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Empirical Fact
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@ MAIN FacT: This relation is concentrated in bad times
Cen, Wei & Yang (2014), Garcia (2013)
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WE BUILD A MODEL CONSISTENT WITH THESE FACTS
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The Model

The stock is a claim to the aggregate output:
4 t+osdW;

Unobservable

Estimate: /A = E/(f;) Estimate: £,5 = EB (f;)

Agent A Agent B
f is mean-reverting: f is a 2-state Markov Chain:
df; = w(f — f)dt +ord W/ fo={f"f'}
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Estimation

Parameter Symbol | Value
Mean-Reversion Speed A K 0.1911
Long-Term Mean £ f 0.0630
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Estimation

Parameter Symbol | Value

Mean-Reversion Speed K 0.1911
Long-Term Mean £ f 0.0630
High State B fh 0.0794
Low State 5 f! —0.0711
Intensity High to Low A 0.3022
Intensity Low to High P 0.3951
Agent A Agent B

f is mean-reverting:
d7A = k(7 — FAYdE + LdWA
as

f is a 2-state Markov Chain:
df? = (A + ) (fo — f)dt

(R8I~ FB)aWP
[

[



Term Structure of Disagreement
Good (G), Normal (N), Bad (B) Times
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Serial Correlation

Serial Correlation p(h)
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