, unless the
compensation for risk λ2 evolves in a strong non-monotonic fashion, prices are strongly
positively autocorrelated and the sign of the serial correlation is determined by the
compensation for risk in an almost mechanical manner.

Second, let the economy be absent of social interactions, i.e., η → 0. This case
nests the setting of He and Wang (1995), except for allowing trading to be continuous.
Serial correlation is computed over a one-month period ∆, as usually done in empirical
studies, and is depicted in Panel A of Figure 10 below.43 The contribution of risk (the
dotted line) is positive, reminiscent of the perfect-information case just discussed, while
the contribution of information (the dashed line) is essentially insignificant. In spite
of this, returns are weakly negatively autocorrelated (the solid line). This negative
correlation is due to the interaction between the respective contributions of information
and risk to prices (the dashed-dotted line). The reason is that average market beliefs
and the compensation for risk are inversely related: if the informational content of prices
rises (λ1 increases), the compensation for risk |λ2| has to decrease due to the weaker
information asymmetry. Similar to the perfect-information case, the informational
content of prices does not play a direct role. Consequently, as often happens in a REE
(e.g., Wang (1993)), returns exhibit reversal.

Introducing a moderate meeting intensity of one meeting twice per year (η = 2 in
Panel B) leads both risk and information to contribute an equal and positive fraction to
returns autocorrelation. Yet, the interaction thereof still dominates and even magnifies
stock returns reversal. The economic mechanism previously highlighted bites all the
same. As a positive shock in the supply occurs, prices experience a decrease (through

41See Appendix E.
42In this case, λ2 has a closed-form solution: λ2,t = − 2aΘγσ

2
δe

−aΘ(T−t)

2aΘ−γ2σ2
δ
σ2

Θ(e−2aΘ(T−t)−1) .
43See Appendix F.1.
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the compensation for risk λ2 < 0), which generates low current returns. Since social
interactions are moderate and the proportion of well-informed managers is low, managers
attribute the shock to noise trading and therefore consider it transitory. They hold on
to their speculative positions, thereby inducing stock returns to reverse.

Figure 10: Serial Correlation in Returns and Social Interactions
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Serial Correlation in Returns. Figure 10 plots serial correlation ( ) in returns over a
one-month period ∆ for the cases of no social interaction (Panel A), of a meeting twice per
year (Panel B), one meeting every quarter (Panel C) and one meeting every two months
(Panel D). Each is decomposed into the contribution of average market expectations ( ), of
risk ( ) and of the interaction between both ( ). Table 1 reports the calibration.

Further increasing the meeting intensity allows one to overturn this mechanism. The
individual contribution of information and risk eventually overbalances that of their
interaction and a first phase of momentum emerges (Panel C). Because social interactions
produce an increasing fraction of well-informed agents (point ii) above), managers
become increasingly concerned that price changes may be information-driven. Moreover,
the way in which private information flows—through word-of-mouth communication—
induces a steady increase in managers’ average precision over time (point iii) above)
and further causes prices to reveal more information. Now, suppose that prices increase.
Since managers l start to attribute price changes to a misevaluation of Π, they tend to
buy shares as they probably underestimated Π. By buying additional shares, managers
push prices further up, which eventually leads to stock returns momentum. When social
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interactions are intense (Panel D), momentum can be as high as 8% monthly. Clearly,
momentum follows from the diffusion of information through prices.

This initial phase of momentum does not carry all the way to T , though, as apparent
from Panels C and D. The negative relation between information and risk is still at play
and eventually gives rise to a late phase of reversal, although rather weak. Reversal is
due to both the decrease in the informational content of prices (Panel D of Figure 6)
and the surge in the compensation for risk resulting from the pending revelation of δ.

Both phenomena are consistent with well-known facts—the first phase of momentum
corresponds to the early returns continuation documented by Jegadeesh and Titman
(1993), and the second phase of reversal is in line with the late over-reaction evidence
of De Bondt and Thaler (1985).

While the mechanism highlighted here builds on Andrei and Cujean (2011), the idea
that social interactions drive momentum is already present in Hong and Stein (1999),
yet it relies on a behavioral model. Furthermore, rational explanations for momentum
are often based on risk, as in Berk, Green, and Naik (1999) or in Johnson (2002).44

Importantly, I show that momentum is not the sole result of risk, but that it centrally
depends on the diffusion of information through private conversations.

6 Momentum and Contrarian Strategies
Mounting evidence suggests that social interactions influence managers’ portfolio deci-
sions. In a survey conducted by Shiller and Pound (1989), 44% of institutional investors
recognize that interpersonal communications impact their portfolio choice. In particular,
fund managers’ holdings are strongly related to those of managers operating in the
same city (Hong, Kubik, and Stein (2005)).45 Moreover, managers bias their portfolio
towards firms to which they are connected through an educational network (Cohen,
Frazzini, and Malloy (2008)). Similar evidence carries over to individual investors.46

In my model, interpersonal communications cause lesser-informed managers to follow
the trend and better-informed managers to be contrarians. Yet, perhaps surprisingly,
even good ideas may not keep managers from eventually aligning with the market

44See Vayanos and Woolley (2010) for an alternative mechanism.
45In that respect, large cities appear to be particularly suited places for word-of-mouth communi-

cation, for it is where leading mutual fund families concentrate. Large cities are further reported by
Christoffersen and Sarkissian (2009) to convey knowledge spillovers and to guide learning.

46Hong, Kubik, and Stein (2004) documents that investors find the market more attractive when
more of their peers participate. Brown, Ivkovic, Smith, and Weisbenner (2008) uncover a strong causal
relation between an individual’s decision whether to own stocks and the average ownership of her
community. See also Shive (2010). Massa and Simonov (2011) show that college-based interactions
influence portfolio decisions. Other evidence includes Grinblatt and Keloharju (2001) or Ivkovic and
Weisbenner (2005).
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consensus. I show that these trading patterns relate to the way in which managers bet
on price convergence towards its fundamental value.

6.1 Aligning with the Market Consensus

Informational holdings—portfolios ignoring managers’ market-making activity—are not
observed by the econometrician. Therefore, they need to be conditioned on publicly
available information, namely prices. I follow Brennan and Cao (1996) and regress
informational portfolio changes ∆θ̃l on price changes ∆P over a time period ∆, i.e.,
E[∆θ̃l|∆P ] = cov(∆θ̃l,∆P )/var(∆P )∆P .47 Although holdings are usually available
quarterly, I consider a monthly window to remain consistent with the previous sections.

I plot the trading measure, cov(∆θ̃l|∆P ), in Figure 11 below, as a function of time
and social interactions intensity η. A first observation, and an important result, is
that managers of Network A are strong momentum traders. As apparent in Panel
A, cov(∆θ̃A,∆P ) is positive, which implies that managers of Network A tend to buy
shares after price increases (and vice-versa). Intuitively, managers of Network A hold
few ideas and thus rely more on public information. Because price changes partially
reveal better-informed managers’ information, all the more so when social interactions
are intense, managers of Network A tend to intensify their positive-feedback strategy.

Unlike managers of Network A, informed managers can perfectly interpet price
changes. If managers i observe a price change triggered by noise traders, they know it
simply represents an inappropriate move. If managers i observe a price change driven
by the market, they know it merely reflects an imperfect adjustment towards the stock’s
actual value, part of which, Π, managers i know. Hence, one should expect managers i
to systematically trade against the market. Panel C shows that cov(∆θ̃i|∆P ) is negative
and managers i indeed come out as contrarian investors—they buy shares after price
decreases (and vice-versa). If conversations often take place, they fiercely bet against
the market to exploit their information before the market digests it.

Better-informed managers are contrarians while lesser-informed managers follow the
trend. This result is similar to that of Brennan and Cao (1996) who show that it relates
to agents’ precision. An important difference is that, in my model, managers’ precision
is endogenized through their number of ideas (see Subsection 3.1).48 Moreover, for the
range of meeting intensities considered, momentum traders represent a vast majority of
the population, a result supported by Grinblatt, Titman, and Wermers (1995) who find
that 77% of managers in their sample implement momentum strategies.

That informed managers pursue contrarian strategies is consistent with the empirical
47The derivation is provided in Appendix F.2.
48See also Colla and Mele (2010) and Watanabe (2008).
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Figure 11: Trading Behavior
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(B) Trading Behavior in Network B
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Trading Behavior and Social Interactions. Figure 11 plots the contemporaneous correlation
of portfolio and price changes over a one-month period ∆ for the average manager in Network
A (Panel A), in Network B (Panel B) and manager i (Panel C). Each is plotted as a function
of time, for a social interaction of one meeting twice per year ( ), one meeting every quarter
( ) and one meeting every two months ( ). The calibration is reported in Table 1.

finding of Coval and Moskowitz (2001), who document a strong inverse relationship
between herding activity and geographic proximity, in line with a local informational
advantage. Fund managers break away from the herd in their local investments and
“free-ride” on others’ information by herding on distant investments. Feng and Seasholes
(2004) reach similar conclusions regarding individual investors.49

The trading behavior of managers in Network B offers another intriguing result.
One would expect managers of Network B, who have access to privileged information,
to behave at least similarly to informed managers. But Panel B shows that this
conjecture may not always be verified. As long as the market is at an early stage of
learning, managers of Network B have sufficiently many ideas to behave like contrarians.
Nevertheless, if managers entertain more than two meetings per year on average (η > 2),
cov(∆θ̃B|∆P ) switches sign and they eventually align with the market consensus. This
result illustrates the strong impact of social interactions on trading. Specifically, word-
of-mouth communication causes market learning to improve at great speed so that even
good ideas cannot keep a manager from eventually following the trend. This tendency
to rally to the market consensus is consistent with Wermers (1999).

6.2 Betting on Price Convergence

I now provide the mechanism driving the momentum and contrarian strategies previously
described. These strategies hinge upon the way in which managers bet on price

49That informed managers i’s strategy weakly relies on public information is consistent with the
empirical conclusions of Kacperczyk and Seru (2007).
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convergence; this becomes apparent if one rewrites managers’ portfolio in (15) as50
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dl∆,t. Managers exploit the time series of prices

according to their own views. First, managers can compute the price deviation from
its fundamental Π + δ as commonly perceived, Pt − E[Π + δ|F ct ]. Second, managers
have access to at least one idea and can therefore refine the common estimate of price
convergence. Ideally, managers would like to condition price convergence on Π, thus
giving rise to a) in (20). Yet, due to b), this operation is overwhelmed by the errors
contained in their set of ideas. Even for informed managers, who are not affected by b),
this operation remains imperfect due to noise traders whose orders produce transitory
price deviations through c).

Ignoring noise perturbations in b) and c), the loading ϕl in a) determines how a
manager bets on price convergence. ϕl is a weighted average of her speculative dl∆ and
her scaled market-making λ1

λ2
dlΘ activities with weights depending on both her number

of ideas nl and common uncertainty oc. One therefore needs to investigate which of the
two dominates. To do so, I plot a) in Figure 12, as a function of time and intensity η.

Consider first managers in Network A. Because managers of Network A have a
moderate number of ideas, their loading ϕA on price convergence is tilted towards
λ1,t

λ2,t
dAΘ,t. This term is negative due to the compensation for risk λ2 < 0 and a) is

therefore negative (Panel A). In turn, if the market thinks the stock is overpriced (that
is, Pt > E[(Π + δ)|F ct ]), managers of Network A follow the market and go short (and
vice-versa). They are trend-chasers, indeed.

Informed managers do the opposite. Importantly, managers i can tell that market
expectations, on average, will not converge to Π before the announcement date. Hence,
in the meantime, they can make money by betting against the market. To see this,
notice that their loading ϕi reduces to their speculative activity di∆. As a result, when
the market thinks the stock is overpriced, they go long by positively loading ϕi > 0 on
a) (and vice-versa), as seen in Panel C. Needless to say, they are contrarians.

Managers in Network B speculate on price convergence in a non-trivial manner.
Good ideas initially allow these managers to trade alongside informed managers (ϕB is

50See Appendices F.1 and F.2 for further details.
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Figure 12: Betting on Price Convergence
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Price Convergence and Social Interactions. Figure 12 plots the exposure to price convergence
for the average manager in Network A (Panel A), in Network B (Panel B) and manager i
(Panel C). Each is plotted as a function of time, for a social interaction of one meeting twice
per year ( ), one meeting every quarter ( ) and one meeting every two months ( ).
The calibration is reported in Table 1.

tilted towards dB∆). Yet, as interactions intensify, market learning shows a substantial
improvement and common uncertainty oc is greatly reduced. As a result, their loading
ϕB shifts towards λ1,t

λ2,t
dBΘ,t and managers of Network B eventually bet alongside the

market (see the solid and dashed-dotted lines in Panel B). That is to say, even good
ideas cannot keep a manager from aligning with the market consensus.

While this mechanism may have the flavor of informational cascades (Bikhchandani,
Hirshleifer, and Welch (1992)), Bayesian managers do not disregard—but optimally give
less and less weight to—their own ideas and increasingly rely on market information.
This mechanism is endogenously conveyed through the informational content of prices.

7 Conclusion
I show that word-of-mouth communication can explain a number of stylized facts in
the mutual fund literature. First, social interactions lead to greater efficiency and
progressively erode managers’ informational advantage, causing managers’ performance
not to persist. Second, social interactions generate momentum in stock returns. In
my model, momentum arises as a rational phenomenon whose underlying mechanism
depends on the diffusion of information among managers. Finally, social interactions
give rise to trading patterns that are consistent with those identified in the mutual fund
industry. Momentum trading becomes sooner or later an optimal strategy, except for a
handful of top performers who consistently break away from the herd.

This paper suggests many potentially interesting avenues for future research. First,
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the social dynamics of my model may be adapted for the purpose of studying fads
and fashions in the marketplace. Rumors may propagate and drive prices away from
their fundamental value. If agents are allowed to act strategically, this may lead to
a new theory of price manipulation. Second, the relation between word-of-mouth
communication and prices is only one-way—social interactions impact prices, but prices
do not impact the way in which agents interact. A challenging extension involves a full-
fledged equilibrium in which social interactions and prices feed back both ways. Third,
in the “limits to arbitrage” literature, social interactions may mitigate two kinds of
risk: word-of-mouth communication may help arbitrageurs to, firstly, synchronize their
trades to arbitrage bubbles away and, secondly, reduce convergence risk by accelerating
the price adjustment towards its fundamental value. Finally, this paper focusses on
managers’ market-timing ability. An economy with multiple stocks is a natural extension
of the present work and would allow one to study the effects of social interactions on
selectivity. I leave investigations along these lines for future research.
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A Proof of Propositions 1 and 2
In this appendix, I derive the dynamics of Network A and Network B. The derivations
of the density µAt for Network A contained in equation (4) of Proposition 1 proceed along
the same lines as those of Duffie and Manso (2007) and the references thereof, except
for one aspect: agents meet in Network A with an intensity ηqAt that is network-specific.
Since agents are restricted to meet with others currently positioned within the same
network, types are drawn from a density that needs to be normalized by the size of the
network such that it integrates up to one, i.e. µAt

qAt
. Hence, for n ∈ A, the dynamics of

µAt evolve as
dµAt (n)

dt = ηqAt

(
n−1∑

k=1
µAt (n− k)µ

A
t (k)
qAt

− µAt
)

which yields (4). The mass qAt is then obtained as follows: from (4), I can write

deη
∫ t

0 q
A
s dsµAt (n) = ηeη

∫ t
0 q

A
s ds

n−1∑

k=1
µAt (n− k)µAt (k)dt.

Integrating, I obtain that

µAt (n) = e−η
∫ t

0 q
A
s dsµA0 (n) + η

∫ t

0
e−η

∫ t
u
qAs ds

n−1∑

k=1
µAu (n− k)µAu (k)du.

Hence, if n = 1, this implies that µAt (1) = e−η
∫ t

0 q
A
s ds and

µAt (n) = η
∫ t

0
e−η

∫ t
u
qAs ds

n−1∑

k=1
µAu (n− k)µAu (k)du

for n ∈ A\{1}. Accordingly, the mass qAt of Network A satisfies

qAt =
K−1∑

n=1
µAt (n)

= e−η
∫ t

0 q
A
s ds

(
1 + η

∫ t

0
eη
∫ u

0 qAs ds
K−1∑

n=2

n−1∑

k=1
µAu (n− k)µAu (k)du

)
.

Differentiating this expression, it follows that

d
dtq

A
t = −η(qAt )2 + η

K−1∑

n=2

n−1∑

m=1
µAt (n−m)µAt (m), qA0 = ω0.

Equation (5) in Proposition 2 is derived in two steps: i) I first take care of the set of
agents who migrate to Network B. Taking discrete intervals of time ∆, the migration

1



of agents to Network B satisfies

µBt+∆ = (1− ηqBt ∆)µBt + µAt+∆ − µAt .

Rearranging and taking the limit on both sides, I get

lim
∆→0

µBt+∆ − µBt
∆ = −ηqBt µBt + lim

∆→0

µAt+∆ − µAt
∆ .

Migrating agents have between K and 2(K − 1) signals and their meetings further need
to incorporate the restriction that both networks are disjoint: an agent who currently
holds K+1 signals could not previously have K signals for, otherwise, she would already
be in Network B. Likewise, an agent who holds 2(K − 1) could only previously possess
K−1 signals. Hence, the types k and n−k whose meeting results into n ∈ [K, 2(K−1)]
have to be such that 1 ≤ k ≤ K − 1 and 1 ≤ n − k ≤ K − 1, which is equivalent to
1 ∨ (n − (K − 1)) ≤ k ≤ (K − 1) ∧ (n − 1) or n − (K − 1) ≤ k ≤ K − 1 given that
K ≥ 2. Therefore, migrating agents with n ∈ [K, 2(K − 1)] signals enter Network
B at a rate dµBt (n)

dt = −ηqBt µBt (n) + η
∑K−1
k=n−(K−1) µ

A
t (n − k)µAt (k). First, there is no

emigration term related to µAt because agents achieving type n ∈ [K, 2(K − 1)] are
not part of Network A. Their emigration takes now place with respect to Network B.
Second, the convolution is truncated in such a way that the previous discussion holds.

Besides migrating agents, ii) I need to take care of the meetings among incumbents
to Network B who necessarily achieve a type higher than 2(K − 1). The derivation
thereof proceeds along the same lines as that for Network A and may, therefore, be
directly adapted: the types k and n − k whose meeting results into n ∈ [2K,N − 1]
have to be such that K ≤ k ≤ N − 1 and K ≤ n − k ≤ N − 1, which is equivalent
to K ∨ (n − (N − 1)) ≤ k ≤ (n − K) ∧ (N − 1) or K ≤ k ≤ n − K given that
N ≥ 2K. Hence, the convolution of incumbents is given by ∑n−K

k=K µ
B
t (n− k)µBt (k) and

the resulting density in (5) follows.
From (5), the mass qBt of agents located in Network B satisfies

qBt =
N−1∑

n=K
µBt (n) = η

∫ t

0
e−η

∫ t
u
qBs ds

N−1∑

n=K


 1{n∈[K,2(K−1)]}

∑K−1
k=n−(K−1) µ

A
u (n− k)µAu (k)

+1{[n∈[2K,N−1]]}
∑n−K
k=K µ

B
u (n− k)µBu (k)


 du.

Differentiating this expression, it follows that

d
dtq

B
t = −η(qBt )2 + η

N−1∑

n=K


 1{n∈[K,2(K−1)]}

∑K−1
m=n−(K−1) µ

A
t (n−m)µAt (m)

+1{n∈[2K,N−1]}
∑n−K
m=K µ

B
t (n−m)µBt (m)


 , qB0 = 0.

Finally, the mass of agents perfectly informed is determined by the sum of the agents
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holding n ∈ C signals for the set of integers C = {N, ..., 2(N − 1)} ⊂ N∗. Denoting by
µCt (C) = ι ({j : jt ∈ C}) the density for each classes of number n ≥ N of signals and
where C ⊆ C, I can write

d
dtµ

C
t (n) = η

(N−1)∧(n−K)∑

k=K∨(n−(N−1))
µBt (n− k)µBt (k), µC0 (n) = δ0.

Migrating agents pile up in each class which have become irrelevant given that Network
C indifferently grants access to perfect information. Hence, the mass qCt of agents
located in Network C satisfies

qCt =
2(N−1)∑

n=N
µCt (n) = η

∫ t

0

2(N−1)∑

n=N

(N−1)∧(n−K)∑

k=K∨(n−(N−1))
µBs (n− k)µBs (k)ds

= 1− qAt − qBt .

�

B Proof of Proposition 3
In this appendix, I derive the Bayesian updating procedure in the presence of social
interactions. In a first step, I derive the filter pertaining to the information accrued
from the tape and, then, derive the filter related to the information processed through
private discussions. When filtering from the price, agents apply a Kalman filter to the
vector of unobservable variables Xt ≡ (Π,Θt)> using the information Y c

t generated by
the tape. The vector Xt has dynamics

dXt =

 0 0

0 −aΘ


Xtdt+


 0
σΘ


 dBΘ

t , X0 =

 Π

Θ0


 .

From (6), the price may be written as

Pt = ξt + (1− λ1,t)Π̂c
t

where ξt ≡ λ1,tΠ+λ2,tΘt. Furthermore, notice that observing the price is informationally
equivalent to observing ξt, i.e. σ(Ps : 0 ≤ s ≤ t)⇔ σ(ξs : 0 ≤ s ≤ t) and thus Y c

t = ξt.
The dynamics of Y c

t are obtained by applying Ito’s lemma

dY c
t =

(
λ′1,tΠ + (λ′2,t − aΘλ2,t)Θt

)
dt+ λ2,tσΘdBΘ

t .

3



The Kalman filter under F j for j = c, l is obtained through the theorem below.

Theorem 1. Denote the unobservable vector by Xt and the observable vector by Yt with
dynamics

dXt = (a0 + a1Xt)dt+ bdBt

dYt = (A0 + A1Xt)dt+BdBt

where dBt = dBΘ
t . The conditional mean X̂t with respect to the information set

FYt = σ(Ys : 0 ≤ s ≤ t) has dynamics

dX̂t = (a0 + a1X̂t)dt+ (OtA
>
1 + bB>)(BB>)− 1

2dB̂t

where Ot = E
[
(X − X̂t)(X − X̂t)>

∣∣∣FYt
]
is the positive semi-definite conditional

variance-covariance matrix of Xt given by the solution to the Ricatti equation

Ȯt = a1Ot +Ota
>
1 + bb> − (OtA

>
1 + bB>)(BB>)−1(A1Ot +B>b)

and where the filter innovation B̂t satisfying

dB̂t = (BB>)− 1
2 (dYt − (A0 + A1X̂t)dt)

is a Brownian motion with respect to the filtration FYt .

Proof. See Lipster and Shiryaev (2001), Theorem 12.7. Q.E.D.

To apply Theorem 1, I need an expression for the variance-covariance matrix O
of the filter: notice that because ξt ∈ F ct ⊆ F lt , it follows that ξt = λ1,tΠ + λ2,tΘt ≡
λ1,tΠ̂c

t + λ2,tΘ̂c
t ≡ λ1,tΠ̂l

t + λ2,tΘ̂l
t. This means, in turn, that

E
[
(Θt − Θ̂j

t)2
∣∣∣F jt

]
= E



(
λ1,t

λ2,t

)2

(Π− Π̂j
t)2

∣∣∣∣∣∣
F jt

 =

(
λ1,t

λ2,t

)2

ojt , j = c, l

and

E
[
(Θt − Θ̂j

t)(Π− Π̂j
t)
∣∣∣F jt

]
= E

[
−λ1,t

λ2,t
(Π− Π̂j

t)2
∣∣∣∣∣F

j
t

]
= −λ1,t

λ2,t
ojt , j = c, l.

Accordingly, Oj for j = c, l may be written as

Oj
t = ojt


 1 −λ1,t

λ2,t

−λ1,t
λ2,t

(
λ1,t
λ2,t

)2


 .
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Further observing that

a0 =

 0

0


 , a1 =


 0 0

0 −aΘ


 , b =


 0
σΘ


 , A0 = 0, A1 =


 λ′1,t
λ′2,t − aΘλ2,t



>

and B = λ2,tσΘ and working out the expression for the conditional mean X̂t in Theorem
1, I get the following dynamics under common information

d

 Π̂c

t

Θ̂c
t


 =


 0 0

0 −aΘ




 Π̂c

t

Θ̂c
t


 dt

+ 1
λ2

2,tσΘ




oct(λ′1,tλ2,t − λ1,t(λ′2,t − aΘλ2,t))
λ2

2,tσ
2
Θ + oct

(
λ2

1,t
λ2,t

(λ′2,t − aΘλ2,t)− λ1,tλ
′
1,t

)

 dB̂c

t

where B̂c
t is a one-dimensional Brownian motion with respect to F ct with

dB̂c
t = 1

λ2,tσΘ

(
dξt − (λ′1,tΠ̂c

t + (λ′2,t − aΘλ2,t)Θ̂c
t)dt

)
. (21)

Using the definition of kt in (11), I get the equation (9) for the common filter. Further-
more, substituting the expression obtained above for Oc

t into the Ricatti equation of
Theorem 1 and working out the equation, I obtain the following ordinary differential
equation

doct
dt = − (oct)2

λ4
2,tσ

2
Θ

(λ′1,tλ2,t − λ1,t(λ′2,t − aΘλ2,t))2 = −k2
t (oct)2.

This yields the equation for the filtered variance under common information appearing
in (12).

Similarly, when agents l do not meet anyone and, thus, collect information from
only watching the tape, their forecasts evolve as

d

 Π̂l

t

Θ̂l
t


 =


 0 0

0 −aΘ




 Π̂l

t−

Θ̂l
t−


 dt+


 olt

(
nlt−

)
kt(

σΘ − olt
(
nlt−

)
λ1,t
λ2,t

kt
)

 dB̂l

t (22)

where
dB̂l

t = 1
λ2,tσΘ

(dξt − (λ′1,tΠ̂l
t− + (λ′2,t − aΘλ2,t)Θ̂l

t−)dt) (23)

is a one-dimensional Brownian motion with respect to F lt− . The variance of their filter
evolves as dolt

(
nlt
)

= −k2
t

(
olt
(
nlt−

))2
dt.

I now turn to show how both the beliefs about Π and (Θt)t≥0 are updated when
an agent is met: whenever an agent l meets another agent holding mt signals, she
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gets a sequence {Slk}mtk=1 of incremental signals. Conveniently, by Gaussian theory,
S̄lm,t ≡ 1

mt

∑mt
k=1 S

l
k is a sufficient statistic for the latter. Notice that S̄lm,t is conditionally

distributed as S̄lm,t ∼ N (Π, σ
2
S

mt
). Then, by Bayes’ rule, the conditional density plt(Π|F lt)

may be written in the following recursive way

plt(Π|F lt) =
plt−(Π|F lt−)e

−
(S̄lm,t−Π)2

2σ2
S
/mt

∫
R p

l
t−(x|F lt−)e

−
(S̄l
m,t
−x)2

2σ2
S
/mt dx

.

Hence, at time 0, given the prior Π ∼ N (0, σ2
Π) and immediately after investor l receives

her initial private signal (in which case, n = 1)

pl0(Π|F l0) = e
− 1

2

(
Π
σΠ

)2

e
− 1

2

(
Sl−Π
σS

)2

∫
R e
− 1

2

(
x
σΠ

)2

e
− 1

2

(
Sl−x
σS

)2

dx
=

√√√√
1
σ2
S

+ 1
σ2

Π

2π e
− ((Π)σ2

S
+(Π−Sl)σ2

Π)2

2σ2
S
σ2

Π(σ2
S

+σ2
Π)

which may be used as an initial condition for the above recursion. I can then compute
the integral in the denominator of the expression above to obtain

∫

R
plt−(x|F lt−)e

−
(S̄lm,t−x)2

2σ2
S
/mt dx =

√√√√√
ôlt
(
nlt
)

olt
(
nlt−

)e

−


(S̄lm,t)2

2σ2
S
/mt

+

(
Π̂lt−

)2

2ol
t

(
nl
t−

)


+


 Π̂lt−

ol
t

(
nl
t−

)+
S̄lm,t

σ2
S
/mt




2
ôlt(nlt)

2

where ôlt
(
nlt
)
≡

 1
olt

(
nlt−

) + mt
σ2
S



−1

. Substituting this expression back, I obtain

plt(Π|F lt) = 1√
2πôlt

(
nlt
)e
−




 Π̂lt−

ol
t

(
nl
t−

)+
S̄lm,t

σ2
S
/mt


ôlt(nlt)−Π




2

2̂ol
t(nlt) = 1√

2πolt
(
nlt
)e
− 1

2
(Π̂lt−Π)2

ol
t(nlt) (24)

where the second equality follows from that the conditional distribution plt(Π|F lt) is
Gaussian for any t. Comparing the two expressions in (24) yields the updating rule for
the variance

1
olt
(
nlt
) = 1

olt
(
nlt−

) + mt

σ2
S

(25)
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and the mean

Π̂l
t

olt
(
nlt
) =

Π̂l
t−

olt
(
nlt−

) +
S̄lm,t
σ2
S/mt

=
Π̂l
t−

olt
(
nlt
) +

S̄lm,t − Π̂l
t−

σ2
S/mt

. (26)

I still need to take care of the updating rule for the noisy supply (Θt)t≥0: observing
that information ξt accruing from the price is continuous, I can write Θ̂l

t − Θ̂l
t− =

−λ1,t
λ2,t

(Π̂l
t − Π̂l

t−) and, in consideration of (26), the updating rule immediately follows

Θ̂l
t

olt
(
nlt
) =

Θ̂l
t−

olt
(
nlt
) − λ1,t

λ2,t

S̄lm,t − Π̂l
t−

σ2
S/mt

. (27)

Alternatively, the conditional p.d.f. plt(Θt|F lt) for the noisy supply satisfies the recursion

plt(Θt|F lt) =
plt−(Θt|F lt−)e

−
(S̄lm,t−(Π̂lt+

λ2,t
λ1,t

(Θ̂j
t
−Θt)))2

2σ2
S
/mt

∫
R p

l
t−(x|F lt−)e

−
(S̄l
m,t
−(Π̂l

t
+
λ2,t
λ1,t

(Θ̂j
t
−x)))2

2σ2
S
/mt dx

with initial condition

pl0(Θ0|F l0) =

√√√√√
λ2

2,0
λ2

1,0σ
2
S

+ 2aΘ
σ2

Θ

2π e
− 1

2
(2aΘΘ0λ

2
1,0σ

2
S

+λ2,0(Slλ1,0+Θ0λ2,0)σ2
Θ)2

2aΘλ4
1,0σ

4
S
σ2

Θ+λ2
1,0λ

2
2,0σ

2
S
σ4

Θ .

In consideration of the updating rules in (25), (26) and (27), when an agent is met
at time t, the filtered fundamental and the filtered noisy supply experience a jump
whose size is respectively given by

∆Π̂l
t ≡ Π̂l

t− Π̂l
t− =

S̄lm,t − Π̂l
t−

σ2
S/mt

olt
(
nlt
)

and ∆Θ̂l
t ≡ Θ̂l

t− Θ̂l
t− = −λ1,t

λ2,t

S̄lm,t − Π̂l
t−

σ2
S/mt

olt
(
nlt
)
.

(28)
Likewise, the variance of posteriors experiences a jump of size

∆olt ≡ olt
(
nlt
)
− olt

(
nlt−

)
= − 1

σ2
S

olt
(
nlt
)
olt
(
nlt−

)
mt.

Moreover, the respective filters of Π, a constant, and (eaΘtΘt)t≥0, a martingale, need to
be martingales. Hence, I need to compensate their jump size adequately so as to enforce
their martingality. To do so, I have to pin down the distribution of the jump size in
posteriors or, equivalently, the distribution of Z l

m,t ≡
S̄lm,t−Π̂lt−
σ2
S/mt

olt
(
nlt
)
. Let νlt(m; dt; dZ)

denote the required density. Moreover, notice that the probability of meeting someone

7



in the time interval [t, t+ dt) is P[N l
t+dt −N l

t = 1] = ηtdt and the probability of getting
m incremental signals given nlt− currently held and conditional on meeting someone in
[t, t+ dt) is

P[mt = m|N l
t+dt −N l

t = 1, nlt− ] = µAt (m)
qAt

1{nlt−∈A;m∈A} + µBt (m)
qBt

1{nlt−∈B;m∈B}.

Hence, the probability of getting m signals in [t, t+ dt) given nlt− is

P[{mt = m}∩{N l
t+dt−N l

t = 1}|nlt− ] = η
(
µAt (m)1{nlt−∈A;m∈A} + µBt (m)1{nlt−∈B;m∈B}

)
dt

and the distribution νlt(·) satisfies

νlt(m; dt; dZ) = P[{mt = m} ∩ {N l
t+dt −N l

t = 1}|nlt− ]× P[Z l
m,t ∈ dZ|F lt− ,mt] (29)

= η
(
µAt (m)1{nlt−∈A;m∈A} + µBt (m)1{nlt−∈B;m∈B}

)
dt

×N
(

0, mtσ
2
S(oct)2

(σ2
S + nlt−o

c
t)(σ2

S + nlto
c
t)

)
dZ

where the last expression follows from that

E
[
Z l
m,t|F lt− ,mt

]
= mto

l
t(nlt)
σ2
S

E


Π + 1

mt

mt∑

j=1
εj − Π̂l

t−

∣∣∣∣∣∣
F lt− ,mt


 = 0

and

V
[
Z l
m,t|F lt− ,mt

]
= m2

t (olt(nlt))2

σ4
S

V


Π + 1

mt

mt∑

j=1
εj

∣∣∣∣∣∣
F lt− ,mt


 = m2

t (olt(nlt))2

σ4
S

(olt(nlt−) + σ2
S

mt

).

Since the expected jump size is null, the compensation is null and the filtered dynamics
in (10) and the variance dynamics

dolt(nlt) = −k2
t (olt(nlt−))2dt− 1

σ2
S

olt(nlt)olt(nlt−)mtdN l
t

immediately follow by putting together (22) and the jump sizes in (28).
Finally, letting Kc

t ≡ 1
oct
, I can write dK l

t

(
nlt
)

= dKc
t + mt

σ2
S
dN l

t and obtain the explicit
relation

K l
t

(
nlt
)

= K l
0 +Kc

t +
∫ t

0

ms

σ2
S

dN l
s = Kc

t + nlt
σ2
S

where Kc
t satisfies dKc

t = k2
t dt. This yields the expression for olt

(
nlt
)
in (12). �
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C Proof of Proposition 4
In this appendix, I turn to agents i and l’s optimization problem. Following the
notations of He and Wang (1995), I denote by Q the excess return on the price. The
latter satisfies

dQt = dPt − rPtdt+ 1{t=T}∆PT . (30)

Accordingly, agent l who currently holds nlt− signals chooses a portfolio strategy θlt− ≡
θl(Ψl

t− , n
l
t− , t) with Ψl to be shortly described in order to maximize

sup
θl
E
[
−e−γW l

T

∣∣∣F lt−
]
s.t. dW l

t = rW l
tdt+ θlt−dQt (31)

while agent i chooses a portfolio strategy θit ≡ θi(Ψt, t) in order to maximize

sup
θi
E
[
−e−γW i

T

∣∣∣F it
]
s.t. dW i

t = rW i
tdt+ θitdQt. (32)

I first solve the problems in (31) and (32) over [0, T ) and then solve the ones prevailing
at the horizon date which, in turn, will provide boundary conditions. In doing so, I
need to determine the state variables relevant to (31) and (32): due to the CARA form
of utility, W will act as a trivial state variable. Besides t whose dependence is triggered
by T <∞, the other relevant state variables, Ψ, appear to be the ones driving Q.

I proceed first with (31) and, then, obtain the solution to (32) as the special case
when nl →∞: notice that, because r = 0, Qt = E[Pt| F lt ] = λ1,tΠ̂l

t+λ2,tΘ̂l
t+(1−λ1,t)Π̂c

t .
The dynamics of Π̂l

t and Θ̂l
t being obtained from (10), I just need to derive the dynamics

of Π̂c
t with respect to F lt− : substitutions between the two Brownians in (21) and (23)

lead to

dB̂c
t = dB̂l

t + 1
λ2,tσΘ

(λ′1,t(Π̂l
t− − Π̂c

t) + (λ′2,t − aΘλ2,t)(Θ̂l
t− − Θ̂c

t))dt.

Using the equivalence relations between Θ̂c
t and Θ̂l

t, this change of measure is written as

dB̂c
t = dB̂l

t + 1
λ2

2,tσΘ
(λ′1,tλ2,t − λ1,t(λ′2,t − aΘλ2,t))(Π̂l

t− − Π̂c
t)dt (33)

= dB̂l
t + kt(Π̂l

t− − Π̂c
t)dt

with the associated Radon-Nikodym derivative

dP̂c

dP̂l

∣∣∣∣∣
F lt

= e−
1
2

∫ t
0 (ks(Π̂ls−−Π̂cs))2ds+

∫ t
0 ks(Π̂

l
s−−Π̂cs)dB̂cs . (34)
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I assume that (34) is a martingale (and not only a local martingale) and Girsanov’s
theorem applies. Then Π̂c

t satisfies the following dynamics

dΠ̂c
t = oct

λ4
2,tσ

2
Θ

(λ′1,tλ2,t − λ1,t(λ′2,t − aΘλ2,t))2(Π̂l
t− − Π̂c

t)dt

+ oct
λ2

2,tσΘ
(λ′1,tλ2,t − λ1,t(λ′2,t − aΘλ2,t))dB̂l

t = octk
2
t (Π̂l

t− − Π̂c
t)dt+ octktdB̂l

t

with respect to F lt− . An application of Ito’s lemma then shows

dQt = ((λ′1,t + (1− λ1,t)octk2
t )(Π̂l

t− − Π̂c
t) + (λ′2,t − aΘλ2,t)Θ̂l

t−)dt (35)
+ (λ2,tσΘ + (1− λ1,t)octkt)dB̂l

t.

Inspection of (35) reveals that Ψl
t := (1, Θ̂l

t,∆l
t)> where the first element is introduced

to capture linear dependencies along with some constant and where ∆l
t ≡ Π̂l

t − Π̂c
t

denotes the difference between investors l’s estimate of the stock value and the estimate
solely based on market information. By Ito’s lemma, the latter satisfies

d∆l
t = −octk2

t∆l
t−dt+

(
olt
(
nlt−

)
− oct

)
ktdB̂l

t +
S̄lm,t − Π̂l

t−

σ2
S

olt
(
nlt
)
mtdN l

t .

Moreover, using the expression for Θ̂l
t in (10) in Proposition 3, I get

dΘ̂l
t = −aΘΘ̂l

t−dt+
(
σΘ − olt

(
nlt−

) λ1,t

λ2,t
kt

)
dB̂l

t −
λ1,t

λ2,t

S̄lm,t − Π̂l
t−

σ2
S

olt
(
nlt
)
mtdN l

t .

As a result, the excess return Q and the filtered state variables Ψl
t ≡ E[Ψt|F lt ] follow

the coupled process

dQt = AQ,tΨl
t−dt+BQ,tdB̂l

t + CQ,t
(
Ψl
t− , n

l
t

)
dN l

t

dΨl
t = AΨ,tΨl

t−dt+Bl
Ψ,t

(
nlt−

)
dB̂l

t + C l
Ψ,t

(
Ψl
t− , n

l
t

)
dN l

t

over [0, T ) where

AΨ,t =




0 0 0
0 −aΘ 0
0 0 −k2

t o
c
t


 , Bl

Ψ,t

(
nlt
)

=




0
σΘ − λ1,t

λ2,t

ktσ2
S

Kc
t σ

2
S+nlt(

σ2
S

σ2
SK

c
t+nlt
− 1

Kc
t

)
kt



,

and

C l
Ψ,t

(
Ψl
t, n

l
t

)
=
(

0 −λ1,t
λ2,t

1
)> S̄lm,t − Π̂l

t−

σ2
S

olt
(
nlt
)
mt

10



along with

AQ,t = [ 0 λ′2,t − aΘλ2,t λ′1,t + (1− λ1,t)octk2
t ], BQ,t = λ2,tσΘ + (1− λ1,t)octkt

(36)
and CQ,t = 0. As expected, the excess return does not jump, expect, perhaps, at the
horizon date T when the stock pays out.

Finally, notice that Ψl
t does not constitute a sufficient statistic for (31) because,

unlike He and Wang (1995), the variance ol is not a sole function of time. Instead, ol

jumps at random times and one needs to include it as an additional state variable. In
that respect, the relation between oct and olt

(
nlt
)
described in Proposition 3 implies

that one may choose to keep track either of nlt or olt. Accordingly, I let the state
variables for (31) be (W l,Ψl, nl, t) and let the associated value function J l be of the
form J l(W l,Ψl, nl, t). Using these, I can write the Hamilton-Jacobi-Bellman (HJB)
equation associated with (31). By the standard martingale argument, it satisfies

0 = sup
θlt−

{
J lWAQ,tΨl

t−θ
l
t− + 1

2J
l
WWB

2
Q,t(θlt−)2 +BQ,t(Bl

Ψ,t(nlt−))>J lWΨθ
l
t−

}

+ J lt + (J lΨ)>AΨ,tΨl
t− + 1

2tr(J
l
ΨΨB

l
Ψ,t(nlt−)(Bl

Ψ,t(nlt−))>)

+ Eνlt [J l(W l
t ,Ψl

t− + C l
Ψ,t

(
Ψl
t− , n

l
t

)
, nlt− +mt, t)− J l(W l

t ,Ψl
t− , n

l
t− , t)]

with terminal boundary condition J l(W l,Ψl, nl, T ) = −e−γW l
T and where tr(·) denotes

the trace operator. The first-order condition reads

J lWAQ,tΨl
t− + J lWWB

2
Q,tθ

l
t− +BQ,t(Bl

Ψ,t(nlt−))>J lWΨ = 0 (37)

and the second-order condition for optimality is J lWW < 0. Substituting the first-order
condition into the HJB equation, I obtain the following PDE

J lt + (J lΨ)>AΨ,tΨl
t− + 1

2tr(J
l
ΨΨB

l
Ψ,t(nlt−)(Bl

Ψ,t(nlt−))>) (38)

+ Eνlt [J l(W l
t ,Ψl

t− + C l
Ψ,t

(
Ψl
t− , n

l
t

)
, nlt− +mt, t)− J l(W l

t ,Ψl
t− , n

l
t− , t)]

− 1
2

(J lWAQ,tΨl
t− +BQ,t(Bl

Ψ,t(nlt−))>J lWΨ)2

J lWWB
2
Q,t

= 0.

To solve (38), I make the following observation: if my setting were absent of social
relations, Ψl would follow a bi-dimensional OU process and the setting would be affine
quadratic. As shown in Cheng and Scaillet (2007), I could then conjecture that

J l(W l,Ψl, nl, t) = − exp
(
−γW l − 1

2(Ψl)>M l
t(nl)Ψl

)
(39)

11



where M l
t(nl) is a (3 × 3)−symmetric matrix of coefficients to be determined and

that satisfies boundary conditions pinned down by the problem to be solved at the
horizon date. Yet, due to social interactions, learning is not purely Brownian and the
combination of the jump in posteriors along with the quadratic form of (39) make
the setup not LQJD (Linear-Quadratic-Jump-Diffusion) but QJD. Hence, unlike the
setting of Cheng and Scaillet (2007) or Piazzesi (2005), for instance, the quadratic state
variables jump along with the affine ones and the jump size in (38) is of the form

Eνlt [J l(W l,Ψl
t− + C l

Ψ,t

(
Ψl
t− , n

l
t

)
, nlt− +mt, t)− J l(W l

t ,Ψl
t− , n

l
t− , t)] = (40)

J l(W l,Ψl
t− , n

l
t− , t)×

Eνlt




exp



−1

2




(
C l

Ψ,t

(
Ψl
t− , n

l
t

))>
M l

t(nlt)C l
Ψ,t

(
Ψl
t− , n

l
t

)

+(Ψl
t−)>(M l

t(nlt)−M l
t(nlt−))Ψl

t−

+(Ψl
t−)>M l

t(nlt)C l
Ψ,t

(
Ψl
t− , n

l
t

)

+
(
C l

Ψ,t

(
Ψl
t− , n

l
t

))>
M l

t(nlt)Ψl
t−






− 1



.

In this context, Chen, Filipovic, and Poor (2004) have shown that the exponential
quadratic ansatz in (39) for the value function fails to hold. Instead, for (39) to hold
and in the spirit of the approximation considered in Duffie, Gârleanu, and Pedersen
(2007) and Vayanos and Weill (2008), I linearize the jump size in (40) by means of a
first-order Taylor approximation of the latter around zero:

Eνlt [J l(W l,Ψl
t− + C l

Ψ,t

(
Ψl
t− , n

l
t

)
, nlt− +mt, t)− J l(W l

t ,Ψl
t− , n

l
t− , t)]

≈ −1
2

(∫

N∗×R

(
C l

Ψ,t

(
Ψl
t− , n

l
t− +m

))>
M l

t(nlt− +m)C l
Ψ,t

(
Ψl
t− , n

l
t− +m

)
νlt(m; dt; dZ)

)

−1
2

(∫

N∗×R

(
C l

Ψ,t(Ψl
t− , n

l
t− +m)

)>
M l

t(nlt− +m)νlt(m; dt; dZ)
)

Ψl
t−

−1
2(Ψl

t−)>
(∫

N∗×R
M l

t(nlt− +m)C l
Ψ,t(Ψl

t− , n
l
t− +m)νlt(m; dt; dZ)

)

−1
2(Ψl

t−)>
(∫

N∗×R

(
M l

t(nlt− +m)−M l
t(nlt−)

)
νlt(m; dt; dZ)

)
Ψl
t−

≡ −1
2

(
φl0,t−(M l) +

(
φl1,t−(M l)

)>
Ψl
t− + (Ψl

t−)>φl1,t−(M l) + (Ψl
t−)>φl2,t−(M l)Ψl

t−

)
.

This allows to make the setting LQJD and to preserve its tractablity. An upper bound
on the error induced by the linearization is provided in Appendix D. Further substituting

12



the ansatz in (38), I obtain the following matrix differential equation

Ṁ l
t(nlt−) = −ηφl2,t−(M l)− diag(φl1,t−(M l))I(3)

(1:3,1) − I
(3)
(1,1:3)diag(φl1,t−(M l)) (41)

M l
t(nlt−)

(
Bl

Ψ,t(nlt−)AQ,t
BQ,t

− AΨ,t

)
+
(
Bl

Ψ,t(nlt−)AQ,t
BQ,t

− AΨ,t

)>
M l

t(nlt−)

− A>Q,tAQ,t
(BQ,t)2 −

(
tr
(
M l

t(nlt−)Bl
Ψ,t(nlt−)(Bl

Ψ,t(nlt−))>
)

+ ηφl0,t−(M l)
)
I

(3)
11

where I(N)
i,j is a N ×N−index matrix with its elements being zero except elements (i, j)

being 1.
Since, as per (29), the expected jump size is null, it is immediate that

φl1,t(M l) = [ 0 0 0 ]> ∀l ∈ I2. (42)

To determine the coefficients φl0,t and φl2,t, I denote by cΨ,t ≡
[

0 −λ1,t
λ2,t

1
]>

the jump
scale in such a way that C l

Ψ = cΨZ
l. I then integrate over the different realizations of

the incremental number mt of signals: clearly, since agents only meet others within
their own network, φ’s need to be network-specific. This yields

φl0,t−(M l) =





∑
m∈A µ

A
t (m)c>Ψ,tM l

t(nlt− +m)cΨ,t
mσ2

S

(σ2
SK

c
t+nlt− )(σ2

SK
c
t+nlt−+m) if nlt− ∈ A

∑
m∈B µ

B
t (m)c>Ψ,t

×




1{nlt−+m∈A∪B}

(
M l

t(nlt− +m)cΨ,t
mσ2

S

(σ2
SK

c
t+nlt− )(σ2

SK
c
t+nlt−+m)

)

+1{nlt−+m/∈A∪B}

(
M i

t cΨ,t
σ2
S

σ2
SK

c
t+nlt−

)




if nlt− ∈ B

and

φl2,t−(M l) =





∑
m∈A µ

A
t (m)

(
M l

t(nlt− +m)−M l
t(nlt−)

)
if nlt− ∈ A∑

m∈B µ
B
t (m)


1{nlt−+m∈A∪B}

(
M l

t(nlt− +m)−M l
t(nlt−)

)

+1{nlt−+m/∈A∪B}
(
M i

t −M l
t(nlt−)

)




if nlt− ∈ B

The solution to agents i’s problem is directly obtained as a particular case when
nl →∞: the HJB equation for (32) is

0 = sup
θit

{
J iWAQ,tΨtθ

i
t + 1

2J
i
WWB

2
Q,t(θit)2 +BQ,t(Bi

Ψ,t)>J iWΨθ
i
t

}
(43)

+ J it + (J iΨ)>AΨ,tΨt + 1
2tr(J

i
ΨΨB

i
Ψ,t(Bi

Ψ,t)>)

13



with J i(W i,Ψ, T ) = −e−γW i
T and Ψt = (1,Π − Π̂c

t ,Θt)> and Bi
Ψ,t = limnl→∞B

l
Ψ,t(nl).

After substitution of the first-order condition and using the conjecture J i(W i,Ψ, t) =
−e−γW i− 1

2 (Ψ)>M i
tΨ, which, in this case, is exact, I obtain

Ṁ i
t = M i

t

(
Bi

Ψ,tAQ,t

BQ,t

− AΨ,t

)
+
(
Bi

Ψ,tAQ,t

BQ,t

− AΨ,t

)>
M i

t (44)

− A>Q,tAQ,t
(BQ,t)2 − tr

(
M i

tB
i
Ψ,t(Bi

Ψ,t)>
)
I

(3)
11 .

I can go one step further and simplify the matrix differential equations above: first,
considering (41) and (42) and (44) along with the terminal condition M j,(1,2)(T ) =
M j,(1,3)(T ) = 0 for j = l, i which follows from (52) below and since the differential
equations for M j,(1,2) and M j,(1,3) have no generator term, M l

t(nlt) is of the form

M l
t(nlt) =




M
l,(1,1)
t (nlt) 0 0

0 M
l,(2,2)
t (nlt) M

l,(2,3)
t (nlt)

0 M
l,(2,3)
t (nlt) M

l,(3,3)
t (nlt)


 (45)

where M i
t follows from nl →∞. (45) implies that (41) and (44) may be decoupled from

M
l,(1,1)
t (nlt) and M i,(1,1)

t : I shall redefine c?Ψ,t ≡
[
−λ1,t
λ2,t

1
]>

and

A?Ψ,t =

 −aΘ 0

0 −octk2
t


 , B?,l

Ψ,t(nlt) =



σΘ − λ1,t

λ2,t

ktσ2
S

σ2
SK

c
t+nlt

( σ2
S

σ2
SK

c
t+nlt
− 1

Kc
t
)kt


 , (46)

A?Q,t =

 λ′2,t − aΘλ2,t

λ′1,t + (1− λ1,t) k
2
t

Kc
t



>

, B?,i
Ψ,t =


 σΘ

−octkt




along with matrices M?,l and M?,i whose dependence on φ?,l2 ≡ φl2(M?,l) is emphasized

M?,l
t (nlt, φ

?,l
2,t) =


 M

l,(2,2)
t (nlt, φ

?,l
2,t) M

l,(2,3)
t (nlt, φ

?,l
2,t)

M
l,(2,3)
t (nlt, φ

?,l
2,t) M

l,(3,3)
t (nlt, φ

?,l
2,t)


 and M?,i

t =

 M

i,(2,2)
t M

i,(2,3)
t

M
i,(2,3)
t M

i,(3,3)
t


 .

Then, reorganizing (41) and (44) respectively yields

Ṁ?,l
t (nlt− , φ

?,l
2,t−) = −ηφ?,l2,t− +M?,l

t (nlt− , φ
?,l
2,t−)


B

?,l
Ψ,t(nlt−)A?Q,t
BQ,t

− A?Ψ,t


 (47)

+

B

?,l
Ψ,t(nlt−)A?Q,t
BQ,t

− A?Ψ,t



>

M?,l
t (nlt− , φ

?,l
2,t−)− (A?Q,t)>A?Q,t

(BQ,t)2 ,

14



Ṁ?,i
t = M?,i

t


B

?,i
Ψ,tA

?
Q,t

BQ,t

− A?Ψ,t


+


B

?,i
Ψ,tA

?
Q,t

BQ,t

− A?Ψ,t



>

M?,i
t −

(A?Q,t)>A?Q,t
(BQ,t)2 . (48)

Substituting (39) into (37) and the ansatz for agents i into the first-order condition
in (43) yields

θlt ≡ θl(Θ̂l
t− , Π̂

l
t−−Π̂c

t , n
l
t− , t) =

A?Q,t −BQ,t(B?,l
Ψ,t(nlt−))>M?,l

t (nlt− , φ
?,l
2,t−)

γB2
Q,t


 Θ̂l

t−

Π̂l
t− − Π̂c

t




and

θit ≡ θi(Θt,Π− Π̂c
t , t) =

A?Q,t −BQ,t(B?,i
Ψ,t)>M

?,i
t

γB2
Q,t


 Θt

Π− Π̂c
t


 ,

delivering the respective optimal portfolio choices in (13) and (14) in Proposition 4.
Boundary conditions to (48) and (47) are provided by agents’ optimization problem

at the very last round of trading. Here, I need to take care of the jump in (30):

J l(W l
T− ,Ψ

l
T− , n

l
T , T ) = sup

θlT−

E
[
−e−γW

l
T−−γθ

l
T−∆PT

∣∣∣∣F lT−
]

(49)

= sup
θlT−

−e−γW
l
T−−γθ

l
T−E

[
∆PT |F lT−

]
+ 1

2γ
2
(
θlT−

)2
V

[
∆PT |F lT−

]

where I used the Laplace transform of a normal random variable. Solving for the
first-order condition yields the optimal portfolio

θlT− =
E
[
∆PT | F lT−

]

γV
[
∆PT | F lT−

] . (50)

Using that ∆PT = Π + δ − PT− = (δ + (1− λ1,T−)(Π− Π̂c
T−)− λ2,T−ΘT ), I obtain, for

agents l and i,

θlT− =
(1−λ1,T− )(Π̂lT−−Π̂cT− )−λ2,T− Θ̂lT−

γ(olT− (nlT )+σ2
δ
) , θiT− =

(1−λ1,T− )(Π−Π̂cT− )−λ2,T−ΘT
γσ2
δ

. (51)

Substituting (51) into the terminal value function in (49), I get

J l(W l
T− ,Ψ

l
T− , n

l
T , T ) = exp


−γW l

T− −
1
2

(
(1− λ1,T−)(Π̂l

T− − Π̂c
T−)− λ2,T−Θ̂l

T−

)2

olT−(nlT ) + σ2
δ




(52)

for agents l. Similarly, I obtain J i(W i
T− ,Ψ, T ) = e

−γW i
T−−

1
2

(
(1−λ1,T− )(Π−Π̂c

T−
)−λ2,T−ΘT

)2

σ2
δ for
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agents i. But given the shape of the value function conjecture in (39), the boundary
conditions are

M?,l
T−(nlT ) = 1

olT−(nlT ) + σ2
δ


 λ2

2,T− −λ2,T−(1− λ1,T−)
−λ2,T−(1− λ1,T−) (1− λ1,T−)2


 (53)

and

M?,i
T− = 1

σ2
δ


 λ2

2,T− −λ2,T−(1− λ1,T−)
−λ2,T−(1− λ1,T−) (1− λ1,T−)2


 . (54)

Notice that these boundary conditions are given in terms of the terminal price coefficients
λ1,T− and λ2,T− . The boundary conditions for these will be derived in Appendix E. �

D On the Approximation Error
In this appendix, I derive the dual counterpart to the primal problem in (31): I use
the dual formulation to obtain a probabilistic characterization to the first-order Taylor
approximation used in Proposition 4. Then, I use the dual approach along the lines
of Haugh, Kogan, and Wang (2006) to provide an upper bound on the approximation
error taking prices as given.

The primal problem in (31) may be alternatively written as

sup
θl
E
[
−e−γW

l
T−+A

∣∣∣∣F lt−
]
s.t. dWt = θt−dPt = θt−(AQ,tΨl

t−dt+BQ,tdB̂l
t) (55)

where A is a FT−−measurable random variable given in (52). I denote by (θ?t )t≥0 the
optimal portfolio strategy associated with (55) and by V ?

t the value function associated
with (55) and evaluated at the optimal strategy (θ?t )t≥0. Also, I denote by (θ̃t)t≥0 the
portfolio strategy in (13) which is associated with the value function Ṽt whose jump has
been linearized. Clearly, because the policy (θ̃t)t≥0 is suboptimal, it is immediate that

Ṽt ≤ V ?
t , ∀t ∈ [0, T ). (56)

That is, the approximated value function Ṽt provides a lower bound to the optimal
value function V ?

t . To get a sense of what V ?
t and, thereby, the magnitude of the

approximation error may be, it is necessary to include an upper bound on V ?
t as well.

The latter is provided by duality theory: consider a fictitious market which is comprised
of the original risky stock with equilibrium price P and dynamics

dPt = σt(κtdt+ dB̂l
t)

16



where κt ≡ µt
σt

denotes its market price of risk. Furthermore, I introduce a market
completion in the form of a fictitious asset with price S and dynamics

dSt = dN l
t − gtdt.

An agent facing such a market builds a portfolio strategy (θ, ψ) where θ and ψ denote
the fractions invested in P and S, respectively. Her wealth therefore evolves according
to

dWt = θt−dPt + ψt−dSt = θt−σt(κtdt+ dB̂l
t) + ψt−(dN l

t − gtdt). (57)

The dual state variable H ∈ K to (57), or equivalently its Lagrange multiplier, is
assumed to satisfy

dHt = βtHt−dB̂l
t + δtHt−dM l

t (58)

where M l
t = N l

t −
∫ t

0 ηsds is a P̂l−martingale and K is assumed to be as follows.

Assumption 1. The space K is such that (β, δ) ∈ R× (−1,+∞) are square integrable
and predictable processes satisfying the conditions

∫ t

0
β2
sds <∞,

∫ t

0
δsηsds <∞ ∀t ∈ [0, T ) and such that Ht > 0, E[Ht] = 1,

HtWt a local martingale ∀t ∈ [0, T ) and E[HT (log(HT )− A)] <∞.

The dual state variable in (58) is assumed to take an exponential martingale form
to enforce its positivity. Furthermore, an application of Ito’s lemma yields

dHtWt = Ht−θt−σt(κt + βt)dt+Ht−(θtσt +Wt−βt)dB̂l
t

+ (ψt−(1 + δt) + δtWt−)Ht−dN l
t − (ψt−gt +Wt−δtηt)Ht−dt.

Since, from Assumption 1, (HtWt)t≥0 is restricted to be a local martingale, it must be
that βt = −κt and (N l

t)t≥0 should be appropriately compensated, i.e.

ψtgt +Wtδtηt = ηt(ψt(1 + δt) + δtWt)

and thus δt = gt
ηt
− 1. Therefore, any candidate dual state variable H for the above

fictitious market takes the following form

HT = e−
1
2

∫ T
0 κ2

sds−
∫ T

0 κsdB̂lte
∫ T

0 (ηs−gs)ds ∏

0≤s≤t

(
1 +

(
gs
ηs
− 1

)
∆N l

s

)

= E
(
−κB̂l +

(
g

η
− 1

)
M l

)

T

17



where E(·) denotes the Doléans-Dade exponential. The remaining conditions in As-
sumption 1 are imposed so that H defines a proper change of measure and such that
the dual problem is well-defined. The optimization problem faced by an agent in the
fictitious market is then given by

V
(g)
t ≡ sup

(θ,ψ)
E
[
−e−γW

θ,ψ
T− (g)+A

]
(59)

s.t. dW θ,ψ
t (g) = θt−dPt + ψt−dS

(g)
t

s.t. ψ?t (g) = 0 ∀t ∈ [0, T ).

That is, at the optimum, g? is such that an agent finds it optimal not to invest in the
fictitious asset. The portfolio strategies associated with the fictitious problem in (59)
may be obtained as follows: by the martingale representation theorem, the discounted
wealth may be written as

HtW
θ,ψ
t = W0 +

∫ t

0
ϕsdB̂l

s +
∫ t

0
φsdM l

s

= W0 +
∫ t

0
Hs(θsσs −W θ,ψ

s κs)dB̂l
s +

∫ t

0
Hs

(
ψs
gs
ηs

+W θ,ψ
s

(
gs
ηs
− 1

))
dM l

s

where (ϕ, φ) are predictable processes. Accordingly, for any arbitrary dual candidate
H(g), the portfolio strategy is

θ
(g)
t = (σt)−1(ϕ(g)

t

(
H

(g)
t

)−1
+κtW (g)

t ) and ψ(g)
t =

(
gt
ηt

)−1 (
φ

(g)
t

(
H

(g)
t

)−1
+
(

1− gt
ηt

)
W

(g)
t

)
.

(60)
Also, for any arbitrary candidate H(g), I can write the optimization problem in a static
form à la Cox-Huang as

sup
W

(g)
T

E0

[
−e−γW

(g)
T−+A

]
s.t. E0

[
H

(g)
T W

(g)
T

]
≤ W0. (61)

Solving the associated Lagrangian, the value function V (g) for any H(g) may be written
as

V
(g)

0 = −e−γW0−E0[H(g)
T− (log(H(g)

T− )−A)]
. (62)

Since W (g)
t ≥ W ?

t , (62) constitutes an upper bound to V ?
t , i.e. V ?

t ≤ V
(g)
t ∀t ∈ [0, T ),

and is expected to be strictly equal to it at the optimum V ?
t = infH V (g)

t . Hence, taking
into account (56), V ?

t is bounded by

Ṽt ∀(θ̃t)t≥0 given ≤ V ?
t ≤ V

(g)
t ∀g > 0 given
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and, thus, the approximation error is bounded by

0 ≤
∣∣∣V ?
t − Ṽt

∣∣∣ ≤
∣∣∣V (g)
t − Ṽt

∣∣∣

for given prices. The upper bound in (62) requires the computation of
E0[H(g)

T (log(H(g)
T ) − A)]: since H ∈ K, H represents a change of measure and I can

accordingly define the following Radon-Nikodym derivative

dP̃l

dP̂l

∣∣∣∣∣
F lt

= Ht. (63)

By Girsanov’s theorem, this change of measure implies that B̃l
t = B̂l

t +
∫ t

0 κsds is a
P̃l−Brownian motion and

M̃ l
t = M l

t −
∫ t

0
(gs − ηs)ds

is a P̃l−martingale and (Ñ l
t)t≥0 is a P̃l−Poisson process with intensity gt. Hence,

E0[H(g)
T (log(H(g)

T )− A)] = Ẽ0[log(H(g)
T )]− Ẽ0[A].

Moreover, applying the change of measure in (63) and Ito’s lemma shows that

d log(H(g)
t ) = 1

2κ
2
tdt− κtdB̃l

t − ηt
(
gt
ηt
− 1

)
dt+ log

(
gt
ηt

)
dÑ l

t

such that

Ẽ0[log(H(g)
T )] = 1

2Ẽ0

[∫ T

0
κ2
sdt
]

+ Ẽ0

[∫ T

0

(
log

(
gt
ηt

)
gt − gt + ηt

)
dt
]
.

To actually compute an upper bound, I further need to pick a particular g: one such
choice includes g = η as a natural candidate for reasons that will become clear shortly.
With this candidate at hand, the dual state variable H(η)

t = E(−κB̂l)t does not jump
and the upper bound reduces to

V
(η)

0 = −e−γW0−Ẽ0[ 1
2

∫ T
0 κ2

sds−A] ≡ −e−γW0− 1
2f(Ψl,n,0).

Recalling that the market price of risk is given by κt = AQ,tΨlt
BQ,t

and that the change of
measure in (63) implies that (Ψl)t≥0 still evolves as an OU process under P̃l

dΨl
t =

(
AΨ,t −BΨ,t

AQ,t
BQ,t

)
Ψl
t−dt+BΨ,tdB̃l

t + CΨ,tdN l
t
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where the particular choice of g = η implies that (N l
t)t≥0 is the same Poisson process

under both measures, I can write the following PDE for the function f

0 =
(
AQ,tΨl

t

BQ,t

)2

+ ft + (fΨ)>
(
AΨ,t −BΨ,t

AQ,t
BQ,t

)
Ψl
t + 1

2tr
(
JΨΨBΨ,tB

>
Ψ,t

)

+ Eν
[
f(Ψl

t− + CΨ,t, n+m, t)− f(Ψl
t− , n, t)

]

with boudary condition f(Ψl, n, T ) = A. Given that (Ψl)t≥0 follows a Gaussian process
under P̃l and that f is quadratic, one may conjecture that f(Ψl, n, t) ≡ (Ψl)>Rt(n)Ψl

and substitution of this conjecture into the above PDE after separation of variables
yields (41) and inspection of A, implies that Rt(n) = Mt(n), or

V
(η)
t = −e−γWt− 1

2 (Ψlt)>Mt(n)Ψlt

which is nothing but the conjecture in (39). One may then obtain the unconditional
upper bound at time 0, by integrating out the vector Ψl

0. To that purpose, one should
notice that the latter is distributed as Ψl

0 ∼ N (0,Σ0) with

Σ0 =




σ2
Θ

2aΘ
−
(
λ1,0
λ2,0

)2 σ4
Π

σ2
Π+σ2

S

λ1,0
λ2,0

σ4
Π

σ2
Π+σ2

S
λ1,0
λ2,0

σ4
Π

σ2
Π+σ2

S

σ2
Πσ

2
S

σ2
Π+σ2

S


 .

Therefore,

EΨl0
[
V

(η)
0

]
= −e−γW0− 1

2M
l,(1,1)
0 (1)

∫

R2
e
− 1

2

(
Ψ(?,l)

0

)>
M?,l

0 (1)Ψ(?,l)
0 dΦ

(
Ψ(?,l)

0

)

= −e−γW0− 1
2M

l,(1,1)
0 (1)

∣∣∣I + Σ0M
?,l
0 (1)

∣∣∣
− 1

2

where the second equality follows from completing the square in the bivariate normal
distribution. Given this explicit form for the upper bound, a probabilistic interpretation
to the linearization is obtained by inspection of the portfolio strategy implied by g = η:
the static problem in (61) induces the first-order condition U ′(WT ) = λt

H
(η)
T

H
(η)
t

where λt
denotes the Lagrange multiplier of the static constraint at time t. Furthermore, the
envelope theorem implies that ∂V

(η)
t

∂Wt
= λt. Thus, H

(η)
T

H
(η)
t

= U ′(WT )
(
∂V

(η)
t

∂Wt

)−1
and, as a

result, H
(η)
s

H
(η)
t

= ∂V
(η)
s

∂Ws
/
∂V

(η)
t

∂Wt
∀s ≥ t, which finally implies that d log(H(η)

t ) = d log
(
∂V

(η)
t

∂Wt

)
.

Matching the diffusion terms yields

θ
(η)
t = −(σt)−1

(
∂2Vt
∂W 2

t

)−1

 ∂Vt
∂Wt

κt +
(

∂2Vt
∂Wt∂Ψl

t

)>
BΨ,t


 ,
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which, after substitution of the explicit upper bound V (η)
t , needless to say, yields the

portfolio policy in (13). Further matching the jump terms yields

0 = log
(
V

(η)
t (Wt− + ψt,Ψl

t− + CΨ,t)
)
− log

(
V

(η)
t (Wt− ,Ψl

t−)
)
.

Substituting the explicit form and using the portfolio policy in (60) shows that

ψ
(η)
t ≡ φ

(η)
t

(
H

(η)
t

)−1
= − 1

2γ

((
Ψl
t− + CΨ,t

)>
Mt(n+m)

(
Ψl
t− + CΨ,t

)
−
(
Ψl
t−

)>
Mt(n)Ψl

t−

)
.

Hence, the approximate policy (θ̃t)t≥0 boils down to pick the strategy (θ(η)
t )t≥0 and

make it an optimal one by setting ψ(η)
t ≈ 0 since, as per the fictitious problem in (59),

an optimal strategy must be so that ψt = 0. Alternatively, the Taylor approximation of
the jump size tantamount to set the loading φt on the Poissonian risk in the martingale
representation of the discounted wealth to zero.

I finally compute the value function Ṽt associated with the approximate strategy
(θ(η)
t )t≥0 and ψt = 0. Since the approximate wealth satisfies

W̃T = W0 +
∫ T

0
θ(η)
s dPs = W

(η)
T −

∫ T

0
ψsdS(η)

s ,

it remains to compute

Ṽ0 = E0

[
−e−γ

(
W0+

∫ T
0 θ

(η)
s σs(κsds+dB̂ls)

)
+A
]
.

I introduce the following change of measure

dP̄l

dP̂l

∣∣∣∣∣
F lt

= e
−γ
∫ T

0 θ
(η)
s σsdB̂ls− 1

2γ
2
∫ T

0

(
θ
(η)
s σs

)2
ds (64)

such that

Ṽ0 = −e−γW0Ē0

[
e
−γ
∫ T

0 θ
(η)
s σs

(
κs− 1

2γθ
(η)
s σs

)
ds+A

]
≡ −e−γW0h(Ψl, n, 0).

Recalling that θ(η)
t = AQ,t−BQ,tB>Ψ,tM l

t(n)
γBQ,t

Ψl
t, I can write, after simplifications,

h(Ψl, n, 0) = Ē0


e
− 1

2

∫ T
0 (Ψlt)>

A>
Q,t

AQ,t−B2
Q,t

Ml
t(n)BΨ,tB

>
Ψ,tM

l
t(n)

B2
Q,t

Ψltdt+A

 . (65)

The computation of the function h(·) is generally complicated precisely because it
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involves a quadratic jump. Therefore, for the purpose of computing the lower bound,
I resort to Monte Carlo Simulations. I simulate the dynamics of Ψl under P̄l using a
standard Euler scheme. Given the change of measure in (64), B̄l

t = B̂l + γ
∫ t

0 θ
(λ)
s σsds is

a P̄l−Brownian motion by Girsanov’s theorem and Ψl satisfies

dΨl
t =

(
AΨ,t −BΨ,t

AQ,t −BQ,tB
>
Ψ,tM

l
t(n)

BQ,t

)
Ψl
t−dt+BΨ,tdB̄l

t + CΨ,tdN l
t .

I further draw m out of the cross-sectional distribution of types by drawing a uniform
random variable according to U[0,1] and cumulate µt. I then compute the integral in
(65) by means of the trapezoid rule.

E Proof of Proposition 5
In this appendix, I derive the equilibrium equations for the price coefficients λ1 and λ2.
To that purpose, I first observe that, from (13), individual portfolios take the form

θl(Ψl
t, n

l
t, t) = dlΘ,t(nlt)Θ̂l

t + dl∆,t(nlt)∆l
t. (66)

Aggregating the latter over the population of agents first calls for the average beliefs
∫
j∈I Π̂j

tdι(j). I recall that, given that ξt ∈ F ct ⊆ F lt , I can write

ξt = λ1,tΠ + λ2,tΘt ≡ λ1,tΠ̂c
t + λ2,tΘ̂c

t ≡ λ1,tΠ̂l
t + λ2,tΘ̂l

t.

It then follows that Θ̂c
t = ξt−λ1,tΠ̂ct

λ2,t
and Θ̂l

t = ξt−λ1,tΠ̂lt
λ2,t

: using these expressions along with
equation (9) for the filter Π̂c

t of Proposition 3, an application of Ito’s lemma delivers

dΠ̂c
t

oct
= ktdB̂c

t + k2
t Π̂c

tdt = ktdB̂l
t + k2

t Π̂l
t−dt (67)

where the second equality follows from the change of measure in (33). Similarly, using
(10), one may write

dΠ̂l
t

olt
= ktdB̂l

t + k2
t Π̂l

t−dt+ S̄lm,t
mt

σ2
S

dN l
t (68)

where the jump size directly follows from (26). Bunching (67) and (68) together, I can
write

d

 Π̂l

t

olt
(
nlt
) − Π̂c

t

oct


 =

S̄lm,t
σ2
S

mtdN l
t .

This equation may then be solved using the initial conditions Π̂c
0 = 0 and oc0 = σ2

Π and
applying the updating rule in (26) to Π̂l

0. Doing so, I obtain the following lemma.
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Lemma 1. A manager l’s expectations Π̂l satisfies

Π̂l
t =

olt
(
nlt
)

oct
Π̂c
t + Π̂l

0
olt
(
nlt
)

ol0(1) +
olt
(
nlt
)

σ2
S

∫ t

0
S̄lm,tmsdN l

s =
olt
(
nlt
)

oct
Π̂c
t +

olt
(
nlt
)

σ2
S

S̄ln,tn
l
t.(69)

taking into account that dnlt = (mt1{mt+nlt−∈A∪B} +∞1{mt+nlt− /∈A∪B})dN
l
t , n

l
0 = 1 when

integrating. Moreover, recalling that olt = octσ
2
S

σ2
S+nltoct

and that the law of large numbers
implies

∫
jt∈I2 S̄

j
n,tdι(jt) = ωtΠ for all n, I finally write the average beliefs as

∫

jt∈I
Π̂j
tdι(jt) =

∫

jt∈I2



ojt
(
nlt
)

oct
Π̂c
t +

ojt
(
nlt
)

σ2
S

S̄jn,tn
l
t


 dι(jt) + (1− ωt)Π (70)

=
∑

n∈A∪B
µt(n)

(
σ2
S

σ2
S + noct

Π̂c
t + octn

σ2
S + noct

Π
)

+ (1− ωt)Π

≡ αtΠ̂c
t + (1− αt)Π

where, similar to He and Wang (1995), αt ≡
∑
n∈A∪B µt(n) σ2

S

σ2
S+noct

and where

µt(n) =



µAt (n) if n ∈ A
µBt (n) if n ∈ B

.

Equation (70) allows to characterize the impact of percolation on higher-order
beliefs (HOB). Since beliefs of higher order collapse to a linear combination of the
first-order expectations and denoting agent l’s expectation of

∫
jt∈I Π̂j

tdι(jt) by Π̂(l,2)
t ≡

E[
∫
jt∈I Π̂j

tdι(jt)|F lt ], one may readily observe that Π̂(l,2)
t = αtΠ̂c

t + (1− αt)Π̂l
t in such a

way that the second-order expectation writes

Π̂(2)
t ≡

∫

jt∈I
Π̂(j,2)
t dι(jt) = (1− (1− αt)2)Π̂c

t + (1− αt)2Π.

Iterating, the k−th order expectation Π̂(k)
t writes

Π̂(k)
t =

∫

jt∈I
Π̂(j,k)
t dι(jt) = (1− (1− αt)k)Π̂c

t + (1− αt)kΠ.

Observing that the weight αt is increasing in the cross-sectional average number of
signals, and that the latter is roughly increasing like eηt, the following pattern occurs.
Because information percolation produces some inertia in updating initially, HOB play
a stronger role at the beginning of the economy as compared with a setup in which
signals continuously accrue. Yet, after some time, percolation takes off and signals
accrue at a rate beyond that of a continuous flow of signals. This ultimately causes the
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effect of HOB to decrease after some time has elapsed.
This also allows to show how the conjecture for linear prices in Definition 1 obtains.

Following Hong and Wang (2000), the price may be written as

Pt =
∫

jt∈I
E[Ft|F jt ]dι(jt) + λ2,tΘt

with Ft = E
[
e−r(T−t)(Π + δ)

∣∣∣Ft
]

= Π + δ denoting the expected value of the terminal
dividend under full information Ft discounted at the riskfree rate and where the second
equality follows from r = 0. The term λ2,tΘt represents a discount for inventory risk.
Notice that Θ̂c

t does not appear in the price as ξt implies that

λ1,t(Π− Π̂c
t) = λ2,t(Θt − Θ̂c

t)

since E[ξt|F ct ] = λ1,tΠ̂c
t + λ2,tΘ̂c

t and, given ξt ⊆ F ct , E[ξt|F ct ] = ξt. Putting everything
together and taking into account that all agents have null prior regarding δ, I can write

Pt = (1− αt)Π + αtΠ̂c
t + λ2,tΘt

and the conjecture in (6) follows. This expression should be considered to hold on [0, T )
so as to allow a discontinuity in the stock price at the horizon when it attains the final
payoff Π + δ.

Using (70), I can further compute the average beliefs regarding the supply

∫

jt∈I
Θ̂j
tdι(jt) = λ1,t

λ2,t
Π + Θt −

λ1,t

λ2,t

∫

jt∈I
Π̂j
tdι(jt) = Θt + αt

λ1,t

λ2,t
(Π− Π̂c

t).

Applying the law of large numbers, I then obtain the aggregate demand

∫

jt∈I
θjtdι(jt) =

∑

n∈A∪B
µt(n)




A
(2)
Q −BQD

(2)
l

(n)
γB2

Q

(
Θt + λ1,t

λ2,t

σ2
S

σ2
S+octn

(Π− Π̂c
t)
)

+A
(3)
Q −BQD

(3)
l

(n)
γB2

Q

octn

σ2
S+octn

(Π− Π̂c
t))


 (71)

+ (1− ωt)

A

(2)
Q −BQD

(2)
i

γB2
Q

Θt +
A

(3)
Q −BQD

(3)
i

γB2
Q

(Π− Π̂c
t)



where Dj = Bj
ΨM

j(t) for j = l, i. Clearing the markets yields

A
?,(2)
Q − λ1,t

λ2,t
A
?,(1)
Q =


 −

λ1,t
λ2,t

γB2
Q +∑

n∈A∪B µt(n)BQ

(
D
?,(2)
l (n)− λ1,t

λ2,t
D
?,(1)
l (n)

)
octn

σ2
S+octn

+(1− ωt)BQ

(
D
?,(2)
i − λ1,t

λ2,t
D
?,(1)
i

)



× 1
∑
n∈A∪B µt(n) octn

σ2
S+octn

+ 1− ωt
(72)
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and,

∑

n∈A∪B
µt(n)

A
?,(1)
Q −BQD

?,(1)
l (n)

γB2
Q

+ (1− ωt)
A
?,(1)
Q −BQD

?,(1)
i

γB2
Q

= 1. (73)

These equilibrium equations are obtained from the market-clearing condition
∫
jt∈I θ

j
tdι(jt) = Θt and A?Q, A?Ψ and B?,j

Ψ in (46) and (72) follows from (73). Both
equations (72) and (73) determine the equilibrium behavior of λ1,t and λ2,t over [0, T ).
Yet, they lack boundary conditions: at the very date before the economy ends, agents
hold myopic portfolios of the kind in (50). Aggregating these, I obtain

∫

jT∈I
θjT−dι(jT ) =

∫

jT∈I2

Π̂j
T− − PT−

γ(ojT− + σ2
δ )
dι(jT ) + (1− ωT )Π− PT−

γσ2
δ

=
∑

n∈A∪B
µT (n)

σ2
S

σ2
S+ocT−n

Π̂c
T− +

ocT−n

σ2
S+ocT−n

Π− PT−
γ(olT−(n) + σ2

δ )
+ (1− ωT )Π− PT−

γσ2
δ

= ΘT .

Using that
PT− = λ1,T−Π + (1− λ1,T−)Π̂c

T− + λ2,T−ΘT

and simplifying yields

λ1,T− =
( ∑

n∈A∪B
µT (n)

(ocT−n+ σ2
S)σ2

δ

σ2
So

c
T− + σ2

δ (ocT−n+ σ2
S) + 1− ωT

)−1

(74)

×
( ∑

n∈A∪B
µT (n)

ocT−nσ
2
δ

σ2
So

c
T− + σ2

δ (ocT−n+ σ2
S) + 1− ωT

)

and

λ2,T− = −γσ2
δ

( ∑

n∈A∪B
µT (n)

(ocT−n+ σ2
S)σ2

δ

σ2
So

c
T− + σ2

δ (ocT−n+ σ2
S) + 1− ωT

)−1

. (75)

This provides the two required boundary conditions associated with (72) and (73) and
takes care of the final jump in prices. Indeed, knowing λ1,T− and λ2,T− and, thus, PT− ,
the jump size is then simply obtained as ∆PT = Π + δ − PT− . Substituting (74) and
(75) into (53) and (54) makes all the boundary conditions depending on ocT− which
represents the only unknown terminal condition, hence the shooting method suggested
in the main text in Subsection 3.2.

When solving the equilibrium, one needs to jointly solve the HJB equations in
(47) and (48) in Proposition 4 along with the price equations (72) and (73) and the
equation (12) for the common variance in Proposition 3. The resulting system of
differential equations is not explicit, for the derivatives λ′1,t and λ′2,t appear through the
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coefficient kt. The solving procedure is alleviated if one is able to transform the system
of equations to be solved into an explicit one. As it turns out, a trick which works as a
continuous-time dynamic equivalent of Admati (1985)’s lemma is available: considering
the second equilibrium equation in (73) and observing that the derivatives of λ1,t and
λ2,t are contained in AQ,t, one may spell out the left-hand side of (72) and write

A
?,(2)
Q,t −

λ1,t

λ2,t
A
?,(1)
Q,t = λ′1,t + (1− λ1,t)k2

t o
c
t −

λ1,t

λ2,t
(λ′2,t − aΘλ2,t) (76)

= λ2,tσΘkt + (1− λ1,t)k2
t o
c
t .

Substituting this expression in place of the left-hand side of (72) produces a quadratic
equation in kt. The latter has two real roots, one of which is of the form kt = σΘλ2,t

oct (λ1,t−1) .
This root may be verified, by substitution into the equilibrium equations, to correspond
to the fully-revealing equilibrium. That is, one in which the diffusion of the price Pt is
constantly null over [0, T ) and the price thus reveals Π. As this equilibrium is trivial,
I shall discard it and for obvious reasons only consider the second root. Substituting
the second root allows to make the system of equilibrium equations explicit and to
considerably facilitate the numerical implementation of the equilibrium. �

F Serial Correlation, Trading Strategies, and Mea-
sures of Performance

In this appendix, I compute the different quantities plotted in the results sections.

F.1 Serial Correlation

Integrating the supply in (1) along with common expectations in (9), I can write

Θt = Θ0e
−aΘt + σΘ

∫ t

0
eaΘ(s−t)dBΘ

s , (77)

Π̂c
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(78)
where I used that Π̂c

0 = 0. Accordingly, Pt may be written as
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.
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As a result, the price difference ∆Pt := Pt+∆ − Pt over [t, t+ ∆] is given by

∆Pt =
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+ (λ2,t+∆e
−aΘ∆ − λ2,t)e−aΘtΘ0.

Similarly, I can compute the price difference ∆Pt−∆ over [t−∆, t] and get

var(∆Pt−∆) = (λ2,te
−aΘ∆ − λ2,t−∆)2e−2aΘ(t−∆) σ

2
Θ
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where the variance of ∆Pt−∆ and the covariance between ∆Pt−∆ and ∆Pt follow from
Ito isometry. The econometrician then computes the serial correlation of stock returns
by projecting ∆Pt onto ∆Pt−∆. Applying the projection theorem, it follows that

E[∆Pt|∆Pt−∆] = βt(∆)∆Pt−∆

where, as in Wang (1993), βt(∆) = cov(∆Pt,∆Pt−∆)
var(∆Pt−∆) . Hence, as in Banerjee, Kaniel, and

Kremer (2009), returns exhibit momentum whenever βt(∆) > 0 and reversal whenever
βt(∆) < 0. This is the measure often used in the empirical literature as in Jegadeesh
and Titman (1993), for instance.

F.2 Trading Strategies

From (66) and using the relation in (69) along with Θ̂l
t = Θt+ λ1,t

λ2,t
(Π− Π̂l

t), the portfolio
strategy of an agent l holding n signals may be re-expressed as

θlt(n) = dlΘ,t(n)
(

Θt + λ1,t

λ2,t
(Π− αlt(n)Π̂c

t − (1− αlt(n))S̄ln,t)
)

(79)

+ dl∆,t(n)(1− αlt(n))(S̄ln,t − Π̂c
t)

= dlΘ,t(n)Θt + ϕlt(n)(Π− Π̂c
t) + (ϕlt(n)− λ1,t

λ2,t
dlΘ,t(n)) 1

n

n∑
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εk

where
ϕlt(n) ≡ αlt(n)λ1,t

λ2,t
dlΘ,t(n) + (1− αlt(n))dl∆,t(n)

and where αlt(n) ≡ σ2
S

σ2
S+octn

.
As in Brennan and Cao (1997) or He and Wang (1995), I further isolate the part of θl

that is solely associated with private information. Since, from (71), agent l contributes a
fraction µt(n)dlΘ,t(n) to the per capita supply shock, I denote by θ̃l := θlt(n)− dlΘ,t(n)Θt,
the part of agent l’s portfolio that is absent of market-making concerns. From (78), it
then follows that

θ̃lt(n) = ϕlt(n)
(

1−
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n
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εk.

Further assuming, similar to Watanabe (2008), that agent l remains of type n over ∆
and dropping the index n for convenience, the informational portfolio variation over ∆
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is given by

∆θ̃lt =
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The econometrician, who can only make sense of ∆θ̃l with respect to what she observes,
considers E[∆θ̃lt|∆Pt]. Applying the projection theorem, one writes

E[∆θ̃lt|∆Pt] = ρt(∆)∆Pt (80)

with ρt(∆) = cov(∆θ̃lt,∆Pt)
var(∆Pt) and where, by Ito isometry and {εk}nk=1 ⊥ Π ⊥ (BΘ

t )t≥0,
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Hence, as in Brennan and Cao (1997), agent l follows the trend whenever ρt(∆) > 0 and
pursues a contrarian strategy whenever ρt(∆) < 0. This is the measure of momentum
strategies used in Grinblatt, Titman, and Wermers (1995), for instance. Notice that
the measure of trading behavior in (80) is not equivalent to that of Wang (1993), for
instantaneous covariances ignore the contribution of private discussions. To see this,
observe that prices have continuous sample paths

dPt = E[dPt|F lt ] + (λ2,tσΘ + (1− λ1,t)octkt)dB̂l
t.

Moreover, defining f lt(n) = AQ,t−BQ,t(BlΨ,t(n))>M l
t(n)

γB2
Q,t

along with the jump size of this
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function
∆f lt(n) = −(Bl

Ψ,t(n+mt))>M l
t(n+mt)− (Bl

Ψ,t(n))>M l
t(n)

γBQ,t

,

an application of Ito-Tanaka’s formula yields

dθlt = E[dθlt|F lt ] + f lt(nlt−)Bl
Ψ,t(nlt−)dB̂l

t + (∆f lt(nlt−)Ψl
t− + f lt(nlt− +mt)C l

Ψ,t)dN l
t .

Hence, I get

E[dθltdPt|F lt ] = (λ2,tσΘ + (1− λ1,t)octkt)
AQ,t −BQ,t(Bl

Ψ,t(nlt−))>M l
t(nlt−)

γB2
Q,t

Bl
Ψ,t(nlt−)dt

where the contribution of private meetings gets flushed out.

F.3 Measures of Performance

In the sequel, I derive a fund’s NAV and the structure of the regression in (17). In so
doing, I consider the performance solely induced by the informational portfolio θ̃l, for
one should not give credit to a manager for making money on noise traders.

i) Net Asset Value. One may want to make the following preliminary observation:
were agents risk-neutral, their expected trading gains would be null, for prices P would
be martingales and, thus, E[

∫ T
0 θltdPt] = 0 as in Hirshleifer, Subrahmanyam, and Titman

(1994). Due to the serial correlation in returns, this result is expected to be changed:
using (79), expected gains up to time τ may be expressed as
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]
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where I set W l
0 = 0: since agents have CARA utility, this assumption is immaterial.

Since {εk}nk=1 ⊥ (Ψt)t≥0 and that εk has zero mean for all k and that the third term
inside the expectation is an Ito integral, it follows, under regularity conditions, that
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Moreover, using (51), one may write
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k + (1− αlT− − λ1,T−)(Π− Π̂c
T−)
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and it follows, applying Fubini’s theorem, that
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Substituting (77) and (78), and using Ito isometry along with Π ⊥ Θ0 ⊥ (BΘ
t )t≥0, I get
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ii) Performance Regression. Denoting by θ̂c = A
(1)
Q Θ̂c

γB2
Q

the myopic market port-
folio and using that ξ ∈ F c ⊂ F l, I can write a manager l’s myopic portfolio θ̂l

as

θ̂lt− = θ̂ct +
A

(2)
Q,t − λ1,t

λ2,t
A

(1)
Q,t

γB2
Q,t

(Π̂l
t− − Π̂c

t).

Using (36) and (76), it follows that A(2)
Q,t − λ1,t

λ2,t
A

(1)
Q,t = BQ,tkt and I get

θ̂lt− = θ̂ct + kt
γBQ,t

(Π̂l
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(1− αlt)(S̄lt − Π̂c
t)

where the last equality follows from (69). Further observing that Π− Π̂c
t = 1

λ1,t
(Pt −

Π̂c
t − λ2,tΘt), one obtains (16).
The difference between the returns generated by managers i and market returns

follows from observing that
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.

31



G Description of the Calibration
This appendix provides further comments on the calibration of Subsection 3.3.2, which
is used in the results sections.

I set aΘ above 0.05, as estimated by Campbell and Kyle (1993), for this parameter
value would make the supply counterfactually persistent. The chosen calibration matches
that used in Huang and Wang (1997) and Hong and Wang (2000). The volatility of
the supply σΘ is consistent with that estimated by Campbell and Kyle (1993) who
show that this parameter would be related to risk aversion in equilibrium. Inspection
of Section 3 in Campbell and Kyle (1993) shows that Θ is equivalent to X in their
setting. This further implies that σΘ is of the form 1−Φ2ησMσN

ψrσ2
M

diff(dNt). After correcting
a mistake in the first and third equations of B.12 and B.7, respectively, and substituting
the estimates of Table 8 indicates that my calibration is obtained for a risk aversion of
8. This parameter lies within the range used by Wang (1993) and is below that used by
Hong and Wang (2000). I choose to set the risk aversion parameter well below 8 to
be consistent with Koijen (2012) who structurally estimates fund managers’ relative
risk aversion and reports a risk aversion of 5.51 and stock holdings of $ 93 millions on
average.

The volatility of ideas σS is chosen to be higher than σΠ and both are set to the
calibration of He and Wang (1995). A similar estimate for σΠ is obtained in Banerjee
(2010). The volatility of ideas is chosen so as to reflect that working ideas are diffuse but
not too imprecise. Notice that respectively increasing γ, σΘ, σS and σΠ or decreasing
aΘ would only make my results stronger.

To fix ideas regarding the chosen network thresholds, suppose one shuts down the
price-learning channel so that oct ≡ σ2

Π. Then, at the chosen value for N , the marginal
effect 1

σ2
Π

∂
∂n
olt(n)

∣∣∣
n=N

= − σ2
Πσ

2
S

(σ2
S+σ2

Πn)2 of an additional idea is less than -2%. In other
words, the contribution of an additional idea becomes negligible: social interactions
have mostly exhausted their informational role. Since learning from prices will make
this contribution even weaker, N is a natural level for perfect knowledge to step in.

To further make sense of the chosen K, suppose an enforcement technology exists
so that agents optimally pre-commit to switch after getting K ideas or more at a cost
β. Assuming away time-inconsistency issues, they would compare the value V A

T =
∑
n∈A µ

A
T (n)J l(n, T ) of Network A with that eγβV B

T = eγβ
∑
n∈B∪{∞} µ

B
T (n)J l(n, T ) of

Network B at time T . The value K would then be optimal if β = 1
γ

log
(
E[V AT |F l0]
E[V BT |F l0]

)
.

In turn, an interaction intensity of one meeting twice per year (η = 2), every quarter
(η = 4) and every two months (η = 6) imply a cost β of 0.34, 0.44 and 0.438, respectively.
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