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1. Introduction

The vast majority of mutual fund managers are unable to generate abnormal returns,

and a significant fraction underperforms passive benchmarks.1 The handful of managers who

outperform seldom maintain their performance. These stylized facts may suggest that man-

agers do not possess superior information (e.g., Carhart (1997)). Yet, there exists evidence

suggesting that managers do have informational advantages, which originate from superior

ability to gather and analyze the data (Chevalier and Ellison, 1999), geographical proxim-

ity to investments (Coval and Moskowitz, 2001), education networks (Cohen, Frazzini, and

Malloy, 2008) or knowledge spillovers in large cities (Christoffersen and Sarkissian, 2009).

I propose a mechanism that resolves this apparent contradiction. The central feature is

that fund managers obtain investment ideas through idea sharing. A literal interpretation of

idea sharing is that managers interact socially with each other (e.g., Hong, Kubik, and Stein

(2005)).2 A broader interpretation is that some managers purchase the same research from

sell-side firms, heterogeneously sharing private information. Although idea sharing creates a

rich heterogeneity of informational advantages across managers, it simultaneously leads the

significance and persistence of performance to concentrate in underperforming funds.

I base my argument on a rational-expectations equilibrium model (e.g., He and Wang

(1995)) in which a population of fund managers possess heterogeneous numbers of ideas.

Managers collectively clear the market, but speculate individually on their informational

advantage. Speculation on individual ideas is a zero-sum game that managers play against

each other. In this zero-sum game, skill is defined as the distance between a manager’s

number of ideas and the cross-sectional average number of ideas. Because the “average

1Jensen (1968), Malkiel (1995), Gruber (1996) and Carhart (1997) find that most mutual funds fail to
outperform, and often underperform, passive benchmarks, even before transactions costs. See Jones and
Wermers (2011) for a literature review.

2Interpersonal communication plays an important role in institutional investors’ decisions (Shiller and
Pound, 1989). Fund managers exploit information through word-of-mouth communication (Hong et al., 2005)
and share profitable ideas (Gray, Crawford, and Kern, 2012; Pool, Stoffman, and Yonker, 2015). For instance,
David Einhorn (a “star” manager) acknowledges that “sometimes an analyst generates the idea, sometimes
other fund managers, a conference, or an idea dinner”. (This quote is taken from an interview that is avail-
able at http://www.marketfolly.com/2012/03/david-einhorns-extensive-q-session-from.html.)
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manager” clears the market, a manager’s alpha is the return she generates relative to the

return of the average manager. In other words, managers who hold more ideas than the

average manager create positive alpha at the expense of managers who hold fewer ideas.

In this paper managers and the empiricist who evaluates their performance face opposite

inference problems. While managers attempt to infer fundamentals in real time knowing

their own skill, the empiricist attempts to infer managers’ skill ex-post controlling for funda-

mentals. Allowing the empiricist to control for all information that was value relevant over

the sample period rules out biases in alpha measurement. The empiricist knows when it was

historically optimal to go long or short and whether or not each manager traded appropri-

ately. However, what she does not know is whether an appropriate trade reflects skill or

luck. Trades contain an element of luck, the noise in managers’ ideas. The empiricist does

not observe skill and luck separately, but only observes a nonlinear combination of the two.

In this context alpha is an unbiased yet noisy measure of skill. To generate an additional

unit of value, an additional idea requires a manager to take larger positions. As a result,

skilled managers load more aggressively on skill but also on luck and thus generate a higher

but noisier alpha. In the model this tension between a manager’s skill and luck is captured

by the ratio of the two, which I call the skill-to-luck ratio. Importantly, this ratio is concave

in a manager’s number of ideas—an additional idea produces alpha with decreasing returns

to scale in terms of statistical significance.3 Because skilled managers generate a noisier

alpha, an additional idea improves their alpha t−statistic by less than the alpha it creates.

The way managers gather ideas entirely determines how alphas and their t−statistics

vary across managers and over time. The main argument of the paper is that idea sharing

distinctly explains the facts. I model idea sharing using the information percolation theory

(Duffie, Malamud, and Manso, 2009) through which managers share ideas in bilateral meet-

ings; an equivalent interpretation is that pairs of managers are selected randomly to observe

3Here, “scale” refers to the number of ideas, as opposed to the traditional notion of fund size (e.g., Chen,
Hong, Huang, and Kubik (2004)). In the model, decreasing returns to scale in fund management are absent,
because managers have CARA utility and trade competitively.
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the same private information (e.g., they buy the same research). This framework extends

Andrei and Cujean (2017) to continuous trading and a broader information structure.

Developing information in-house (e.g., Branikas, Hong, and Xu (2017)) is a natural al-

ternative to idea sharing. Sharing ideas and originating ideas have distinct implications

regarding how ideas flow over time and how they are distributed cross-sectionally. Suppose

ideas arise at a fixed arrival rate, both when shared or originated. Under this assumption,

the defining feature of idea sharing is that a manager’s knowledge increases with knowledge

possessed by other managers. Knowledge thus feeds upon itself, causing information to flow

exponentially and a strong left skew in the cross-sectional distribution of ideas. When man-

agers develop ideas on their own this feedback is absent; in the extreme, knowledge produced

in-house is fixed. Information thus flows linearly and numbers of ideas are distributed sym-

metrically across managers. The relevance of idea sharing is that it can explain stylized facts

about fund performance that idea origination cannot.

I first examine the conditions under which an empiricist identifies significant alpha. Idea

sharing raises the statistical significance of alpha by increasing price informativeness. How-

ever, it simultaneously causes skilled managers to take larger positions, making their alpha

noisier. Significant alphas thus exist under idea sharing, but concentrate in underperform-

ing funds. Consistent with stylized facts, most managers are unable to generate abnormal

returns, a significant fraction underperforms, whereas a handful of top performers spreads

in the far right tail (e.g., Barras, Scaillet, and Wermers (2010)). In contrast, when ideas are

originated, the empiricist fails to identify significant performance (negative or positive)—she

even fails to reject the null hypothesis of zero alpha for a perfect market timer.

Similarly, the separation of skill from luck concentrates in underperforming funds when

ideas are shared, whereas skill is virtually indistinguishable from luck when ideas are origi-

nated. In the model the performance of the average manager defines the null hypothesis of

pure luck. The left skew in the distribution of ideas when shared causes the concavity of the

skill-to-luck ratio to shift mass from the right to the left of the cross-sectional distribution
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of t−statistics, tilting it to the left relative to the distribution under the null. Hence, idea

sharing can explain why most underperforming funds appear to be truly unskilled, whereas

outperforming funds appear to be lucky (e.g., Fama and French (2010)). In contrast, because

the distribution of ideas is symmetric when originated, the cross-sectional distribution and

that under the null are indistinguishable.

To study performance persistence I segment the population of managers into groups that

differ by quality of ideas. Whether ideas are shared or originated has similar implications

for persistence (except asymptotically4); what matters is whether segmentation arises en-

dogenously through networks, which allows alpha and its t−statistic to move in opposite

directions. Because the skill-to-luck ratio is concave, a decline or an improvement in skill af-

fects unskilled managers’ performance comparatively more than it does for skilled managers.

Network formation further leads skill to deteriorate at an increasing rate and to improve at a

decaying rate, thus leading performance persistence to concentrate in underperforming funds

(e.g., Carhart (1997)). Instead, when the population is segmented exogenously into groups

of skilled and unskilled managers, alphas and their t−statistic converge across groups.

These results lead to new empirical implications. T−statistics have undesirable cross-

sectional properties due to the concavity of the skill-to-luck ratio. Controlling for managers’

trading activity may help reduce this effect (Pastor, Stambaugh, and Taylor, 2016). However,

t−statistics may retain the ability to rank managers consistently even when associated alphas

converge. The empiricist may also fail to reject the null hypothesis of zero alpha for a perfect

market timer. To make the null more difficult to reject, the empiricist should determine the

maximal level of statistical significance she expects to observe in sample.

The leading theory for the lack of performance persistence of mutual funds is based on

fund flows—abnormal performance attracts fund flows that compete away subsequent abnor-

mal returns (Berk and Green, 2004). I abstract from fund flows and provide an explanation

for the absence of performance even when fund flows are irrelevant (e.g., closed-end funds

4Perfect market timing keeps delivering significant alpha asymptotically only when ideas are shared.
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(Wu, Wermers, and Zechner, 2015)). Note, however, that incorporating fund flows leaves my

results qualitatively unchanged. Fees are another important institutional feature. Because

mutual funds fees are of the fulcrum type (Cuoco and Kaniel, 2011), they do not affect the

results in my framework. Other theories of fund flows and fees include Spiegel and Ma-

maysky (2001), Basak, Pavlova, and Shapiro (2007), Glode (2011), Vayanos and Woolley

(2011), Pastor and Stambaugh (2012) and Kaniel and Kondor (2013).

More broadly, like Admati and Ross (1985) and Dybvig and Ross (1985), I study per-

formance in a rational-expectations framework.5 However, I rule out measurement biases

in alpha and focus on statistical significance. This paper also adds to the literature study-

ing information percolation in centralized markets (e.g., Andrei and Cujean (2017)).6 The

novelty of this paper is to rationalize why alpha mostly detects underperformance.

In the remainder of the paper, all proofs are relegated to the Appendix. For convenience,

Table 1 provides a summary of the notation used throughout the paper.

2. A model of fund managers gathering ideas

I start by describing a process through which managers collect investment ideas in chunks

(Section 2.1). I then embed this process of idea gathering in an otherwise standard rational-

expectations model—a continuous-time version of He and Wang (1995) (Section 2.2).

2.1. Building a collection of investment ideas in chunks

I consider a continuous-time economy with a finite horizon T , at which some unobservable

dividend Π ∼ N (0, σ2
Π) will be paid. I refer to this liquidating dividend as the fundamental.

The economy is populated with a continuum of fund managers indexed by i ∈ [0, 1]. Over

5See Grinblatt and Titman (1989), Kothari and Warner (2001), Goetzmann, Ingersoll, Spiegel, and Welch
(2007) and Mamaysky, Spiegel, and Zhang (2008) for performance measures in alternative frameworks.

6Related works on social interactions use alternative information-sharing mechanisms. Some references
use graph theory (Ozsoylev and Walden (2011), Colla and Mele (2010), Acemoglu, Bimpikis, and Ozdaglar
(2010) or DeMarzo, Vayanos, and Zwiebel (2003)) and others use epidemiological models (Hong, Hong, and
Ungureanu (2010) and Burnside, Eichenbaum, and Rebelo (2010)).
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time each manager i obtains an increasing sequence of private signals about the fundamental:

Sij = Π + εij, j = 1, ..., nit (1)

where nit ∈ N∗ denotes the number of signals manager i has collected up to time t and

where εij ∼ N (0, σ2
S) represents the “idiosyncratic” noise in manager i’s j−th signal. By

idiosyncratic I mean that there is one such random variable per manager i and signal j, and

that these random variables are sufficiently independent for a version of the Strong Law of

Large Numbers to hold across managers and signals (e.g., Duffie and Sun (2007)).7

I view manager i’s set of signals in Eq. (1) as a collection of investment ideas. I now

describe the process through which managers build heterogeneous collections of ideas. A

manager starts with an initial, idiosyncratic number ni0 of ideas, which is drawn from a dis-

tribution π0 with support N∗. She then collects new ideas at arrival times of an idiosyncratic

Poisson process (N i
t )t≥0 with time-varying intensity ηt(n

i
t−). The intensity at which she gets

new ideas potentially depends on her current number nit− of ideas. For instance, a manager

who has gathered many ideas may be more efficient at collecting new ideas in the future.

Whenever a manager gathers new ideas—say at time t—she receives a chunk (Si
j+nit−

:

1 ≤ j ≤ ∆nit) of ideas. The incremental number ∆nit of ideas is drawn from a distribution

πt(·;nit−), which potentially depends on her current number nit− of ideas. Since individual

ideas are Gaussian and independent (conditional on Π), a manager’s average new idea:

Y i
t ≡ 1

∆nit

∑∆nit
j=1 S

i
j+nit−

= Π + σS√
∆nit

εit, εit ∼ i.i.d. N (0, 1) (2)

is a sufficient statistic for the chunk of new ideas she receives. In other words, a manager’s

private information is completely summarized by two numbers at any time t, her average

idea and her total number nit of ideas, which represents the quality of her information.

This process of idea gathering generates a cross-sectional distribution of number of ideas,

7That is, for almost every pair (i, i′) of managers εij and εi
′

j′ are pairwise independent for all j and j′.
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which I denote by µt(n). This distribution keeps track of the number n of ideas across the

population of managers at every date t; given the assumptions above, it satisfies the following

differential equation (see Appendix F):

d
dt
µt(n) = −ηt(n)µt(n) +

∑n−1
m=1 ηt(n−m)µt(n−m)πt(m;n−m), µ0(n) = π0(n). (3)

The first term on the right-hand side in Eq. (3) is the rate at which managers leave their

type, i.e., the fraction of managers of type n who received new ideas and thus no longer

hold n ideas. The second term represents the rate at which managers enter a new type. If

a manager of current type n− k receives k new ideas, she becomes of type n.

A key statistic for the equilibrium analysis is the cross-sectional average number of ideas:

φt ≡
∑

n∈N

µt(n)n, (4)

the first moment of the cross-sectional distribution in Eq. (3). This average determines

the rate at which private information flows in the population of managers. In Section 4, I

discuss different interpretations of the process of idea gathering—different specifications of

the intensity η and the distribution π—under which Eqs. (3) and (4) have simple solutions.

2.2. The economy

I insert the mechanism of idea collection of Section 2.1 in a continuous-time version of He

and Wang (1995). The resulting framework extends Andrei and Cujean (2017) to continuous

trading and a broader information structure, and is analytically simpler. Managers exhibit

CARA utility over consumption with a common coefficient of absolute risk aversion, γ.

Trading takes place continuously between time 0 and the horizon T . The market consists of

two assets. The first asset is a risky stock with equilibrium price Pt at time t. The stock is

a claim to the liquidating dividend Π, its fundamental value. The second asset is a riskless
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claim with perfectly elastic supply and a rate of return normalized to r = 0. Its rate is

exogenous because consumption and stock payout take place only once (at the horizon T ).

The problem of a manager i is to find a predictable portfolio strategy θi maximizing her

expected utility over terminal wealth

E
[
−e−γW i

T

∣∣∣F i
t

]
(5)

subject to W i
T = W i

0 +

∫

[0,T )

θitdPt + θiT∆PT , (6)

where a manager i’s information set at time t,

F i
t = σ

((
Ps, S

i
j

)
: 0 ≤ s ≤ t, 1 ≤ j ≤ nit

)
, (7)

contains two sources of information, (1) her private collection of ideas, (Sij : 1 ≤ j ≤ nit),

which she builds through the mechanism of the previous section, and (2) the history of

prices, (Pt)t≥0, which is endogenous and publicly available.

The budget constraint in Eq. (5) includes a price discontinuity of size ∆PT occurring

at the horizon date. Because managers are risk averse and trade competitively, they do not

completely exhaust their informational advantage by the horizon date. As a result, the price

right before the horizon date PT− is not equal to its fundamental value Π on average, but only

matches its fundamental value at the horizon date. In continuous time, this phenomenon

results in a price discontinuity ∆PT = Π− PT− when the stock pays out. To emphasize the

particularity of this result, notice that in a continuous-time Kyle model, the price converges

to the fundamental on average (Back, 1992).

Furthermore, the budget constraint in Eq. (5) ignores flows in and out of the fund. Fund

flows have well-known effects on performance (Berk and Green, 2004), which may interact

with the effects of managers’ flow of ideas. To isolate informational effects on managers’

performance, I first abstract from fund flows. In Section 6 I subsequently extend the model

to incorporate fund flows and fees and examine how both features along with information
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flows jointly affect managers’ performance. Finally, for simplicity, I do not impose short-sales

or borrowing constraints, although managers may face certain trading restrictions.8

To prevent prices from fully revealing the fundamental, I assume that the supply Θ of

the stock is random and follows an Ornstein-Uhlenbeck process,

dΘt = −aΘΘtdt+ σΘdBΘ
t , Θ0 ∼ N (0, σ2

Θ) (8)

with volatility σΘ > 0 and where (BΘ
t )t≥0 is a Brownian motion. As is customary, I interpret

Θ as the supply of the stock available to the market, while noise traders—agents who trade

for reasons unrelated to fundamental information—have inelastic demands of 1 − Θ units

of the stock (in total supply of 1). To avoid inducing artificial persistence in managers’

performance through the supply, I restrict the supply to be a martingale (i.e., aΘ ≡ 0).

Under this specification, the persistence of performance depends exclusively on the pattern

of information arrival, thus isolating the link between the flow of ideas and performance.

3. Equilibrium with continuous-discrete learning

In this section I obtain the equilibrium solution, from which I infer the concepts of “skill”

and “alpha” that matter in equilibrium. To construct the equilibrium, I conjecture a price

function, which I use to solve managers’ filtering problem (Section 3.1). I then solve their

optimization problem (Section 3.2) and clear the market, which allows me to verify the price

conjecture, to define skill in equilibrium and to derive the associated alpha (Section 3.3).

3.1. Learning tick by tick and in large, infrequent chunks

A novel aspect is the combination of continuous-time trading and the discontinuous

process of ideas gathering, which produces a continuous-discrete form of learning. I denote

by Π̂i
t ≡ E [Π|F i

t ] a manager i’s expectations of the fundamental, by Θ̂i
t ≡ E [Θt|F i

t ] her

8See, for instance, Almazan, Brown, Carlson, and Chapman (2004).
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expectations of the supply and by oit ≡ V [Π|F i
t ] her posterior variance, each conditional on

her information set F i
t at time t. Similarly, I denote common expectations by Π̂c

t ≡ E [Π|F c
t ]

and common uncertainty by oct ≡ V [Π|F c
t ], each conditional on the common information

set, F c
t = σ(Ps : 0 ≤ s ≤ t), which contains the (commonly observable) history of prices.

I focus the analysis on a linear equilibrium in which the stock price is a linear function

of the state variables of the economy. Specifically, I conjecture that the price satisfies

Pt = λ1,tΠ + (1− λ1,t)Π̂
c
t + λ2,tΘt, ∀t < T, (9)

where λ1,t and λ2,t are deterministic functions to be solved for in equilibrium. Based on this

conjecture, a manager i’s expectations and common expectations evolve according to the

dynamics that I highlight in Proposition 1.

Proposition 1. In a linear equilibrium, conditional expectations solve the filtering equations

d




Π̂c
t

Θ̂c
t


 =




octkt

σΘ − λ1,t

λ2,t
octkt


 dB̂c

t , (10)

d




Π̂i
t

Θ̂i
t


 =




ot(n
i
t−)kt

σΘ − λ1,t

λ2,t
ot(n

i
t−)kt


 dB̂i

t +




1

−λ1,t

λ2,t


 ot(n

i
t)∆n

i
t

σ2
S

Ŷ i
t dN i

t , (11)

with initial conditions given by




Π̂c
0

Θ̂c
0


 = λ1,0Π+λ2,0Θ0

λ2
1,0σ

2
Π+λ2

2,0σ
2
Θ




λ1,0σ
2
Π

λ2,0σ
2
Θ


 and




Π̂i
0

Θ̂i
0


 =




o0(ni0)
(

Π̂c0
oc0

+
ni0Y

i
0

σ2
S

)

Θ̂c
0 − λ1,0

λ2,0

(
Π̂i

0 − Π̂c
0

)


 (12)

where k, the speed at which prices reveal information, and conditional variances satisfy

kt =
1

σΘ

d

dt

λ1,t

λ2,t

, oct =

(
1

σ2
Π

+

(
λ1,0

λ2,0

)2
1

σ2
Θ

+

∫ t

0

k2
sds

)−1

and ot(n) =

(
1

oct
+

n

σ2
S

)−1
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and where the process (B̂i
t)t≥0 is a Brownian motion with respect to F i

t , Ŷ
i
t ∼ N

(
0, ot(n

i
t−) +

σ2
S

∆nit

)

is Gaussian conditional on F i
t− and ∆nit, the process (B̂c

t )t≥0 is a Brownian motion with re-

spect to F c
t , and (N i

t )t≥0 is a Poisson process with rate ηt(n).

A manager’s i expectations in (11) are continuous-discrete, reflecting the pattern of in-

formation arrival associated with gathering ideas in large, infrequent chunks. In contrast,

common expectations in (10) are continuous. In Figure 1 I illustrate this specific feature

of the model with a simulation of a manager’s number of ideas (left panel), her posterior

variance (the center panel) and her expectations of the fundamental (the right panel).

[insert Figure 1 here]

As long as a manager does not get new ideas (the flat parts in the left panel), she extracts

information from prices in an effort to infer ideas collected by other managers in the market.

This information flows tick by tick, producing continuous updates in her expectations (the

right panel) and her variance (the center panel). When a manager collects new ideas (the

steep parts in the left panel), she gets information that comes in large pieces at discrete

random times, leading to vast revisions in her expectations and substantial improvement in

her precision. Continuous trading allows prices to reflect new ideas instantly—was trading

discrete, prices would ignore them until the next trading round (Andrei and Cujean, 2017).

3.2. Optimal portfolio strategy

A difficulty in deriving a manager’s portfolio is that she cannot hedge the risk associated

with new ideas, because she cannot trade claims that pay off exactly when these ideas arise.

She thus revises her expectations in a way that her marginal utility jumps after getting new

ideas, which in principle precludes a linear equilibrium.9 This issue is absent when trading is

discrete (Andrei and Cujean, 2017), since new ideas cannot be exploited until the next trading

9In general, a framework involving jump-diffusion state variables, as those of Proposition 1, is of the
linear-quadratic class only if jumps are restricted to linear processes (Cheng and Scaillet, 2007).
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date. Remarkably, however, because managers are Bayesian they rationally anticipate these

revisions and their portfolio therefore remains linear, the result of Proposition 2.

Proposition 2. A manager i builds an optimal portfolio strategy θit at time t given by

θit ≡ θt(Π̂
i − Π̂c, Θ̂i, ni) =

AQ,t −BQ,t (ot(n
i))
−1
BΨ,t(n

i)>Λt

γB2
Q,t




Π̂i − Π̂c

Θ̂i


 (13)

where AQ, BΨ and Λ are deterministic matrices and BQ is a deterministic scalar.

A well-known result is that an increase in information precision stimulates trading (Gross-

man and Stiglitz, 1980). This effect arises through a manager’s hedging demand (the second

term in (13)), which scales with her precision, (ot(n
i))
−1

: the more ideas she has, the larger

the position she takes. A new aspect associated with gathering ideas in chunks, however,

is the rate at which it stimulates trading. The literature commonly assumes the precision

of private information increases linearly over time (e.g., Brennan and Cao (1997)). Since

hedging demands scale with precision, average market trading inherits this linear increase.

In this paper, as in Andrei and Cujean (2017), average market trading increases with the

cross-sectional average number of ideas φ in Eq. (4), which may not be linear in time.

As is customary in the literature (e.g., He and Wang (1995)), a manager’s portfolio reflects

a balance between two trading motives. Writing the portfolio in (13) as (see Appendix D):

θit ≡ d∆,t(n
i)

Π̂it−Π̂ct (informational advantage)︷ ︸︸ ︷(
1−

(
oct

ot(ni)

)−1
)
 1

nit

nit∑

j=1

Sij − Π̂c
t




︸ ︷︷ ︸
Speculative Position

+ dΘ,t(n
i)

Θ̂it (perceived supply)︷ ︸︸ ︷(
Θt −

λ1,t

λ2,t

(Π̂i
t − Π)

)

︸ ︷︷ ︸
Market-Making Position

(14)

shows that a manager speculates on her informational advantage and accommodates noise

trading. The extent to which a manager speculates on her informational advantage depends

on her precision relative to common precision, oc/o. Her market-making activity depends

on her perception of the supply. Unless a manager has infinitely many ideas, she is imper-
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fectly informed and may thus mistakenly interpret an informed trade (as measured by her

informational disadvantage Π̂i − Π, the second term in (14)) as a noninformational trade,

Θ. Depending on her number of ideas, she adjusts her market-making position to provide

liquidity or to minimize the chance that she ends up on the wrong side of the trade.

Using the portfolio decomposition in (14), I introduce the concept of informational hold-

ing (He and Wang, 1995; Brennan and Cao, 1997), which I use throughout the analysis.

Definition 1. A manager’s informational holding θ̂i := θi−Θ is a manager’s total position

net of per capita supply shock.

When information is homogeneously perfect, every manager takes a position θi = Θ that

exclusively reflects noninformational trading. Therefore, a manager’s informational holding

θ̂i identifies the part of her position that is purely generated by differential information,

relative to her position under perfect information. Unless a manager has infinitely many

ideas, she does not observe the supply and thus her own informational holding. However,

the econometrician, who observes the portfolio of all managers ex-post, can compute infor-

mational holdings retrospectively. I elaborate on this aspect in Section 3.3.3.

3.3. Equilibrium

Combining Proposition 2 and Definition 1, the market-clearing condition at time t satisfies

∫ 1

0

θ̂itdi

︸ ︷︷ ︸
Informational Trading

= 0. (15)

I use the market-clearing condition in (15) to compute the price coefficients in (9) and to

define a zero-sum game among managers. I then infer the definition of skill that is relevant

in equilibrium and compute the alpha that managers generate on differential information.
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3.3.1. Equilibrium solution and price informativeness

In equilibrium, as in Andrei and Cujean (2017), the cross-sectional average number of

ideas φ in Eq. (4) completely determines price coefficients and the speed of information

revelation, as Proposition 3 demonstrates.

Proposition 3. In the unique linear equilibrium of the economy, the price coefficients satisfy

λ1,t =
φto

c
t

σ2
S + φtoct

and λ2,t = −γ octσ
2
S

σ2
S + φtoct

, t < T. (16)

Hence, prices reveal information at speed kt = − 1
σΘσ

2
Sγ

d
dt
φt and common uncertainty satisfies

oct =

(
1

σ2
Π

+

(
φ0

γσΘσ2
S

)2

+

(
1

σΘσ2
Sγ

)2 ∫ t

0

(
d

ds
φs

)2

ds

)−1

. (17)

Price informativeness improves with the precision of private information (Grossman and

Stiglitz, 1980)—the average flow of ideas φ. Price informativeness is measured by the signal-

noise ratio, which using (16) satisfies λ1

λ2
= − φ

γσ2
S

. The speed at which prices reveal infor-

mation is thus proportional to the rate at which the cross-sectional average number of ideas

increases over time. An increase in this average stimulates trading, which leads to an in-

crease in the signal-noise ratio and in common precision (the inverse of common uncertainty

in (17)). Hence, price informativeness is measured in units of average number of ideas.

3.3.2. Skill in equilibrium: informational trading as a zero-sum game

Market making is a game that managers collectively play against noise traders. In con-

trast, trading based on differential information—informational trading—is a zero-sum game

that managers play against each other, as the market-clearing condition in (15) indicates.

Because managers’ information is noisy, informational trading (see Definition 1) can be de-

composed into an information component and a noise component, as in Proposition 4.
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Proposition 4. The informational holding θ̂i of manager i admits the decomposition

θ̂it =
nit − φt
γσ2

S|kt|
×

Sharpe Ratio ≡SRt
(under perfect information)︷ ︸︸ ︷
σ2
S|kt| (∆t + γoctΘt)

σ2
S + octφt︸ ︷︷ ︸

information (skill)

+

√
nit

γσS
εit

︸ ︷︷ ︸
noise (luck)

(18)

where ∆t ≡ Π− Π̂c
t is the informational advantage achieved under perfect information.

The decomposition in (18) isolates the extent to which a manager’s trades reflect skill

or luck. Consider first a manager who has infinitely many ideas. Since this manager has a

perfect informational advantage, ∆, and a perfect knowledge of the supply, Θ, her trades

are purely driven by skill (information): depending on which component, ∆ or Θ, drives the

Sharpe ratio, SR, in (18), she trades towards the fundamental, Π, and against the common

opinion, Π̂c, or towards noise traders’ demand. Consider now the “average manager” who

holds the cross-sectional average number ni = φ of ideas. Her informational holdings satisfy:

θ̂it =

√
φt

γσS
εit. (19)

That is, her trades are purely driven by luck (noise). If the Sharpe ratio, SR, is high—either

because the common opinion underestimates the fundamental (∆ > 0) or noise traders sell

(Θ > 0), or both—and she happens to buy (θ̂i > 0), then she had a lucky draw (εi > 0).

In general, the decomposition in (18) implies that skill is defined as follows.

Definition 2. A manager’s skill st(n
i) := ni−φt is the distance between her number of ideas

and the cross-sectional average (i.e., her precision relative to that of the average manager).

Since the average manager is purely lucky, all managers who hold fewer ideas than φ trade

against the perfectly informed manager on average, while all others are truly skilled.
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3.3.3. Informational alphas

To construct a measure of alpha, I adopt the perspective of the econometrician. The

main idea is that the empiricist and managers face opposite inference problems. Whereas

managers attempt to infer fundamentals in real time knowing their own skill, the empiricist

attempts to infer managers’ skill ex-post controlling for fundamentals.

In this context alpha is an unbiased but noisy measure of skill. Assuming that the

econometrician’s dataset contains all information that was useful for portfolio management

at each date of the sample rules out biases in alpha measurement. Unlike an uninformed

observer (Dybvig and Ross, 1985), the empiricist controls for all relevant factors affecting

the fundamentals of the economy. She knows when it was historically optimal to go long

or short the stock and whether or not each manager traded appropriately. However, what

the empiricist does not know is whether an appropriate trade reflects skill or luck, because

she does not observe a manager’s skill and luck separately; she only observes a manager’s

informational holding, which reveals a nonlinear combination of the two (see Proposition 4).

Formally, the empiricist observes past prices as well as the time series of returns (θitdPt)t≥0

that each manager i generates over the sample period [0, T ). This information is observed

ex-post, when it is no longer value relevant to managers. Since price changes are continuous,

the empiricist also observes the portfolio of each manager. She then obtains the supply at

each date by averaging portfolios across managers, and recovers the informational holding

θ̂i of each manager i and the fundamental value by inverting the price. Thus, her dataset is:

Ft = σ
((

Θs, θ̂
i
s

)
: 0 ≤ s ≤ t, i ∈ [0, 1]

)∨
σ(Π), 0 ≤ t < T. (20)

Empiricists commonly use performance regressions to measure managers’ performance.

Following Koijen (2012), I express a manager’s informational returns—returns she generates
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on her informational holding—as a performance regression formulated in continuous-time:

θ̂itdPt = αitdt+ σitdB
Θ
t , (21)

in which informational returns, θ̂itdPt, are regressed on a constant, αitdt. The residual noise,

σitdB
Θ
t , is a Brownian motion. Evaluating managers based on informational returns allows

me to focus the performance analysis on the zero-sum game of Section 3.3.2.

The empiricist uses all data Ft available up until time t to infer a manager’s current

alpha at time t (i.e., there is no look-ahead bias in estimating Eq. (21)). She obtains a time

series of conditional alpha, αit, and its t−statistic, tiα,t, for each manager:

αit = 1
dt
θ̂itE[dPt|Ft] and tiα,t =

αit
σit

= sign(θ̂it)E[SRt|Ft]. (22)

I follow the convention of measuring alpha in dollar return (e.g., Dybvig and Ross (1985)).

Note, however, that measuring alpha in rate of return leaves its t−statistic unaffected.10

On average a manager with n ideas is assigned the alpha and t−stat of Proposition 5.

Proposition 5. The unconditional alpha estimate, α̂it, for a manager holding ni ideas is:

α̂t(n
i) = st(n

i)
(|kt|+ γσΘ)oct
γ|kt|(σ2

S + octφt)
E[SR2

t ] (23)

at time t. Its unconditional t−statistic, t̂iα,t, is (see Definition 3 below for Rt(n)):

t̂α,t(n
i) = sign(st(n

i))

√
2

π
E[SR2

t ]
(
E[SR2

t ] +Rt(n
i)−2

)− 1
2

(24)

at time t. The unconditional squared Sharpe ratio in Eqs. (23) and (24) satisfies:

E[SR2
t ] = k2

t

(
ot + o2

t (φt/σ
2
S + γ2σ2

Θ(t+ 1))
)

(25)

10Replacing dollar return on the left-hand side of Eq. (21) with rate of return,
θ̂it
|W i

t |
dPt, (i.e., dollar returns

divided by assets under management) also leads to the t−statistic in Eq. (22).
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where o−1 denotes average market precision, i.e., the precision of the average manager:

o−1
t ≡

∫ 1

0

(oit)
−1di =

1

oct
+
φt
σ2
S

. (26)

By construction, unconditional alpha in (23) is an unbiased estimate of a manager’s skill,

s (see Definition 2). It evaluates a manager’s ability to extract market-timing gains, as mea-

sured by the square of the Sharpe ratio (Treynor and Mazuy, 1966; Admati, Bhattacharya,

Pfleiderer, and Ross, 1986). A manager appears to the empiricist as a successful market

timer only if she is better informed than the average manager. Since skill is linear in number

of ideas, an additional idea translates linearly into an additional unit of alpha in (23).

Although unbiased, a manager’s informational alpha is a noisy estimate of her skill. To

generate an additional unit of value, an additional idea requires a manager to take larger

positions. Doing so, a manager not only increases her exposure to fundamental risk, but also

to the noise in her average idea. An additional idea in turn has decreasing returns to scale

in terms of Sharpe ratio and thus in terms of alpha t−statistic. In particular, the t−statistic

in (24) depends on a manager’s skill-to-luck ratio, R, which is defined as follows.

Definition 3. A manager’s skill-to-luck ratio, Rt(n
i) := 1

σS |kt|
st(ni)√
ni

, is the ratio of a man-

ager’s informational trading intensity on fundamental information relative to noise.

This ratio is concave in a manager’s number of ideas: because skilled managers generate

a noisier alpha, an additional idea improves their t−statistic by less than the value it creates.

In other words, whereas luck does not affect unconditional alphas, it affects their statistical

significance. For this reason, alpha t−statistics are the focus of the analysis.

4. Economic interpretations of gathering ideas

The flow of private information, as measured by the cross-sectional average number of

ideas, is central to the equilibrium analysis; it drives the concavity of the skill-to-luck ratio
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(see Definition 3), which itself drives the statistical significance of alpha. Thus, an intermedi-

ate step towards explaining stylized facts about alpha is to examine how different mechanisms

of idea collection generate different patterns of information flow.

I consider two main sources from which managers collect ideas. First, mutual fund

managers share ideas (e.g., Pool et al. (2015)). A literal interpretation of idea sharing

is that managers interact socially with each other (e.g., Hong et al. (2005)). A broader

interpretation is that managers purchase the same research from sell-side firms, thus sharing

private information. Second, mutual funds spend considerable amounts of money to develop

information in-house (e.g., Branikas et al. (2017)). These two mechanisms of idea collection—

sharing ideas and originating ideas—imply different cross-sectional distributions of number

of ideas and different flows of private information.

I model idea sharing using the information percolation theory (Duffie et al., 2009) through

which managers share ideas in bilateral meetings; an equivalent but broader interpretation is

that pairs of managers are selected randomly to observe the same private information (e.g.,

they buy the same research). Because each manager is a grain of sand in an ocean, for every

such pair of managers, the sets of other managers with whom they respectively share ideas

never overlap, nor does the same pair of managers ever meet twice. Thus, there is no sense

of commonality of ideas—a manager learns an equivalent amount of information whether she

gets an existing idea shared with another manager or whether she originates an idea with

the same informational content. In other words, in this model, sharing existing information

and producing original information are informationally equivalent.

Assuming ideas arise with fixed intensity η, both when shared or originated, I use the

distribution π of incremental number of ideas to distinguish the two mechanisms. The essence

of idea sharing is that knowledge obtained through idea sharing increases with knowledge

possessed by other managers, which creates an endogenous relation between the distribution

π and the cross-sectional distribution µ of number of ideas. The process of idea gathering

thus feeds upon itself, leading information to flow exponentially. In contrast, when managers
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develop ideas on their own, the cross-sectional distribution of knowledge does not feed back

in the knowledge they produce—the distribution π is fixed. Thus, information flows linearly.

4.1. Idea sharing among fund managers

I allow managers to share ideas according to the information percolation theory. Perco-

lation is a matching mechanism whereby pairs of managers receive identical ideas; it can be

interpreted indifferently as a meeting process through which managers exchange ideas or as

a channel through which pairs of managers observe identical research. A key property of this

matching process (to be described) is that it is additive in managers’ number of ideas: two

managers who have n−m and m ideas, respectively, both wind up with n ideas after they

are matched. As a result, the setup of Section 2.1 applies under this matching process—a

manager’s private information is summarized by her number of ideas and her average idea.

For simplicity I assume that all managers are initially endowed with exactly one idea at

date t = 0. Thus, the initial distribution π0(n) = δn=1 of number of ideas has 100% mass

at n = 1, where δ denotes the Dirac delta function. Whereas all managers start out with

identical precisions, they can improve the precision of their ideas heterogeneously over time.

From date t = 0 onward, a manager i is matched to other managers at arrival times of the

Poisson process (N i
t )t≥0 of Section 2.1 with fixed intensity, η.

When two managers i and j are matched, their particular pairing is randomly sampled

from the continuum of managers (Duffie and Sun, 2007). As is customary in the information

percolation literature, the respective sets of other managers with whom managers i and j

share ideas never overlap. In particular, because i and j belong to an infinite crowd of

managers, they will not be matched again. While convenient from a modeling viewpoint,

this property may sound unappealing in the context of fund management. To address this

modeling caveat, in Section 5.2.2 I introduce bonds between managers through networks.

Once managers i and j are matched, they observe their respective collection of ideas in

(1). Under the interpretation that managers actually meet, this assumption implies that
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they truthfully exchange their ideas, consistent with the fact that managers share valuable

ideas (e.g., Pool et al. (2015)). Since managers i and j are infinitesimally small, they have

no incentives to conceal, misrepresent nor add noise to their information—if they attempt to

lie, they will not be able to individually influence prices and thus cannot benefit from their

lies.11 As anticipated above, the resulting matching process is additive in number of ideas.

This matching process requires that the distribution π of incremental number of ideas

coincides with the cross-sectional distribution µ. Substituting the resulting identity π ≡ µ

with ηt(n) ≡ η into Eq. (3) yields the population dynamics in Andrei and Cujean (2017).

Corollary 1. Under the idea-sharing mechanism, the cross-sectional distribution µ of ideas

and the cross-sectional average number φ of ideas satisfy

µt(n) = e−ηnt (eηt − 1)
n−1

and φt = eηt . (27)

As Andrei and Cujean (2017) point out, in this setup the information flow is exponential.

4.2. Origination of ideas

Similar to idea sharing, I assume that managers develop ideas at fixed rate η. However,

with idea origination the knowledge of others does not feed back in the knowledge managers

produce independently. In the extreme, knowledge produced in-house is time invariant:

πt = π0 at all times t. Under idea origination, π0 is exogenous and thus arbitrary. But since

I have assumed that all managers are initially endowed with one idea, it is natural to mirror

this assumption, π0 ≡ δn=1. In other words, managers generate one idea at a time. In this

context, the population dynamics in Eq. (3) take a particularly simple form.

Corollary 2. Under the idea-origination mechanism, the cross-sectional distribution µ and

11While infinitesimal managers do not have strict incentives to tell the truth, a finite number of managers
may. Possible incentives include short-term investment horizons (Schmidt, 2015), reputation (Benabou and
Laroque, 1992), or complementarity in information sets (Stein, 2008), for instance.

21



the cross-sectional average number φ of ideas satisfy

µt(n) = e−ηt (ηt)n−1

(n−1)!
and φt = ηt+ 1 . (28)

The information flow under idea origination maps into the Brownian flow of signals that

the literature commonly adopts (e.g., Detemple and Kihlstrom (1987)):

dSit = Πdt+ σSdBi
t, Si0 = Π + σSε

i
0

(29)

where (Bi
t)t≥0 is an idiosyncratic Brownian motion. At the manager level, a collection of

ideas developed in-house and the Brownian flow in Eq. (29) differ in several dimensions.12

At the population level, however, both imply that the clock of information arrival (φt in Eq.

(28), with η ≡ 1 when applied to Eq. (29)) is measured in affine units of calendar time.

Idea origination is a natural benchmark against which to compare idea sharing. Under

idea sharing the clock of informational arrival is measured in exponential units of calendar

time (see Corollary 1). Hence, while the clock of information arrival and calendar time

coincide when ideas are originated, they do not when ideas are shared. This difference has

specific implications for performance, which I now turn to.

5. Mapping performance into the flow of ideas

I revisit three stylized facts in the context of my model—few managers outperform (e.g.,

Barras et al. (2010)), their performance is indistinguishable from luck (e.g., Fama and French

(2010)) and does not persist (e.g., Carhart (1997)). A unique implication of idea sharing

is that statistical significance, the separation of skill from luck (Section 5.1) and perfor-

mance persistence (Section 5.2) concentrate in the worst-performing funds. These facts are

challenging to explain under idea origination.

12Ideas accumulate by chunks and come in heterogeneous numbers when originated (they are Poisson
distributed), but flow in small, frequent pieces and have homogenous precision under Eq. (29).
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5.1. Cross-sectional implications

I first analyze how idea sharing and idea origination generate distinct cross-sectional

implications for the statistical significance of alphas and the separation of skill from luck.

5.1.1. Statistical significance of unconditional alpha

On average (unconditionally), at each date t the econometrician assigns to a manager i an

alpha t−statistic, t̂iα,t, according to Proposition 5. The resulting cross-sectional distribution

of t−statistics thus evolves over time. To eliminate the effect of time when illustrating

cross-sectional implications, I compute the average alpha t−statistic,

t
i
α,T (k) =

1

T

∫ T

0

t̂α,t
(
E
[
nit
∣∣niT = k

])
dt, (30)

over the trading period [0, T ).13 The only source of cross-sectional variation across average

alpha t−statistics in Eq. (30) is the (discrete) number k of ideas that a manager holds at the

horizon date. Hence, the distribution of unconditional t−statistics in Eq. (30) is discrete,

and follows from Corollary 1 or 2 depending on the mechanism of idea gathering considered.

I start with the following observation, which I formulate as a corollary.

Corollary 3. In this framework without idea sharing or idea origination (i.e., η ≡ 0), all

managers generate no informational alpha.

Proof. Setting η ≡ 0, ni ≡ 1 for all i ∈ [0, 1] and thus, using (23), α̂it ≡ 0 for all i ∈ [0, 1].

In this idealized framework managers can only generate new ideas through sharing or

in-house development; if managers are inactive or uncreative, they have homogeneous skill

and thus no informational advantage over one another. That is, they only trade against

noise traders, but not against each other. Market clearing then implies that they do not

generate an informational alpha. What sharing ideas or originating ideas precisely do is to

13I assume that a manager i holds the average trajectory, E
[
nit
∣∣niT = k

]
, of number of ideas that leads

her to hold k ideas by the horizon date. I compute this average trajectory in Appendix F.
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create heterogeneity in skill. This heterogeneity causes managers to trade against each other,

producing a cross-sectional distribution of alphas around the average manager.

[insert Figure 2 here]

Assessing statistical significance of managers’ alphas requires computing the distribution

of their t−statistics, which I plot in Figure 2. Each figure in this paper relies on an illustrative

calibration, which I present in its description. In both panels of Figure 2 I indicate in red the

average manager who generates no alpha by virtue of market clearing. Each bar represents

the probability mass of each t−statistic. The main determinant of the distance between

these bars is the concavity of the skill-to-luck ratio (see Definition 3).

The distributions of alpha t−statistics under idea sharing and idea origination differ

along two dimensions. First, idea origination creates a distribution of t−statistics that is

symmetric around the average manager, with most t−statistics spreading at equidistant

intervals. In contrast, idea sharing creates a strong left skew in the distribution, making

extreme outcomes on the left more likely; it also implies an asymmetry in the dispersion

of t−statistics. This asymmetry results from the concavity of managers’ skill-to-luck ratio,

which is strongest under idea sharing due to the exponential flow of ideas it implies (see

Corollary 1). Because managers in the left tail are unskilled, they take smaller positions,

their alpha is less noisy and thus t−statistics spread over large intervals; because managers

in the right tail are skilled, they take larger positions and their t−statistics thus cluster.

Second, under idea origination none of the unconditional alphas are significant. The

maximal t−statistic in the lower panel in Figure 2 is well below the 10%−level. Therefore,

on average the empiricist fails to identify abnormal returns when ideas are originated—

significant performance (negative or positive) is virtually nonexistent.14 Instead, idea sharing

can explain empirical findings that a handful of managers generate significant alpha at the

expense of a concentrated mass of significant underperformers (e.g., Barras et al. (2010)).

14This result is not specific to this calibration—it prevails under a vast range of parameters.
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A broader issue is to understand under which conditions an empiricist fails to reject the

null hypothesis of zero alpha for a perfect market timer; this involves determining the max-

imal level of statistical significance that prevails in a rational-expectations model. Maximal

statistical significance in the model is determined by the t−statistic that a perfectly informed

manager generates. This t−statistic is finite, although its associated alpha is not:

t̂max,t ≡ lim
n→∞

t̂α,t(n) =

√
2E[SR2

t ]

π
=

√
2

π
|kt|︸︷︷︸

information-revelation
speed through prices

√
ot + o2

t (φt/σ
2
S + γ2σ2

Θ(t+ 1))
︸ ︷︷ ︸

scaled market-timing gains

.

(31)

The proposition below characterizes the initial level as well as the asymptotic average level

of this statistic in each model of idea gathering.

Proposition 6 (Maximal level of statistical significance). The maximal level of sta-

tistical significance in Eq. (31) at time t = 0 satisfies:

t̂max,0 = η

√
2

π

σΠ

√
σ2

Π (γ2σ2
Θσ

2
S + 1)

2
+ γ2σ2

Θσ
4
S

σ2
Π + γ2σ2

Θσ
2
S (σ2

Π + σ2
S)

, (32)

both under idea sharing and origination. Asymptotically, however, the average level of max-

imal statistical significance differs. Under idea origination it vanishes:

lim
T→∞

1

T

∫ T

0

t̂max,sds = 0, (33)

whereas, under idea sharing, statistical signifiance persists asymptotically:

lim
T→∞

1

T

∫ T

0

t̂max,sds = 2
√
η/π. (34)

Proof. Eq. (32) follows from substituting the expressions for the cross-sectional average φ

in Corollaries 1 and 2 in Eq. (31). For Eqs. (33) and (34), refer to Corollary 7.
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Statistical significance improves with the intensity at which managers collect ideas. In

particular, the initial level of statistical significance in Eq. (32) scales with the intensity η at

which managers collect ideas in each model. Intuitively, as the information flow intensifies,

stock return volatility decreases and statistical significance thus improves.15

Under idea origination, however, this effect is weak and temporary. When ideas are orig-

inated the resulting increase in knowledge does not feed back in the knowledge managers

produce independently—the flow of private information is linear (see Corollary 1). As a re-

sult, the increase in η must be substantial to raise the maximal level of statistical significance

in meaningful ways. Under a wide range of parameters, the information flow is not suffi-

ciently intense to produce statistically significant performance. Most importantly, statistical

significance vanishes asymptotically, as the average t−statistic in Eq. (33) indicates. Statis-

tical significance is the product of the speed at which prices reveal information and (scaled)

market-timing gains (see Eq. (31)). When the information flow is linear, information flows

from prices at steady speed, while market-timing gains vanish asymptotically.

Unlike idea origination, idea sharing produces significant performance. Idea sharing

allows knowledge to feed upon itself, which amplifies statistical significance and has a lasting

effect on its average level. When managers share ideas, the information flow is measured

in exponential units of calendar time (see Corollary 1). Prices thus reveal information at

exponential speed, which offsets the decline in market-timing gains and permanently affects

the average level of statistical significance in Eq. (34).

A relevant question is whether there exists a general condition that ensures performance

persists asymptotically in a rational-expectations framework. There is, based on the relative

rate of increase of the information flow, φt, as Proposition 7 demonstrates.

Proposition 7 (Asymptotic persistence). Let φt be a continuous nondecreasing function

15More broadly, statistical significance improves with trading aggressiveness. Reducing risk aversion, γ,
noise trading, σΘ, or the noise in private information, σS in (32) has the same effect.
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with asymptotic relative rate of increase bounded away from zero:

lim
t→∞

φ′t/φt > 0. (35)

A perfect market timer then maintains her alpha asymptotically, limT→∞
1
T

∫ T
0
t̂max,sds > 0.

Proof. A sufficient condition for Eq. (31) to be strictly positive asymptotically is that

limt→∞(φ′t)
2ot > 0, which holds under Eq. (35) since it implies limt→∞ φ

′
t > 0 and

lim
t→∞

∫ t

0

(
φ′s
φ′t

)2

ds ≤ lim
t→∞

(
φt − φ0

φ′t

)2

<∞ (36)

As long as information keeps flowing in relative terms asymptotically, a perfect market

timer keeps delivering significant alpha. As a result, any polynomial flow of information

results in vanishing asymptotic performance. Because idea sharing implies an exponential

flow of information, information accumulates at a constant relative rate and perfect market

timing thus keeps delivering significant alpha asymptotically.

5.1.2. The separation of skill from luck

In practice, the empiricist observes a finite sample of data and thus cannot compute the

unbiased alpha of Proposition 5. Rather, she can estimate time series of conditional alpha

(and obtain a proxy for the unconditional alpha by averaging this time series):

αit =
σS(|kt|+ γσΘ)oct
γ(σ2

S + octφt)

√
nit
(
Rt(n

i
t)SR

2
t︸ ︷︷ ︸

returns on skill

+ SRtε
i
t︸ ︷︷ ︸

returns on luck

)
, (37)

which contains both her returns on skill and luck. The empiricist’s ability to separate the two

depends on the distribution from which alphas are drawn, as emphasized by Kosowski, Tim-

mermann, Wermers, and White (2006).16 Skill skews the distribution of alphas in proportion

to the skill-to-luck ratio, whereas luck creates a mean-preserving spread around it.

16Other studies include Fama and French (2010), Barras et al. (2010) and Ferson and Chen (2015).
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Because skilled managers take larger positions the spread around their skill is wider,

making conditional alpha inappropriate for statistical inference. The scale of a manager’s

position, however, does not directly affect the t−statistic of the conditional alpha in (22):

tiα,t = sign
(
θ̂it

) σ2
S|kt|

σ2
S + octφt

(∆t + γoctΘt) ≡ sign
(
θ̂it

)
SRt, (38)

which only depends on the direction of a manager’s position, as opposed to its scale.17

Importantly, since the direction of the average manager’s position, sign
(
θ̂it

)
= sign (εit),

follows a coin toss, her t−statistic defines the null hypothesis of pure luck.

Separating skill from luck in turn involves comparing the cross-sectional distribution of

t−statistics that managers generate with that of the average manager, the theoretical coun-

terpart to the bootstrap approach of Kosowski et al. (2006). Figure 3 makes this comparison

under idea sharing (upper panel) and idea origination (lower panel), for the cross-sectional

distribution of t−statistics averaged over the trading period. Each distribution is compared

to that under the null of pure luck in each model (the red dashed line).

[insert Figure 3 here]

The separation of skill from luck concentrates in underperforming funds when ideas are

shared, whereas skill is virtually indistinguishable from luck when ideas are originated. The

distribution of cross-sectional t−statistics and the distribution under the null of pure luck

differ in the upper panel only. Luck (dashed line) generates fewer negative t−statistics and

more positive t−statistics—when ideas are shared the empiricist concludes that a manager

is lucky when she outperforms and unskilled when she underperforms. In contrast, when

ideas are originated (lower panel) the population of managers performs no better than luck.

Hence, unlike idea origination, idea sharing can explain why most underperforming funds

appear to be truly unskilled, while most outperforming funds appear to be lucky (Kosowski

17Kosowski et al. (2006) make a related point, describing empirical t−statistics as pivotal statistics.
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et al. (2006) and Fama and French (2010)).18 To formalize this result, I examine the cross-

sectional distribution of t−statistics at time t. The distributions in Figure 3 pertain to

t−statistics averaged over the trading period and thus rely on simulations. In contrast, the

distribution of t−statistics at a given time t can be characterized explicitly.

Proposition 8. The cross-sectional distribution of conditional t−statistics at time t is a

mixture of skew normal distributions weighted by the distribution of number of ideas:

P
[
tiα,t ∈ (x, x+ dx)

]
= lt(x)

(
1 +

∑

k∈N

c(k)(−1)kx2k+1
∑

n∈N∗
µt(n)(Rt(n))2k+1

︸ ︷︷ ︸
odd moments of the
skill-to-luck ratio

)
, (39)

for any x ∈ R, where c(·) are positive, decreasing coefficients reported in Appendix G and

lt(·) is the p.d.f. of t−statistics under the null of pure luck; it is Gaussian and given by:

lt(x) = P
[
tiα,t ∈ (x, x+ dx)|nit = φt

]
=

1√
2πE[SR2

t ]
exp


−1

2

(
x√

E[SR2
t ]

)2

 dx. (40)

As anticipated above when describing conditional alphas in Eq. (37), skill skews the

distribution of t−statistics in the direction of the skill-to-luck ratio, while luck creates a

mean-preserving spread around it. The distribution under the null of pure luck in Eq. (40)

is Gaussian, with mean zero and variance equal to the expected, squared Sharpe ratio. The

average manager flips a coin and pockets or loses the Sharpe ratio half of the time. The

second term in Eq. (39) shifts mass from one side of the cross-sectional distribution to the

other. The odd moments of the skill-to-luck ratio determines the direction of the resulting

tilt—skill tilts the distribution to the left, lack thereof tilts it to the left.

How skewed the distribution is depends on the concavity of the skill-to-luck ratio and the

shape of distribution of number of ideas. Under idea origination the cross-sectional number

of ideas follows a Poisson distribution (see Corollary 2). It follows that for reasonably large

18The distribution of t−statistics in this model under idea sharing is strikingly similar to empirical findings.
E.g., compare the upper panel of Figure 3 to the upper panel of Figure 2 in Kosowski et al. (2006).
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intensities, η, this distribution is approximatively symmetric around the average manager.

All odd moments in Eq. (39) are thus approximatively zero—the cross-sectional distribution

of t−statistics and that under luck are indistinguishable.

Under idea sharing, however, the distribution of number of ideas (see Corollary 1) is

strongly left-skewed. To see how this skew affects the distribution of t−statistics, focus on

t−statistics that are close to zero, for which the first moment in Eq. (39) dominates:

P
[
tiα,t ∈ (x, x+ dx)

]
= lt(x)

(
1 +

√
2/π E[Rt(n)]︸ ︷︷ ︸

≤0 by Jensen’s
inequality

x
)

+O(x3). (41)

The concavity of the skill-to-luck ratio and Jensen’s inequality jointly imply that the first

moment of this ratio is negative. That the distribution µ(·) is strongly skewed further implies

that this moment is large. As a result, the second term in Eq. (41) shifts mass from the

right to the left of the cross-sectional distribution of t−statistics, tilting it to the left.

Another way of understanding this result—skill separates from luck for underperforming

funds only—is to consider the probability that a manager who has n ideas times the market

successfully, i.e., the probability that her t−statistic is positive (see Appendix H):

P
[
tiα,t > 0

∣∣nit = n
]

=
1

2
+

1

π
tan−1

(√
E [SR2

t ]Rt(n)

)
. (42)

The probability in Eq. (42) shows that a manager’s success at timing the market depends on

the sign of her skill-to-luck ratio. Because the average manager’s skill-to-luck ratio is zero,

her strategy is no better than a coin toss—she is on the wrong side of the market half of

the time. It follows that unskilled managers, whose skill-to-luck ratio is negative, do strictly

worse at timing the market than a coin toss and skilled managers do strictly better.

[insert Figure 4 here]

How much better or worse a strategy does relative to a coin toss depends on the concavity

of the skill-to-luck ratio and the size of the squared Sharpe ratio. In Figure 4 I plot the
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probability in (42) as a function of a manager’s number of ideas. For the illustration I

denote by SR ≥ E[SR2
t ] the largest market-timing gains that can be reaped in this model.

Suppose first that the squared Sharpe ratio is larger than SR. The probability of success

then polarizes around the average manager and skill cleanly separates from luck, as the

blue line in Figure 4 shows. However, this situation cannot be an equilibrium outcome:

unskilled managers would refuse to trade, knowing that skilled managers, who all are perfect

market timers, would always take advantage of them. The squared Sharpe ratio must be

thus inferior to SR for markets to clear, in which case the probability of success becomes

markedly concave, as the red line indicates. An additional idea improves the odds of success

for unskilled managers by significantly more than it does for skilled managers.

An increase in the information flow, φt, impairs the separation of skill from luck in

two ways; it simultaneously reduces the squared Sharpe ratio and increases the concavity

of the skill-to-luck ratio. Under idea sharing, both effects increase the concavity of the

probability of success substantially, causing the separation of skill from luck to concentrate

in underperforming funds. Proposition 9 further shows that the mass of t−statistics is always

concentrated on the left side of the cross-sectional distribution under idea sharing.

Proposition 9. Let the distribution of number of ideas, µt(·), satisfy Corollary 1 (idea

sharing) with η > 0. At any finite time the mass of the cross-sectional distribution of

t−statistics is shifted to the left relative to the null hypothesis of pure luck:

P[tiα,t ≤ 0] > 1/2. (43)

This result extends to all symmetric distributions of number of ideas.

Whether the result of Proposition 9 extends to alternative distributions of ideas depends

on their shape. For instance, suppose this distribution has multiple modes; this typically

occurs when managers form networks, leading ideas to cluster (e.g., the setup in Section

5.2.2). In this case, it is possible to shift mass from one mode to another so as to flip the
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inequality in Eq. (43), which may give the empiricist an opportunity to detect skill.

Whether such opportunities exist is an empirical debate. Using a same bootstrap ap-

proach, Kosowski et al. (2006) find strong evidence of skill, which materializes as a “shoulder”

in the right tail, whereas Fama and French (2010) find weak evidence of skill in the extreme

right tail. In this model, even in the presence of networks, skill remains hardly detectable.

5.2. Time-series implications and performance persistence

In this section I analyze how managers’ performance depends on time. To reduce cross-

sectional heterogeneity, I segment the population of managers into two groups, A and B. I

then examine persistence when this segmentation is exogenous and when it arises endoge-

nously through networks. The main insight is that network formation can explain why

performance persistence concentrates in underperforming funds (Carhart, 1997).

The segmentation rule is as follows: a manager belongs to Group A or B depending on

whether her number n of ideas is in A = {n ∈ N∗ : n < N} or B = {n ∈ N∗ : n ≥ N},

i.e., whether she holds more or fewer ideas than some threshold number, N . For the average

manager of each group I then compute an alpha and its t−statistic (see Proposition 5):

α̂Kt = α̂t
(
E
[
nit
∣∣nit ∈ K

])
and t̂Kα,t = t̂α,t

(
E
[
nit
∣∣nit ∈ K

])
, K = A,B. (44)

An important determinant of how these statistics evolve over time is how the population

is segmented; whether ideas are shared or originated matters asymptotically for the maximal

t−statistic (see Proposition 6), but leads to qualitatively similar patterns over finite periods

of time across the two groups. I thus focus on idea sharing exclusively to contrast the

evolution of alpha and its t−statistic under exogenous and endogenous segmentation.
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5.2.1. Exogenous Segmentation

I start by splitting the population exogenously into skilled and unskilled managers. That

is, based on Definition 2 the segmentation threshold N is the cross-sectional average φ;

unskilled managers belong to Group A and skilled managers belong to Group B. In Figure

7, I plot alpha and its t−statistic in Eq. (44) as a function of time, both for the average

manager in Group A (the dashed red line) and B (the solid black line).

[insert Figure 5 here]

Under exogenous segmentation, performance converges across groups of skilled and un-

skilled managers. Eq. (23) indicates that a manager maintains her alpha only if she offsets

the decline in the squared Sharpe ratio with a sufficient improvement in her skill. Over time

skill deteriorates in Group A and improves in Group B. However, the decline in the squared

Sharpe ratio dominates the improvement or deterioration in skill in each group. As a result,

alphas become gradually indistinguishable across groups (left panel of Figure 5).

Importantly, alphas and their t−statistics move symmetrically across skilled and unskilled

managers. This symmetry is perhaps surprising in light of the concavity of the skill-to-

luck ratio—a decline or an improvement in skill affects t−statistics comparitively more for

unskilled managers than it does for skilled managers. However, skill in Group A does not

deteriorate as fast as it improves in Group B, which offsets the asymmetry implied by the

skill-to-luck ratio. It follows that performance, be it negative or positive, does not persist

under exogenous segmentation. I now show how network formation affects this outcome.

5.2.2. Endogenous Segmentation

For the moment I have assumed that all managers belong to a same network and have the

same ability to gather ideas. However, evidence indicates that fund managers interact within

networks. For instance, managers form investor “cliques” (Crane, Koch, and Michenaud,

33



2015).19 To introduce networks in the model I follow Duffie, Malamud, and Manso (2015)

and assume that the population of managers is segmented into different classes that differ

by quality of information and “connectivity”. As in the previous section, I consider only two

classes of managers, which I call Network A and B. In this section, however, the segmentation

rule determines how managers move across networks and how each network arises.

I interpret the segmentation rule as “valuable investment ideas” remaining localized

among a small group of managers (Stein, 2008). In this CARA-normal setup, “valuable”

is a synonym for “precise”. I define a precise idea as an average idea composed of N or

more ideas. I do not model incentives for managers to keep precise ideas localized in a small

group.20 The segmentation rule then implies that precise ideas are located in Network B.

Under the broader interpretation that managers buy the same research, segmentation means

that some institutions, say larger ones, receive more reports and end up having better ideas.

The defining feature of a network is that managers within a same network are more

likely to be matched—they are more connected. For instance, think about each network as

a mutual fund family. Members are mostly matched within their own family, but sometimes

are matched to members of other families at the annual CFA meeting. Consistent with this

idea, pairs of managers are sampled from the same network with probability p ∈ (1/2, 1]

and from different networks with probability 1− p. The network affiliation of each manager

involved in a pair is common knowledge (Duffie et al., 2015).

A manager is randomly matched with an intensity that is proportional to her number

of potential matches. This assumption introduces differential meeting intensities within and

outside networks in the model. Formally, let qt ∈ [0, 1] be the (endogenously determined)

fraction of the population that is located in Network A at time t. Let the parameter, η/2,

represent the matching intensity in both networks when of identical size. A manager with n

19Examples include educational network (Cohen et al., 2008), interactions within the same neighborhood
(Pool et al., 2015), the same city (Hong et al., 2005; Christoffersen and Sarkissian, 2009), or within investment
forums, e.g.,The Value Investor Club, The Alburn Village or The Q Group (Gray et al., 2012).

20I could add to the model a utility cost for sharing a large number of ideas, but I have avoided this for
tractability. Endogenizing the concept of “precise idea” would also likely make the threshold N time-varying
and manager-specific. For tractability I take the threshold N to be fixed and common to all managers.
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ideas is then matched to someone within her own network with intensity ηp(1n∈Aqt+1n∈B(1−

qt)) and to someone outside her network with intensity η(1−p)(1n∈A(1−qt)+1n∈Bqt). Figure

6 illustrates the resulting matching process and network structure.

[insert Figure 6 here]

Based on this structure the information flow in Eq. (4) takes the following form.

Corollary 4. (Network formation) Under idea sharing with network formation, the

cross-sectional average number φ of ideas satisfies

φt =
eηt

bt

(
1 + η(2p− 1)

∫ t

0

e−ηs
(

2b−1
s

aN−1
s − 1

as − 1
− 1

)
1 + aN−1

s (as(N − 1)−N)

(1− as)2
ds

)
(45)

where at and bt are deterministic coefficients, the explicit solution of which is in the appendix.

The solution for the distribution µ of ideas is also relegated to the appendix.

An expected consequence of information segmentation between Network A and B is that

it dampens the percolation of ideas. Absent information segmentation, the cross-sectional

average, φ, increases exponentially at rate η (see Corollary 27). Whereas this exponential

increase also appears in Eq. (45), it is multiplied by a factor that slows percolation down. To

illustrate how dampening affects performance persistence, I plot the counterpart to Figure

5 with endogenous segmentation in Figure 7.

[insert Figure 7 here]

Alphas converge across networks, whereas their t−statistics do not. Furthermore, a man-

ager’s alpha and its t−statistic may move in opposite directions, which they do in Network

A but not in Network B. Under network formation, skill deteriorates at an accelerated rate

in Network A and improves at a decaying rate in Network B. As a result, the asymmetry im-

plied by the concavity of the skill-to-luck ratio now dominates; t−statistics become strongly
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negative in Network A and converge to zero in Network B (right panel). Performance per-

sistence thus concentrates in underperforming funds (e.g., Carhart (1997)).

These results also show that t−statistics may or may not have superior time-series prop-

erties relative to alphas depending on how managers gather ideas. When managers form

networks, t−statistics retain the ability to rank them consistently even when their alphas

converge, whereas t−statistics do not under exogenous segmentation.

6. Extensions: fund flows and fees

In this section I incorporate two important institutional features of mutual funds—fund

flows and fees. Because mutual funds’ performance fees are of the fulcrum type, they do

not affect the results in a CARA-normal framework. Whereas fund flows cause managers to

herd towards their benchmark, they leave the results qualitatively unchanged.

To model fund flows I adopt the reduced-form approach in Koijen (2012). Flows, F (W i
T , BT ),

in and out of fund i are linear in performance relative to some benchmark, B. In this CARA-

normal setup, I work with dollar performance, as opposed to returns:

F (W i
T , BT ) = τ(W i

T −BT ), (46)

where τ ≥ 0 is a flow-performance parameter. That is, funds flow in or out as fund i out- or

under-performs the benchmark, respectively. Note that I could add a fixed part to the flow

function in Eq. (46); however, it would not affect equilibrium outcomes in this framework.

It follows that total assets under management (AUM) at the horizon date equal:

AUMi
T = W i

T + F (W i
T , BT ). (47)

I assume that each fund i charges fees, f × AUMi
T , in proportion to assets under man-

agement, taking the fee rate, f , as exogenous (e.g., Hugonnier and Kaniel (2010) and Koijen
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(2012)). This fee specification is known as fulcrum performance fees—bonuses for outper-

forming the benchmark are symmetric to the penalties for underperforming it. As Cuoco and

Kaniel (2011) point out, performance fees in the mutual industry are required to be of the

fulcrum type. I assume that managers maximize expected utility over their compensation:

E
[
− exp

(
−γf(W i

T + F (W i
T , BT ))

)∣∣F i
t

]
. (48)

Under this specification, fees act as a scale on managers’ risk aversion.

I view the benchmark, B, as individual investors’ effort to benchmark managers against

each other. Absent information asymmetry, individual investors could benchmark each fund

against average managed wealth at the horizon date T :

W T =

∫ 1

0

W i
Tdi =

∫ T

0

ΘsdPs + ΘT∆PT . (49)

Information asymmetry makes this comparison impossible—managers do not observe average

managed wealth, nor do individual investors. However, individual investors can form a proxy

for average managed wealth based on publicly available information F c:

BT ≡
∫ T

0

Θ̂c
sdPs + Θ̂c

T−∆PT , (50)

a benchmark that any investor can use in real time. Under this specification, fund flows act

as a simple form of relative wealth concerns (Garcia and Strobl, 2011).21

I now sketch how these two features affect the solution to the baseline model in Section

3, relegating computational details to Appendix I. While flows do not directly modify the

21In a static rational-expectations setup Garcia and Strobl (2011) model wealth concerns relative to average
managed wealth, as opposed to the commonly available proxy in Eq. (50).
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learning dynamics in Proposition 1, they modify managers’ trading strategy:

θit ≡
1

f(τ + 1)
θi,baseline
t +

τ

τ + 1
Θ̂c
t , (51)

where θi,baseline is the portfolio in Proposition 2. Strategies now incorporate an additional

component, which tilts managers’ position towards the proxy for the average trade (the

benchmark); the flow-performance parameter determines the strength of the tilt. Intuitively,

managers suffer from underperforming their peers due to the resulting outflows. They hedge

against outflows by herding towards what individual investors perceive as the average strat-

egy. Furthermore, fees scale the baseline position by adjusting risk aversion.

Clearing markets the modified portfolio in Eq. (51) in turn modifies price coefficients:

λ1,t =
1

τ + 1
λbaseline

1,t and λ2,t = fλbaseline
2,t , (52)

in which the expression for common uncertainty is also modified (see Appendix I). Because

fund flows cause managers to herd towards the benchmark, they reduce price informativeness.

The first price coefficient, λ1, scales down relative to the baseline case. By adjusting risk

aversion fees further scale the risk premium through the second price coefficients, λ2. The

signal-noise ratio, λ1/λ2 may increase or decrease depending on which effect dominates.

The presence of fund flows breaks the proportionality between managers’ trading intensity

on information and the Sharpe ratio. Substituting the price coefficients in Eq. (52) into the

portfolio in Eq. (51) and deriving informational holdings yields (see Appendix I):

θ̂it =
1

fγ(τ + 1)

(
nit − φt
σ2
S + octφt

(
σ2
S(τ + 1) + τoctφt
σ2
S(τ + 1)

∆t + fγoctΘt

)
+

√
nit
σS

εit

)
+ τHt. (53)

The term in bracket is similar to the expression in Proposition 4 and shows that the concept

of skill in Definition 2 remains valid in the presence of flows. However, herding in response to

outflows creates an additional demand, H, which is common to all managers and contributes
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to break the proportionality of informational demands to the Sharpe ratio.

Due to the resulting loss of tractability, I proceed with numerical illustrations onwards.

Since fulcrum fees simply scale risk aversion in this model, they are ignored in numerical

illustrations. Note, however, that relaxing the symmetry between bonuses and penalties may

affect the results in nontrivial ways. For instance, suppose managers receive compensation

for outperforming their peers, but do not incur penalties for underperforming them. Based

on the intuition in Cuoco and Kaniel (2011), managers have incentives to increase tracking

error when their performance approaches the benchmark. This risk-shifting behavior would

presumably make performance noisier at the center of the distribution—it is unlikely to affect

the asymmetry between skilled and unskilled managers.

To illustrate the effect of fund flows I focus on idea sharing. Furthermore, I use the

estimate in Koijen (2012) for the performance-flow parameter, τ = 0.86. This estimate

implies that for each dollar a fund outperforms the benchmark, it attracts 86 cents in flows.

I repeat the steps of Section 5.1.2 in the presence of fund flows and plot the result in Figure

8.

[insert Figure 8 here]

Fund flows do not affect cross-sectional implications qualitatively. Relative to Figure 3,

the left panel of Figure 8 is virtually unchanged. Intuitively, flows induce funds to herd

through the second term in Eq. (51). This term does not depend on a manager’s number

of ideas. As a result, the portfolio tilt towards the benchmark is identical for skilled and

unskilled managers alike and keeps cross-sectional predictions qualitatively unchanged.

By the same token, the time evolution of alphas and their t−statistics is similar in the

presence of fund flows. Just like in Figure 5 alphas and t−statistics converge. Only the

magnitude and rate of convergence differ. This difference is primarily due to the effect of

flows on price informativeness. Herding towards the benchmark reduces both the speed at

which prices reveal information and the level of price informativeness. As a result, flows slow

down the convergence of alpha and its t−statistic and reduce their magnitude.
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7. Conclusion

This paper shows that idea sharing, as opposed to idea origination, can explain stylized

facts regarding fund managers’ performance—the separation of skill from luck, statistical

significance of alpha and its persistence concentrate in the worst-performing funds.

Methodologically, this paper develops a new framework that embeds a mechanism of

discrete information collection in a standard continuous time, rational-expectations equi-

librium model. That private information arrives discretely in a framework in which trad-

ing occurs continuously produces a novel form of learning—public information continuously

flows from prices, while private information flows at discrete, random times. I prove that a

rational-expectations framework extends to this broader class of continuous-discrete filtering

processes, while keeping its tractability (the equilibrium is solved in closed form).

I hope that this framework can be used to explore other equilibrium consequences of idea

sharing. For instance, it may be adapted for the purpose of studying how rumors propagate,

driving prices away from fundamental values. Allowing agents to act strategically would

lead to a new theory of price manipulation. Moreover, the relation between idea sharing and

prices is only one-way—idea sharing impacts prices, but prices do not impact the way in

which agents interact. A challenging extension involves a full-fledged equilibrium in which

idea sharing and prices feed back both ways. Idea sharing may also mitigate “limits to

arbitrage”—it may help arbitrageurs to synchronize their trades, reducing convergence risk.
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Appendix A. Proof of Proposition 1 (Learning)

In this appendix, I derive the dynamics of the Bayesian updating process for an agent who
obtains private information according to the mechanism described in Section 2.1. I show that the
Bayesian updating process features both continuous updates and discrete updates occurring at
random times.

Let Xt = (Π,Θt)
> denote the unobservable state vector with dynamics

dXt =

[
0 0
0 −aΘ

]
Xtdt+

[
0
σΘ

]
dBΘ

t

≡ aXtdt + bdBΘ
t .

Agents observe two types of signal. First, they receive continuous news updates through the
price Pt. Using (9), define the normalized price signal ξt as

ξt ≡ Pt − (1− λ1,t)Π̂
c
t = λ1,tΠ + λ2,tΘt

and notice that σ(Ps : 0 ≤ s ≤ t) ⇔ σ(ξs : 0 ≤ s ≤ t). Applying Ito’s lemma, the dynamics of ξt
satisfy

dξt =
[
λ′1,t λ′2,t − aΘλ2,t

]
Xtdt+ λ2,tσΘdBΘ

t

≡ A1,tXtdt+B1,tdB
Θ
t .

Second, each agent i receives a sequence of private signals at Poisson arrival times (i.e., the
times at which the Poisson counter N i increases):

{0 = τ0 ≤ τ1 ≤ τ2 ≤ ... ≤ τN i
T
≤ τN i

T+1 = T}

and gradually builds a collection (Sij : 1 ≤ j ≤ nit) of nit discrete signals at time t. Agent i’s

information set F i
t at time t is therefore given by

F i
t = σ

((
ξs, S

i
j

)
: 0 ≤ s ≤ t, 1 ≤ j ≤ nit

)
, 0 ≤ t < T. (54)

Accordingly, define the conditional mean X̂i
t = E

[
Xt|F i

t

]
and the positive semi-definite conditional

variance-covariance matrix Oit = E
[

(X − X̂i
t)(X − X̂i

t)
>
∣∣∣F i

t

]
of the state vector Xt with respect

to F i
t . At time t ∈ (τk, τk+1), for any k ∈ {0, 1, ..., N i

T }, X̂i
t and Oit satisfy the dynamics given in

Theorem A.1.

Theorem A.1. The conditional mean X̂i
t with respect to the filtration F i

t , ∀k ∈ {0, 1, ..., N i
T }, has

dynamics

dX̂i
t = aX̂i

tdt+ (OitA
>
1,t + bB>1,t)(B1,tB

>
1,t)
− 1

2 dB̂i
t, ∀t ∈ (τk, τk+1) (55)

where the conditional variance-covariance matrix Oit is given by the solution to the Ricatti equation

Ȯit = aOit +Oita
> + bb> − (OitA

>
1,t + bB>1,t)(B1,tB

>
1,t)
−1(A1,tO

i
t +B>1,tb), ∀t ∈ (τk, τk+1) (56)
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and where the filter innovation B̂i
t satisfying

dB̂i
t = (B1,tB

>
1,t)
− 1

2 (dξt −A1,tX̂
i
tdt) (57)

is a P̂i−Brownian motion with respect to the filtration F i
t .

Proof. See Liptser and Shiryaev (2001), Theorem 12.7.

Remark 1. The dynamics in (55) and (56) can be simplified: since ξt ∈ F i
t , it follows that

ξt = λ1,tΠ + λ2,tΘt = λ1,tΠ̂
i
t + λ2,tΘ̂

i
t and the variance-covariance matrix Oit therefore satisfies22

Oit =




1 −λ1,t

λ2,t

−λ1,t

λ2,t

(
λ1,t

λ2,t

)2


 oit ≡ Ωto

i
t (58)

where oit = E
[

(Π− Π̂i
t)

2
∣∣∣F i

t

]
. Using (58), the dynamics of the conditional mean in (55) simplify

to

dX̂i
t = aX̂i

tdt+
1

λ2
2,tσΘ




oit(λ
′
1,tλ2,t − λ1,t(λ

′
2,t − aΘλ2,t))

λ2
2,tσ

2
Θ + oit

(
λ2

1,t

λ2,t
(λ′2,t − aΘλ2,t)− λ1,tλ

′
1,t

)

 dB̂i

t (59)

= aX̂i
tdt+

[
oitkt(

σΘ − oit λ1,t

λ2,t
kt

)
]

dB̂i
t, ∀t ∈ (τl, τl+1), l ∈ {0, 1, ..., N i

T } (60)

where

kt ≡
1

σΘ

(
d

dt

(
λ1,t

λ2,t

)
+ aΘ

λ1,t

λ2,t

)
. (61)

Similarly, the matrix Riccati equation for the variance-covariance matrix Oit in (56) simplifies to
an ordinary Riccati equation for oit:

doit
dt

= − (oit)
2

λ4
2,tσ

2
Θ

(λ′1,tλ2,t−λ1,t(λ
′
2,t− aΘλ2,t))

2 = −k2
t (o

i
t)

2, ∀t ∈ (τl, τl+1), l ∈ {0, 1, ..., N i
T }. (62)

At time t = τk, ∀k ∈ {0, 1, ..., N i
T }, agent i receives a sequence (Si

j+nit−
: 1 ≤ j ≤ ∆nit) of ∆nit

new signals and her information set jumps to

F i
t = F i

t− ∨ σ((Sij+nit−
: 1 ≤ j ≤ ∆nit)),

22Notice that Θt − Θ̂i
t = −λ1,t

λ2,t
(Π− Π̂i

t) implies that

E
[

(Θt − Θ̂i
t)

2
∣∣∣F i

t

]
= E

[(
λ1,t

λ2,t

)2

(Π− Π̂i
t)

2

∣∣∣∣∣F
i
t

]
=

(
λ1,t

λ2,t

)2

oit

and

E
[

(Θt − Θ̂i
t)(Π− Π̂i

t)
∣∣∣F i

t

]
= E

[
−λ1,t

λ2,t
(Π− Π̂i

t)
2

∣∣∣∣F i
t

]
= −λ1,t

λ2,t
oit.
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where F i
t− = σ

(⋃
s<t F

i
s

)
. That is, agent i’s filtration is not left-continuous F i

t 6= F i
t−, i.e., there

is a “surprise” in agent i’s information flow. This surprise is the sequence of new signals, which
can be expressed as an aggregate signal according to Lemma A.1.

Lemma A.1. Conditional on t = τk, ∀k ∈ {0, 1, ..., N i
T }, define agent i’s aggregate signal Y i

t as

Y i
t = (∆nit)

−1

∆nit∑

j=1

Sij+nit−
=
[

1 0
]
Xt +

σS√
∆nit

εit (63)

≡ A2,tXt +B2,t(∆n
i
t)ε

i
t (64)

where ∆nit ∼ πt(·;nit−), εit ∼ N (0, 1) and εiτk ⊥ εiτl, ∀k 6= l. Then, the aggregate signal Y i
t is a

sufficient statistic for the sequence (Si
j+nit−

: 1 ≤ j ≤ ∆nit).

Proof. Denote by p(Π|F i
t ) the conditional density of Π with respect to F i

t . Fixing a time t = τk
and applying Bayes’ rule, the conditional density p(Π|F i

t ) satisfies the recursive relation

p(Π|F i
t ) =

p(Π|F i
t−)f(S|Π)∫

R p(x|F i
t−)f(S|x)dx

(65)

where f(S|Π) denotes the density of a vector of signals S conditional on Π and where p(Π|F i
t−)

satisfies

p(Π|F i
t−) =

(
2πoit−

)− 1
2 exp

(
−1

2

(Π̂i
t− −Π)2

oit−

)
(66)

since, from Theorem A.1, p(Π|F i
t ) is conditionally Gaussian for any t ∈ (τk−1, τk) (Liptser and

Shiryaev (2001), Theorem 12.6). First, let S =
[
Si
nit−+1

Si
nit−+2

... Si
nit−+∆nit

]>
be the vector

of signals in the sequence (Si
j+nit−

: 1 ≤ j ≤ ∆nit). Conditional on Π, these signals are independent

and thus

f(S|Π) = (2πσ2
S)−

∆nit
2

∆nit∏

j=1

exp


−1

2



Si
j+nit−

−Π

σS




2
 . (67)

After substituting (67) in (65) and integrating, the conditional density p(Π|F i
t ) is explicitly given

by

p(Π|F i
t ) =

√
1

2π

(
1

oit−
+

∆nit
σ2
S

)
exp


−1

2

(
1

oit−
+

∆nit
σ2
S

)






Π̂i
t−
oit−

+

∑∆nit
j=1 S

i
j+nit−

σ2
S



(

1

oit−
+

∆nit
σ2
S

)−1

−Π




2
 .

(68)

Second, let S = Y i
t be the aggregate signal, in which case

f(Y i
t |Π) =

(
2π

σ2
S

∆nit

)− 1
2

exp

(
−1

2

(
Y i
t −Π

)2 ∆nit
σ2
S

)
. (69)
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Substituting (69) in (65) and integrating, the conditional density in (68) becomes

p(Π|F i
t ) =

√
1

2π

(
1

oit−
+

∆nit
σ2
S

)
exp


−1

2

(
1

oit−
+

∆nit
σ2
S

)((
Π̂i
t−
oit−

+
Y i
t

σ2
S/∆n

i
t

)(
1

oit−
+

∆nit
σ2
S

)−1

−Π

)2

 .

(70)

Clearly, the expressions in (68) and (70) are equivalent if and only if Y i
t = (∆nit)

−1
∑∆nit

j=1 S
i
j+nit−

and, by induction, this result must be true for all t = τk and k ∈ {0, 1, ..., N i
T }.

Using the result of Lemma A.1, at time t = τk, for any k ∈ {0, 1, ..., N i
T }, X̂i

t and Oit are updated
according to Theorem A.2.

Theorem A.2. The conditional mean X̂i
t with respect to the filtration F i

t , ∀k ∈ {0, 1, ..., N i
T },

satisfies

X̂i
t = X̂i

t− +Oit−A
>
2,t

(
A2,tO

i
t−A

>
2,t +B2,t(∆n

i)B2,t(∆n
i)>
)−1

Ŷ i
t , ∀t = τk (71)

where the conditional variance-covariance matrix Oit satisfies

Oit = Oit− −Oit−A>2,t
(
A2,tO

i
t−A

>
2,t +B2,t(∆n

i)B2,t(∆n
i)>
)−1

A2,tO
i
t−, ∀t = τk (72)

and where the filter innovation Ŷ i
t satisfying

Ŷ i
t =

(
Y i
t − E

[
Y i
t |F i

t−,∆n
i
t

])
∼ N

(
0, oit− +

σ2
S

∆nit

)
(73)

is normally distributed conditional on the filtration F i
t− and ∆nit.

Proof. The updating rules in (71) and (72) directly follow from the proof of Lemma A.1: observe
that (66) must also hold at time t = τk for all k ∈ {0, 1, ..., N i

T } and compare (66) to (70).

Furthermore, observe that Θ̂i
t − Θ̂i

t− = −λ1,t

λ2,t
(Π̂i

t − Π̂i
t−). It then follows that, ∀k ∈ {0, 1, ..., N i

T },

X̂i
t = X̂i

t− +

[
1

−λ1,t

λ2,t

]
oit

∆nit
σ2
S

Ŷ i
t ≡ X̂i

t− + ωto
i
t

∆nit
σ2
S

Ŷ i
t , ∀t = τk (74)

and
1

oit
=

1

oit−
+

∆nit
σ2
S

, ∀t = τk.

The proof of the more general expressions in (71) and (72) uses the law of conditional expectations
for Gaussian variables (see, e.g., Jazwinski (1970), Theorem 7.1). The distribution of the filter
innovation Ŷ i

t in (73) follows from the result of Lemma A.1 that the aggregate signal Y i
t is Gaussian

conditional on the filtration F i
t− and ∆nit and from the observation that

E
[
Y i
t − E

[
Y i
t |F i

t−,∆n
i
t

]∣∣F i
t− ,∆n

i
t

]
= 0
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and

V
[
Y i
t − E

[
Y i
t |F i

t−,∆n
i
t

]∣∣F i
t− ,∆n

i
t

]
= V


Π +

σS
∆nit

∆nit∑

j=1

εij+nit−

∣∣∣∣∣∣
F i
t− ,∆n

i
t


 = oit− +

σ2
S

∆nit
.

Theorem A.2 implies that, at time t = τk for any k ∈ {0, 1, ..., N i
T }, the conditional mean X̂i

t

and the conditional variance oit change discontinuously by ∆X̂i
t ≡ X̂i

t − X̂i
t− = ωto

i
t

∆nit
σ2
S
Ŷ i
t and

∆oit ≡ oit− oit− = −∆nit
σ2
S
oito

i
t−, respectively. This result and the result of Theorem A.1 imply in turn

that, at any time t ∈ (0, T ), X̂i
t and oit have the dynamics highlighted in Lemma A.2.

Lemma A.2. At any time t ∈ (0, T ), the conditional mean X̂i
t and the conditional variance oit

have dynamics

dX̂i
t = aX̂i

t−dt+

[
oit−kt(

σΘ − oit− λ1,t

λ2,t
kt

)
]

dB̂i
t + ωto

i
t

∆nit
σ2
S

Ŷ i
t dN i

t , X̂i
0 = O0−A

>
0

(
A0O0−A

>
0 +B0B

>
0

)−1
Ξi0

(75)

doit = −k2
t (o

i
t−)2dt− ∆nit

σ2
S

oito
i
t−dN i

t , oi0 =

(
1

σ2
Π

+
ni0
σ2
S

+

(
λ1,0

λ2,0

)2 1

σ2
Θ

)−1

(76)

where ωt ≡
[

1 −λ1,t

λ2,t

]>
and

O0− =

[
σ2

Π 0
0 σ2

Θ

]
, A0 =

[
λ1,0 λ2,0

1 0

]
, B0 =

[
0
σS√
ni0

]
, Ξi0 =

[
ξ0

Y i
0

]
. (77)

Proof. To obtain the initial conditions in (75), notice that managers start with priors Π̂i
0− ∼

N (0, σ2
Π) and Θ̂i

0− ∼ N (0, σ2
Θ) and immediately observe the vector Ξi0 in (77). They thus initially

update their expectations by applying Theorem A.2 using the matrices in (77). The remainder
follows directly from Theorem A.1 and A.2 and the simplifications above.

I now define the common information set F c
t at time t as

F c
t = σ ((ξs) : 0 ≤ s ≤ t) , 0 ≤ t < T.

Notice that the filtration F c
t is Brownian and therefore left-continuous (Karatzas and Shreve (1988),

Problem 7.1), i.e., there is no “surprise” in the common information flow. Accordingly, in contrast
to the dynamics in (75), the dynamics of the conditional mean X̂c

t = E [Xt|F c
t ] and the conditional

variance oct = E
[

(Π− Π̂c
t)

2
∣∣∣F c

t

]
are continuous, as shown in Corollary 5.

Corollary 5. The conditional mean X̂c
t with respect to the filtration F c

t has dynamics

dX̂c
t = aX̂c

t dt+

[
octkt(

σΘ − oct λ1,t

λ2,t
kt

)
]

dB̂c
t , X̂c

0 = O0−A
>
1,0

(
A1,0O0−A

>
1,0

)−1
ξ0 (78)
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and the conditional variance oct is given by the solution to the Ricatti equation

doct = −k2
t (o

c
t)

2dt, oc0 =

(
1

σ2
Π

+

(
λ1,0

λ2,0

)2 1

σ2
Θ

)−1

(79)

where A1,0 =
[
λ1,0 λ2,0

]
and where the filter innovation B̂c

t satisfying

dB̂c
t = (B1,tB

>
1,t)
− 1

2 (dξt −A1,tX̂
c
t dt) (80)

is a P̂c−Brownian motion with respect to the filtration F c
t .

Proof. Given that, for all t ∈ (0, T ), the filtration F c
t is continuous, the proof follows directly from

Theorem A.1 and from simplifications based on (58). The initial conditions follow as a special case
of those in Lemma A.2.

Remark 2. Relating the common conditional variance oc in (82) to agent i’s conditional variance
oi in (75) shows that oit ≡ ot(ni) is a function of her number of signals ni and time t only:

ot(n
i) = E

[
(Π− Π̂i

t)
2
∣∣∣F i

t ;n
i
t = ni

]
=


 1

oct
+

1

σ2
S

∑

s≤t
∆nis∆N

i
s



−1

=

(
1

oct
+
ni

σ2
S

)−1

(81)

where, applying Ito’s lemma to (oct)
−1 using (79), the common precision is given explicitly by

1

oct
=

1

σ2
Π

+

(
λ1,0

λ2,0

)2 1

σ2
Θ

+

∫ t

0
k2
sds. (82)

I conclude by characterizing the dynamics of stock returns with respect to F i. Let

dQt = dPt − rPtdt+ 1{t=T}∆PT (83)

denote the instantaneous excess return on one share of the stock and let

∆PT = Π− PT− = (1− λ1,T−)(Π− Π̂c
T−)− λ2,T−ΘT (84)

represent a price discontinuity at time T when the price reaches PT = Π. Furthermore, let ∆t ≡
Π− Π̂c

t and define the vector Ψt = (∆t,Θt)
> and its conditional expectation

Ψi
t ≡ E[Ψt|F i

t ] = (∆i
t, Θ̂

i
t)
>. (85)

Then, the instantaneous excess return with respect to F i is fully characterized by (Ψi, ni), as
Lemma A.3 shows.

Lemma A.3. The instantaneous excess return dQ with respect to agent i’s filtration F i
t satisfies

dQt = [ λ′1,t + (1− λ1,t)o
c
tk

2
t λ′2,t − aΘλ2,t ]Ψi

tdt+ (λ2,tσΘ + (1− λ1,t)o
c
tkt)dB̂

i
t + 1{t=T}∆QT

(86)

≡ AQ,tΨi
tdt+BQ,tdB̂

i
t + 1{t=T}∆QT (87)
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where the conditional expectation Ψi
t, as defined in (85), is a Gaussian process with dynamics

dΨi
t =

[
−k2

t o
c
t 0

0 −aΘ

]
Ψi
t−dt+

[
(ot(n

i
t−)− oct)kt

σΘ − λ1,t

λ2,t
ot(n

i
t−)kt

]
dB̂i

t + ωtot(n
i
t)

∆nit
σ2
S

Ŷ i
t dN i

t (88)

≡ AΨ,tΨ
i
t−dt+BΨ,t(n

i
t−)dB̂i

t + σt(n
i
t−,∆n

i
t)Ŷ

i
t dN i

t . (89)

Furthermore, letting λt ≡
[

1− λ1,t −λ2,t

]>
, the excess return ∆QT at the liquidation date

satisfies

∆QT ≡ λ>T−Ψi
T−. (90)

Equations (86) and (90) in turn imply that the Markov process (Ψi
t, n

i
t)t≥0 fully characterizes in-

stantaneous excess returns under F i
t .

Proof. To derive the dynamics in (86) and (88), I need to relate the probability measures P̂c and
P̂i under the filtration F i: define the Radon-Nikodym derivative Zt of P̂c with respect to P̂i under
F i as

Zt =
dP̂i

dP̂c

∣∣∣∣∣
F i
t

= exp

(
−1

2

∫ t

0
(ks∆

i
s)

2ds+

∫ t

0
ks∆

i
sdB̂

c
s

)
(91)

where ∆i ≡ Π̂i − Π̂c. The process Z defines a change of measure between P̂c and P̂i under F i, a
result I establish in Theorem A.3.

Theorem A.3. Let (B̂c)t≥0 be a P̂c−Brownian motion with differentials as in (80), and let (F i)t≥0,
as defined in (80), be the filtration for this Brownian motion. Let (kt∆

i
t)t≥0 be an adapted process.

Then, EP̂c [Z] = 1 and the process (B̂i)t≥0 satisfying

B̂i
t = B̂c

t −
∫ t

0
ks∆

i
sds (92)

is a P̂i−Brownian motion with respect to F i
t .

Proof. First, observe that the Brownian motion B̂c is adapted to F c and, therefore, to F i ⊃ F c.
Second, combine (57) and (80) and obtain

dB̂i
t = dB̂c

t −
1

λ2,tσΘ
(λ′1,t∆

i
t + (λ′2,t − aΘλ2,t)(Θ̂

i
t − Θ̂c

t))dt. (93)

Since ξt ∈ F c
t ⊂ F i

t , it follows that Θ̂i
t − Θ̂c

t = −λ1,t

λ2,t
∆i
t, which, substituted in (93) and using (61)

gives (92). Third, for EP̂c [Z] = 1 to hold, i.e., for P̂i to be absolutely continuous with respect to
P̂c under F i, the Radon-Nikodym derivative in (91) must be a martingale. A sufficient condition
under which Z is a martingale is the Novikov condition (Karatzas and Shreve (1988), Proposition
5.12):

EP̂c
[
exp

(
1

2

∫ T

0
(kt∆

i
t)

2dt

)]
<∞, 0 ≤ T ≤ ∞ (94)
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where the process ∆i under P̂c satisfies

d∆i
t = −ot(ni)k2

t∆
i
tdt+ kt(ot(n

i)− oct)dB̂c
t . (95)

Observing that the process in (95) is Gaussian, Example 3 (a) (Liptser and Shiryaev (2000), p.
233) shows that the Novikov condition in (94) boils down to

supt≤T |kt|EP̂c [∣∣∆i
t

∣∣] <∞, supt≤T k
2
tVP̂c [∆i

t

]
<∞. (96)

In this setup, the conditions in (96) simplify to

supt≤T |kt|
∫ t

0 k
2
sds <∞, supt≤T k

2
t

∫ t
0 k

2
sds <∞. (97)

Using (61) and anticipating on the equilibrium result of Lemma C.2, the two conditions in (97) are
equivalent to requiring that the function φ(·) be continuous, which it is by assumption. Theorem
A.3 then follows from Girsanov theorem (Karatzas and Shreve (1988), Theorem 5.1).

Using the change of measure of Theorem A.3 and the dynamics in (78), the dynamics of common
expectations under P̂i with respect to the filtration F i satisfy

dX̂c
t =

(
aX̂c

t +

[
octk

2
t

kt

(
σΘ − oct λ1,t

λ2,t
kt

)
]

∆i
t

)
dt+

[
octkt(

σΘ − oct λ1,t

λ2,t
kt

)
]

dB̂i
t. (98)

Applying Ito’s lemma and using (75) and (98), it then follows that ∆i has dynamics

d∆i
t = −octk2

t∆
i
t−dt+

(
ot(n

i
t−)− oct

)
ktdB̂

i
t + ot(n

i
t)

∆nit
σ2
S

Ŷ i
t dN i

t . (99)

Reorganizing the dynamics in (75) and (99) and using (81), I obtain the dynamics in (88). Inspection
of (88) then reveals that (Ψi

t, n
i
t)t≥0 is a Markov process. Furthermore, set r = 0 and observe that

Qt ≡ λ1,tΠ̂
i
t+λ2,tΘ̂

i
t+(1−λ1,t)Π̂

c
t under P̂i. Applying Ito’s lemma to this expression and substituting

the dynamics of Π̂c
t with respect to F i

t (in (98)) shows that excess returns dQ satisfy

dQt = ((λ′1,t + (1− λ1,t)o
c
tk

2
t )(Π̂

i
t − Π̂c

t) + (λ′2,t − aΘλ2,t)Θ̂
i
t)dt+ (λ2,tσΘ + (1− λ1,t)o

c
tkt)dB̂

i
t

(100)

under agent i’s filtration F i
t . Rewriting the drift of dQ in terms of the Gaussian process Ψi

and taking into account (83), equation (86) follows. Finally, taking expectations of the price
discontinuity in (84) with respect to F i

T−, I get

E[∆QT |F i
T−] = E[∆PT |F i

T−] = [ 1− λ1,T− −λ2,T− ]E[ΨT |F i
T−]

and equation (90) follows.

Appendix B. Proof of Proposition 2 (optimal demands)

In this appendix, I solve the portfolio optimization problem of an agent who collects ideas ac-
cording to the mechanism of Section 2.1 and whose expectations satisfy the dynamics of Proposition
1. I show that her optimal asset demand has an explicit solution.
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Considering the optimization problem defined in (5) and using Lemma A.3, an investor’s value
function depends exclusively on (W,Ψ, n, t). Accordingly, let the value function of agent i at time
t be

J(W i,Ψi, ni, t) = max
θi

E
[
− exp

(
−γW i

T

)∣∣F i
t ;W

i
t = W i,Ψi

t = Ψi, nit = ni
]

(101)

s.t. dW i
t = rW i

t dt+ θitdQt. (102)

The value function in (101) must satisfy the Hamilton-Jacobi-Bellman (HJB) equation

0 = max
θi

{
JWAQΨiθi +

1

2
JWWB

2
Q(θi)2 +BQBΨ(ni)>JWΨθ

i

}
+ Jt + J>ΨAΨΨi +

1

2
tr(JΨΨBΨ(ni)BΨ(ni)>)

(103)

+ η(ni)ELt(Ŷ i,∆ni)
[
J(W i,Ψi + σ(ni,∆ni)Ŷ i, ni + ∆ni, t)− J(W i,Ψi, ni, t)

]
, (104)

where the coefficients A and B are defined in Lemma A.3, and the boundary condition

J(W i,Ψi, ni, T−) = max
θi

E
[
− exp

(
−γ(W i

T− + θiT−∆QT )
)∣∣F i

T−;W i
T− = W i,Ψi

T− = Ψi, niT− = ni
]
.

(105)

The last term in (103) represents the probability, P[dN i
t = 1|nit− = n] = η(n)dt, that agent i

collects new ideas in the time interval (t, t + dt) times the expected change in her value function,
which involves the joint distribution Lt of her filter innovation, Ŷ i, and her number, ∆ni, of new
signals given that new ideas are collected at time t. The boundary condition in (105) is a static
optimization problem, which accounts for the price discontinuity at time T (see Lemma A.3).

Solving the maximization problem in (103) yields the optimal portfolio policy

θit ≡ θt(Ψi, ni) = −JWAQΨi +BQBΨ(ni)>JWΨ

JWWB2
Q

. (106)

The second-order condition for optimality is JWW < 0. Substituting the optimal portfolio policy
into (103), I obtain a partial integro-differential equation (PIDE) for J :

0 =Jt + J>ΨAΨΨi +
1

2
tr(JΨΨBΨ(ni)BΨ(ni)>)− 1

2

(JWAQΨi +BQBΨ(ni)>JWΨ)2

JWWB2
Q

(107)

+ η(ni)ELt(Ŷ i,∆ni)
[
J(W i,Ψi + σ(ni,∆ni)Ŷ i, ni + ∆ni, t)− J(W i,Ψi, ni, t)

]
. (108)

The PIDE in (107) decouples into an integro-differential equation (IDE), a system of differential
equations in the time dimension and a system of functional equations in the number-of-signals
dimension, as shown in Theorem B.1.

Theorem B.1. The PIDE in (107) with boundary condition in (105) has a solution of the form

J(W,Ψ, n, t) = − exp

(
−γW − ut(n)− 1

2

(
Ψ>Rt(n) +Rt(n)>Ψ + Ψ>Mt(n)Ψ

))
(109)
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where, at any time t ∈ [0, T ) and for any n ∈ N, the scalar coefficient ut(n) satisfies the IDE

d

dt
ut(n) = ηt(n)

∑

m∈N
πt(m) |Ct(n,m)| 12 exp

(
−(ut(n+m)− ut(n))

+1
2Rt(n+m)>Ct(n,m)Σt(n,m)Rt(n+m)

)
(110)

− 1

2
tr(Mt(n)BΨ,t(n)BΨ,t(n)>)− ηt(n), uT−(n) = 0 (111)

the (2× 1)−vector coefficient Rt(n) satisfies the differential equation

Ṙt(n) =

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)>
Rt(n), RT−(n) = 0 (112)

along with the functional equation

Rt(n) = Ct(n,m)Rt(n+m), ∀m ∈ N (113)

and the (2× 2)−symmetric matrix coefficient Mt(n) satisfies the differential equation

Ṁt(n) = −
A>Q,tAQ,t

B2
Q,t

+Mt(n)

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)
+

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)>
Mt(n) (114)

with boundary condition

MT−(n) = (oT−(n))−1

[
(1− λ1,T−)2 −λ2,T−(1− λ1,T−)

−λ2,T−(1− λ1,T−) λ2
2,T−

]
≡ (oT−(n))−1 ΛT− (115)

along with the functional equation

Mt(n) = Ct(n,m)Mt(n+m), ∀m ∈ N. (116)

The (2× 2)−symmetric matrix C is defined as

Ct(n,m) = (I +Mt(n+m)Σt(n,m))−1, (117)

the (2× 2)−symmetric matrix Σ is defined as

Σt(n,m) = E
[

∆X̂i
t(∆X̂

i
t)
>
∣∣∣F i

t−;nit− = n,∆nit = m
]

= σt(n,m)σt(n,m)>V
[
Y i
t

∣∣F i
t ;n

i
t− = n,∆nit = m

]

(118)

= Ωt
m

σ2
S

ot(n)ot(n+m) (119)

and the (2× 2)−symmetric matrix Ω is defined in (58).

Proof. The proof is organized in two parts. I first show that the functional equations in (113) and
(116) are necessary and sufficient conditions for the ansatz in (109) and the differential equations
in (110), (112) and (114) to hold. Second, I show that the differential equations in (110), (112) and
(114) satisfy the functional equations in (113) and (116), which eventually validates the ansatz in
(109).

First, substituting the ansatz in (109) into the boundary condition in (105) and using Lemma

50



A.3, I obtain

J(W,Ψ, n, T−) = max
θi

E
[
− exp

(
−γ(W i

T− + θiT−λ
>
T−ΨT )

)∣∣∣F i
T−;W i

T− = W,Ψi
T− = Ψ, niT− = n

]

(120)

= max
θi
− exp

(
−γ
(
W + θiT−λ

>
T−Ψ− 1

2
γ(θiT−)2λ>T−ΩT−λT−o

i
T−

))
(121)

where the second equality uses the Laplace transform for Gaussian variables and the result of
Lemma A.3 that Ψ is Gaussian with respect to F i. Solving the optimization problem in (120) and
using that λ>T−ΩT−λT− = 1 and (81) yields the optimal portfolio policy

θiT− ≡ θi(Ψ, n, T−) =
E
[
∆PT |F i

T−; Ψi
T− = Ψ, niT− = n

]

γV
[
∆PT |F i

T−; Ψi
T− = Ψ, niT− = n

] =
1

γ
(oT−(n))−1 λ>T−Ψ. (122)

Substituting the optimal portfolio policy into (120) and using that λT−λ
>
T− = ΛT−, I obtain

J(W,Ψ, n, T−) = − exp

(
−γW − 1

2
(oT−(n))−1 Ψ>ΛT−Ψ

)
. (123)

Comparing this expression with the ansatz in (109) evaluated at time T−, I obtain the boundary
conditions in (110), (112) and (114). Second, substituting the ansatz in (109) into the PIDE in
(107) and simplifying, I obtain

0 = − d

dt
ut(n)− 1

2
tr(Mt(n)BΨ,t(n)BΨ,t(n)>) + ηt(n) (Ft(Ψ, n)− 1) (124)

+
1

2
Ψ>

((
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)>
Rt(n)− Ṙt(n)

)
+

1

2

(
Rt(n)>

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)
− Ṙt(n)>

)
Ψ

(125)

+
1

2
Ψ>

(
−
A>Q,tAQ,t

B2
Q,t

+Mt(n)

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)
+

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)>
Mt(n)− Ṁt(n)

)
Ψ

(126)

where Ft(Ψ, n) denotes the expectation

Ft(Ψ, n) ≡ ELt

[
exp

(
−Ht(Ψ, n,∆n)− σt(n,∆n)>Gt(Ψ, n+ ∆n)Ŷ − σt(n,∆n)>Mt(n+ ∆n)σt(n,∆n)Ŷ 2

2

)]
.

(127)

Letting ∆ut(n,∆n) ≡ ut(n+ ∆n)− ut(n), ∆Rt(n,∆n) ≡ Rt(n+ ∆n)−Rt(n) and ∆Mt(n,∆n) ≡
Mt(n+ ∆n)−Mt(n), the scalar H is defined as

Ht(Ψ, n,∆n) = ∆ut(n,∆n) +
1

2

(
Ψ>∆Rt(n,∆n) + ∆Rt(n,∆n)>Ψ

)
+

1

2
Ψ>∆Mt(n,∆n)Ψ (128)

and the (2× 1)−vector G is defined as

Gt(Ψ, n+ ∆n) = Rt(n+ ∆n) +Mt(n+ ∆n)Ψ. (129)
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To compute the expectation in (127), I need to determine the joint distribution Lt of Ŷ and
∆n conditional on collecting new ideas at time t. Applying Bayes’ rule and using the result of
Lemma A.2, conditional on collecting new ideas in (t, t+ dt), the probability density function lt of
(Ŷ ,∆nt) ∼ Lt satisfies

lt(y,m;n) ≡ P[Ŷ ∈ dy|F i
t−; ∆nit = m,nit− = n]× P[∆nit = m|dN i

t = 1, nit− = n] (130)

= πt(m;n)

(
2π

(
ot(n) +

σ2
S

m

))− 1
2

exp

(
−1

2

(
ot(n) +

σ2
S

m

)−1

y2

)
dy. (131)

The expectation in (127) can then be computed explicitly using the result of Lemma B.1.

Lemma B.1. Let H and v be scalars, G and σ be (2× 1)−vectors, M be a (2× 2)−positive semi-
definite matrix and let y ∼ N (0, v). Furthermore, define Σ = σ>σv and assume that I + ΣM is
positive definite. Then,

E
[
exp

(
−H − σ>Gy − 1

2
σ>Mσy2

)]
= |I + ΣM |− 1

2 exp

(
1

2
G> (I + ΣM)−1 ΣG−H

)
. (132)

Proof. Lemma B.1 follows from the moment-generating function of a noncentral chi-square distri-
bution.

Using Lemma B.1, it follows that

Ft(Ψ, n) =
∑

m∈N
πt(m;n)

exp

(
1
2Gt(Ψ, n+m)> (I + Σt(n,m)Mt(n+m))−1 Σt(n,m)Gt(Ψ, n+m)

−Ht(Ψ, n,m)

)

|I + Σt(n,m)Mt(n+m)| 12
(133)

=
∑

m∈N
πt(m;n)

exp




−(ut(n+m)− ut(n)) + 1
2Rt(n+m)>Ct(n,m)Σt(n,m)Rt(n+m)

−1
2Ψ>(Ct(n,m)Rt(n+m)−Rt(n))
−1

2(Ct(n,m)Rt(n+m)−Rt(n))>Ψ
−1

2Ψ>(Ct(n,m)Mt(n+m)−Mt(n))Ψ




|I + Σt(n,m)Mt(n+m)| 12
(134)

where the last equality follows from substituting the coefficient H in (128) and the coefficient G in
(129), simplifying, and using Woodbury matrix identity

Ct(n,m) ≡ I−Mt(n+m)(I + Σt(n,m)Mt(n+m))−1Σt(n,m) = (I +Mt(n+m)Σt(n,m))−1.
(135)

Finally, for the solution to the PIDE in (107) to have the form of the ansatz in (109), it must
be that Ft(Ψ, n) ≡ Ft(n) at any time t ∈ [0, T ). Clearly, Ft(Ψ, n) ≡ Ft(n) if and only if the
functional equations in (113) and (116) hold true. Indeed, substituting (113) and (116) into (133)
and simplifying, I obtain

Ft(Ψ, n) =
∑

m∈N
πt(m;n) |Ct(n,m)| 12 exp

(
−(ut(n+m)− ut(n))

+1
2Rt(n+m)>Ct(n,m)Σt(n,m)Rt(n+m)

)
(136)

≡ Ft(n) (137)
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where I use that |I + Σt(n,m)Mt(n+m)|−1 = |Ct(n+m)|. Plugging this expression back into
(124) and separating variables yields the equations in (110), (112) and (114), which concludes the
first part of the proof.

Given that the functional equations in (113) and (116) are necessary and sufficient conditions
for the ansatz in (109) to hold, I still need to show that the differential equations in (112) and (114)
satisfy these functional equations. First, substituting (116) into the boundary condition in (115),
I obtain

CT−(n,m)MT−(n+m) = (oT−(n))−1 ΛT−. (138)

Multiplying both sides of this expression by CT−(n,m)−1 and simplifying shows that

MT−(n+m) = (oT−(n))−1 (I− (oT−(n))−1 ΣT−(n,m)ΛT−)−1ΛT− = (oT−(n+m))−1 ΛT−,
(139)

and the boundary condition in (115) therefore satisfies the functional equation in (116). Second,
substituting (116) into the differential equation in (114), I obtain

0 = −Ct(n,m)Ṁt(n+m)Ct(n,m) + Ct(n,m)Mt(n+m)Σ̇t(n,m)Mt(n+m)Ct(n,m)−
A>Q,tAQ,t

B2
Q,t

(140)

+ Ct(n,m)Mt(n+m)

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)
+

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)>
Mt(n+m)Ct(n,m)

(141)

where the first term on the right-hand side follows from regrouping and applying Woodbury ma-
trix identity in (135). Multiplying both sides of this expression by Ct(n,m)−1, regrouping and
simplifying, I obtain

Ṁt(n+m) = Mt(n+m)

((
BΨ,t(n)−

Σt(n,m)A>Q,t
BQ,t

)
AQ,t
BQ,t

−AΨ,t

)
(I +Mt(n+m)Σt(n,m))

(142)

+ (I +Mt(n+m)Σt(n,m))

((
BΨ,t(n)−

Σt(n,m)A>Q,t
BQ,t

)
AQ,t
BQ,t

−AΨ,t

)>
Mt(n+m)

(143)

−
A>Q,tAQ,t

B2
Q,t

+Mt(n+m)

(
Σ̇t(n,m) + Σt(n,m)

A>Q,tAQ,t

B2
Q,t

Σt(n,m)

)
Mt(n+m). (144)

Furthermore, notice that

Σt(n,m)A>Q,t =
[

1 −λ1,t

λ2,t

]>
ktBQ,t

m

σ2
S

ot(n)ot(n+m) ≡ ωtktBQ,t
m

σ2
S

ot(n)ot(n+m) (145)
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which follows from regrouping and using the definitions in (61) and (86). This in turn implies that

BΨ,t(n)−
Σt(n,m)A>Q,t

BQ,t
=




(ot(n)− m
σ2
S
ot(n)ot(n+m)− oct)kt

σΘ − λ1,t

λ2,t

(
ot(n)− m

σ2
S
ot(n)ot(n+m)

)
kt


 = BΨ,t(n+m) (146)

where the last equality follows from Lemma A.2 that ot(n+m) = ot(n)− m
σ2
S
ot(n)ot(n+m). Plugging

this expression back into (142) and further regrouping yields

Ṁt(n+m) = −
A>Q,tAQ,t

B2
Q,t

+Mt(n+m)

(
BΨ,t(n+m)AQ,t

BQ,t
−AΨ,t

)
+

(
BΨ,t(n+m)AQ,t

BQ,t
−AΨ,t

)>
Mt(n+m)

(147)

+Mt(n+m)




Σ̇t(n,m) + Σt(n,m)
(
BΨ,t(n+m)AQ,t

BQ,t
−AΨ,t

)>

+Σt(n,m)
A>Q,tAQ,t

B2
Q,t

Σt(n,m) +
(
BΨ,t(n+m)AQ,t

BQ,t
−AΨ,t

)
Σt(n,m)


Mt(n+m).

(148)

To further simplify (147), I use the result of Lemma B.2.

Lemma B.2. The (2 × 2)−symmetric matrix Σ, as defined in (118), satisfies the differential
equation

Σ̇t(n,m) = −Σt(n,m)
A>Q,tAQ,t

B2
Q,t

Σt(n,m)− Σt(n,m)

(
BΨ,t(n+m)AQ,t

BQ,t
−AΨ,t

)>
(149)

−
(
BΨ,t(n+m)AQ,t

BQ,t
−AΨ,t

)
Σt(n,m). (150)

Proof. Consider first the right-hand side of (149). From (145), I obtain

Σt(n,m)
A>Q,tAQ,t

B2
Q,t

Σt(n,m) = ω>t ωt

(
kt
m

σ2
S

ot(n)ot(n+m)

)2

= Ωt

(
kt
m

σ2
S

ot(n)ot(n+m)

)2

. (151)

Furthermore, from (146), I can write

(
BΨ,t(n+m)AQ,t

BQ,t
−AΨ,t

)
Σt(n,m) =

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)
Σt(n,m)− Ωt

(
kt
m

σ2
S

ot(n)ot(n+m)

)2

,

(152)

which, substituted in (151) yields

Σ̇t(n,m) = Ωt

(
kt
m

σ2
S

ot(n)ot(n+m)

)2

− Σt(n,m)

(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)>
−
(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)
Σt(n,m)

(153)

= Ωt

(
kt
m

σ2
S

ot(n)ot(n+m)

)2

+
(

Ω̇t − 2Ωtk
2
t ot(n)

)(m
σ2
S

ot(n)ot(n+m)

)
(154)

where the second equality follows from simplifications based on (61). Second, consider the left-hand
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side of (149) and directly differentiate Σ in (118) using (75) to obtain

Σ̇t(n,m) = Ω̇t
m

σ2
S

ot(n)ot(n+m)− Ωt
m

σ2
S

k2
t ot(n)ot(n+m)(ot(n) + ot(n+m)). (155)

Finally, regrouping terms in (153) and using Lemma A.2 shows that (153) and (155) coincide and
the differential equation in (149) must therefore hold.

Substituting the differential equation of Lemma B.2 into (147) shows that the differential equa-
tion in (114) satisfies the functional equation in (116), as desired. Finally, consider the differential
equation in (112). Clearly,

RT−(n+m) = CT−(n,m)−10 = 0 (156)

and the boundary condition in (112) therefore satisfies the functional equation in (113). Fur-
thermore, substituting (113) into the differential equation in (112), regrouping and simplifying, I
obtain

Ṙt(n+m) =

(
Ṁt(n+m)Σt(n,m) +Mt(n+m)Σ̇t(n,m)

+Ct(n,m)−1
(
BΨ,t(n)AQ,t

BQ,t
−AΨ,t

)>
)
Ct(n,m)Rt(n+m). (157)

Using (114) and Lemma B.2, it follows that

Ṁt(n+m)Σt(n,m) +Mt(n+m)Σ̇t(n,m) = −Ct(n,m)−1
A>Q,tAQ,t

B2
Q,t

Σt(n,m), (158)

which, substituted into (157) yields

Ṙt(n+m) =

((
BΨ,t(n)−

Σt(n,m)A>Q,t
BQ,t

)
AQ,t
BQ,t

−AΨ,t

)>
Rt(n+m). (159)

Substituting the relation in (146) into this expression shows that the differential equation in (114)
satisfies the functional equation in (116), which concludes the proof.

Theorem B.1 shows that an agent’s value function, as given in (109), remains affine quadratic
under continuous-discrete learning. The coefficients of the value function, which solve the system of
functional and differential equations described in Theorem B.1, have explicit solutions highlighted
in Lemma B.3.

Lemma B.3. The (2×1)−vector coefficient Rt(n) and the (2×2)−matrix coefficient Mt(n), which
satisfy the system of equations described in Theorem B.1, have explicit solutions of the form

Rt(n) = 0, ∀n ∈ N (160)

and

Mt(n) = (ot(n))−1

[
(1− λ1,t)

2 −λ2,t(1− λ1,t)
−λ2,t(1− λ1,t) λ2

2,t

]
≡ (ot(n))−1 Λt, ∀n ∈ N (161)
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for any t ∈ [0, T ). Moreover, the scalar coefficient ut(n) satisfies the Boltzmann equation

d

dt
ut(n) = −1

2

1

ot(n)
(ktot(n)−BQ,t)2 − ηt(n) (162)

+ ηt(n)
∑

m∈N
πt(m;n)

(
ot(n+m)

ot(n)

) 1
2

exp (−(ut(n+m)− ut(n)) , ∀n ∈ N (163)

with boundary condition uT−(n) = 0.

Proof. Consider first the functional equation in (116) and reorganize it to obtain

Mt(n+m) = Mt(n)(I− Σt(n,m)Mt(n))−1. (164)

Evaluating this expression at n ≡ 0 and m ≡ n, I obtain

Mt(n) = Mt(0)(I− Σt(0, n)Mt(0))−1 ≡M c
t (I− Σt(0, n)M c

t )−1. (165)

Furthermore, using the differential equation in (114) and letting BΨ,t(0) ≡ BΨ,t, the coefficient M c
t

satisfies

Ṁ c
t = −

A>Q,tAQ,t

B2
Q,t

+M c
t

(
BΨ,tAQ,t
BQ,t

−AΨ,t

)
+

(
BΨ,tAQ,t
BQ,t

−AΨ,t

)>
M c
t (166)

with boundary condition M c
T− = 1

ocT−
ΛT−. Conjecture that M c

t has a solution of the form M c
t =

mtΛt where mt is a scalar coefficient. Substituting this conjecture into (166) and multiplying both
sides twice by Ωt, I obtain

ΩtΛtΩt
d

dt
mt = −Ωt

A>Q,tAQ,t

B2
Q,t

Ωt + Ωt

(
Λt

(
BΨ,tAQ,t
BQ,t

−AΨ,t

)
+

(
BΨ,tAQ,t
BQ,t

−AΨ,t

)>
Λt − Λ̇t

)
Ωtmt.

(167)

Simplifications based on (61) then show that

Ωt

A>Q,tAQ,t

B2
Q,t

Ωt = Ωtk
2
t (168)

and

Ωt

(
Λt

(
BΨ,tAQ,t
BQ,t

−AΨ,t

)
+

(
BΨ,tAQ,t
BQ,t

−AΨ,t

)>
Λt − Λ̇t

)
Ωt = 2k2

t o
c
tΩt. (169)

Observing that ΩtΛtΩt = Ωt and substituting this relation along with (168) and (169) into (167),
the matrix differential equation in (167) reduces to an ordinary differential equation

d

dt
mt = (2octmt − 1)k2

t , mT− =
1

ocT−
(170)

where the boundary condition follows from direct comparison of the conjecture with (115). Further
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conjecturing that mt ≡ 1
oct

and substituting this conjecture into (170) shows that

1

oct
=

1

oc0
+

∫ t

0
k2
udu, (171)

which coincides with (82), thereby validating the conjecture. Substituting the solution M c
t = 1

oct
Λt

into (165) and simplifying, I obtain

Mt(n) =
1

oct
Λt

(
I− Σt(0, n)

1

oct
Λt

)−1

=

(
1

oct
+

n

σ2
S

)
Λt. (172)

Second, consider the functional equation in (113) and reorganize it to obtain

Rt(n) = (I +Mt(n)Σt(0, n))Rct (173)

where Rct ≡ Rt(0). Using the differential equation in (112), the coefficient Rct satisfies

Ṙct =

(
BΨ,tAQ,t
BQ,t

−AΨ,t

)>
Rct (174)

with boundary condition RcT− = 0. Conjecture that Rct has a solution of the form Rct = rtλt
where λ is the (2 × 1)−vector defined in Lemma A.3. Substituting this conjecture into (174) and
multiplying both sides by Ωt, I obtain

ωt
d

dt
rt = Ωt

((
BΨ,tAQ,t
BQ,t

−AΨ,t

)
λt − λ̇t

)
rt (175)

where Ωtλt = ωt is the (2 × 1)−vector defined in Lemma A.2. Simplifications based on (61) then
show that

Ωt

((
BΨ,tAQ,t
BQ,t

−AΨ,t

)
λt − λ̇t

)
= k2

t o
c
tωt. (176)

Substituting (176) into (175), the differential equation in (175) reduces to an ordinary differential
equation

d

dt
rt = octk

2
t rt, rT− = 0. (177)

The solution to the ODE in (177) is

rt = rT− exp

(
−
∫ T

t
ocuk

2
udu

)
≡ 0 (178)

where the last equality follows from imposing the boundary condition in (177). Finally, (162)
follows from substituting (160) and (161) into (110) and simplifying.

Substituting the coefficients of Lemma B.3 along with (109) into (106), I obtain agent i’s optimal

57



portfolio policy explicitly

θt(Ψ
i, ni) =

AQ,t −BQ,t
(
ot(n

i)
)−1

BΨ,t(n
i)>Λt

γB2
Q,t

Ψi. (179)

Appendix C. Proof of Proposition 3 (Equilibrium)

In this appendix, I aggregate the optimal portfolio demands of Appendix B and impose that
markets clear. Aggregation is performed based on the population distribution derived in Appendix
F and the learning dynamics derived in Appendix A. I show that the equilibrium price coefficients
are available in closed form.

In equilibrium, the optimal portfolio policies in (179) must satisfy the market-clearing condition

∫ 1

0
θt(Ψ

i, ni)di = Θt, ∀t ∈ [0, T ). (180)

Imposing (180) yields a system of differential equations for the price coefficients, which I provide
in Theorem C.1.

Theorem C.1. In a linear equilibrium (see Equation 9), the price coefficients λ1 and λ2 satisfy
the system of differential equations

∑

n∈N
µt(n)

(
AQ,t −BQ,t (ot(n))−1BΨ,t(n)>Λt

)
Γt(n) = 1?γB2

Q,t (181)

with boundary condition

[
λ1,T− λ2,T−

]
=
[

φT
σ2
S
−γ

] ocT−σ
2
S

φT ocT− + σ2
S

(182)

where φ denotes the cross-sectional average number of signals, 1? is a (1 × 2)−vector defined as
1? =

[
0 1

]
and Γ is a (2× 2)−matrix defined as

Γt(n) =

[
αt(n)

λ1,t

λ2,t
(1− αt(n))

(1?)>

]
(183)

with αt(n) ≡ octn

σ2
S+octn

.

Proof. I start by providing an aggregation result regarding the conditional expectation Ψi, which I
then use to aggregate optimal demands. Let Ψ̂t ≡

∫ 1
0 Ψi

tdi denote the market average expectation

of Ψt. Lemma C.1 then provides the relation between Ψ̂t and Ψt.

Lemma C.1. The average market expectation Ψ̂t at time t ∈ [0, T ) satisfies

Ψ̂t =
∑

n∈N
µt(n)Γt(n)Ψt (184)

where the (2× 2)−matrix Γ is defined in (183).
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Proof. Using (75), (79) and (98), an application of Ito’s lemma yields

d
Π̂c
t

oct
= k2

t Π̂
i
tdt+ ktdB̂

i
t (185)

and

d
Π̂i
t

oit
= k2

t Π̂
i
t−dt+ ktdB̂

i
t +

(
Π̂i
t

oit
− Π̂i

t−
oit−

)
dN i

t (186)

= k2
t Π̂

i
t−dt+ ktdB̂

i
t +

∆nit
σ2
S

Y i
t dN i

t (187)

where the second equality in (186) follows from

Π̂i
t = Π̂i

t− + oit
∆nit
σ2
S

Ŷ i
t =

oit
oit−

Π̂i
t− + oit

∆nit
σ2
S

Y i
t . (188)

Subtracting (185) from (186) and integrating, I obtain

Π̂i
t

ot(nit)
=

Π̂c
t

oct
+
∑

s≤t

∆nis
σ2
S

Y i
s∆N i

s. (189)

Using Lemma A.1 and reorganizing, this expression becomes

Π̂i
t =

ot(n
i
t)

oct
Π̂c
t +

ot(n
i
t)n

i
t

σ2
S

Π +
ot(n

i
t)

σS

∑

s≤t

(
∆nis

) 1
2 εis∆N

i
s. (190)

Letting Π̂t ≡
∫ 1

0 Π̂i
tdi denote the market average expectation of Π and using (81) and the law of

large numbers whereby
∫ 1

0 ε
i
sdi = 0, ∀s ∈ (0, T ), I obtain

Π̂t =
∑

n∈N
µt(n)

(
σ2
S

σ2
S + octn

Π̂c
t +

octn

σ2
S + octn

Π

)
(191)

≡
∑

n∈N
µt(n)

(
(1− αt(n))Π̂c

t + αt(n)Π
)
. (192)

The relation in (184) then follows from vectorizing

∫ 1

0
∆i
tdi = Π̂t − Π̂c

t =
∑

n∈N
µt(n)αt(n)∆t (193)

and

∫ 1

0
Θ̂i
tdi =

λ1,t

λ2,t
(Π− Π̂t) + Θt =

λ1,t

λ2,t

∑

n∈N
µt(n)(1− αt(n))∆t + Θt. (194)

Remark 3. As in He and Wang (1995), the relation in (191) allows me to define a relation between
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first-order and higher-order expectations (HOE). Letting αt ≡
∑

n∈N µt(n)αt(n), notice that agent

i’s expectation of market average expectations Π̂ is

E
[

Π̂t

∣∣∣F i
t

]
= (1− αt)Π̂c

t + αtΠ̂
i
t. (195)

Hence, the second-order expectation Π̂
(2)
t of Π satisfies

Π̂
(2)
t =

∫ 1

0
E
[

Π̂t

∣∣∣F i
t

]
di = (1− α2

t )Π̂
c
t + α2

tΠ = (1− αt)Π̂c
t + αtΠ̂t. (196)

Iterating, the k−th order expectation Π̂(k) satisfies the recursion

Π̂
(k)
t =

∫ 1

0
E
[

Π̂
(k−1)
t

∣∣∣F i
t

]
di = (1− αt)Π̂c

t + αtΠ̂
(k−1)
t = (1− αkt )Π̂c

t + αktΠ. (197)

HOE are a weighted average of the first-order expectation Π̂ and common expectations Π̂c.

To obtain the boundary condition in (182), I substitute the optimal demands in (122) into
(180). Using the aggregation result of Lemma C.1, I obtain

∫ 1

0
θiT−di =

∑

n∈N
µT (n)

1

γ
(oT−(n))−1 λ>T−ΓT−(n)ΨT = 1?ΨT . (198)

Using L(·) to denote a general linear relation, an important observation is then that the term inside
the sum is linear in n:

(oT−(n))−1 λ>T−ΓT−(n) ≡ L(n) =
[

n
σ2
S
− nocT−+σ2

S

ocT−σ
2
S
λ1,T− −nocT−+σ2

S

ocT−σ
2
S
λ2,T−

]
. (199)

As a result, the summation only involves the cross-sectional average number of signals φT at time
T

[
φT
σ2
S
− φT o

c
T−+σ2

S

ocT−σ
2
S

λ1,T− −φT o
c
T−+σ2

S

ocT−σ
2
S

λ2,T−

]
ΨT = γ1?ΨT . (200)

Separating variables and regrouping terms then yields (182). Finally, to obtain the system of
differentials equations in (181), I substitute the optimal demands in (179) into (180). Using Lemma
C.1, I obtain

1

γB2
Q,t

∑

n∈N
µt(n)

(
AQ,t −BQ,t (ot(n))−1BΨ,t(n)>Λt

)
Γt(n)Ψt = 1?Ψt (201)

Separating variables directly yields (179).

Remark 4. Equations (200) and (201) imply that L(Pt,Ψt) = 0 and, as a result, the price satisfies
Pt = L(Ψt), ∀t ∈ [0, T ). Hence, the equilibrium price satisfies the linear conjecture in Equation 9.
The specific functional form of prices in Equation 9 follows from (191).

From the system of differential equations in (181), I obtain a closed-form solution for the ratio
of the price coefficients λ1 and λ2, which I formulate in Lemma C.2.
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Lemma C.2. In equilibrium, the signal-noise ratio of the price admits the closed-form solution

λ1,t

λ2,t
= − φt

γσ2
S

, ∀t ∈ [0, T ). (202)

It follows that common uncertainty oc also admits a closed-form solution, which satisfies

oct =

(
1

σ2
Π

+

(
φ0

γσΘσ2
S

)2

+

(
1

γσΘσ2
S

)2 ∫ t

0

(
d

ds
φs + aΘφs

)2

dt

)−1

, ∀t ∈ [0, T ). (203)

Proof. Multiplying both sides of (181) by ω yields

∑

n∈N
µt(n)

(
AQ,t −BQ,t (ot(n))−1BΨ,t(n)>Λt

)
Γt(n)ωt = −λ1,t

λ2,t
γB2

Q,t (204)

Using (61), notice that

AQ,tΓt(n)ωt =
noct

noct + σ2
S

ktBQ,t (205)

and

(ot(n))−1BΨ,t(n)>ΛtΓt(n)ωt =
noct

noct + σ2
S

kt −BQ,t
n

σ2
S

. (206)

Plugging these expressions into (204), I obtain an algebraic equation

∑

n∈N
µt(n)

n

σ2
S

B2
Q,t = −λ1,t

λ2,t
γB2

Q,t. (207)

Observing that n
σ2
S
B2
Q,t = L(n), the summation only involves the cross-sectional average number of

signals φ and the equation becomes

φt
σ2
S

= −λ1,t

λ2,t
γ, ∀t ∈ [0, T ) (208)

from which I obtain (202). Inspection of the boundary condition in (182) reveals that it also satisfies
(202). Equation (203) directly follows from substituting (202) into (82).

Furthermore, assuming that the noisy supply follows a random walk and using the result of
Lemma C.2, the price coefficient λ2 has a closed-form solution, which I highlight in Lemma C.3.

Lemma C.3. Assuming that noise-trading demand follows a martingale (i.e., aΘ ≡ 0), the price
coefficient λ2 admits the closed-form solution

λ2,t = −γ σ2
So

c
t

σ2
S + φtoct

, ∀t ∈ [0, T ). (209)

Proof. Spelling out the system of equations in (181) and simplifying, the second differential equation
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is

d

dt
λ2,t = aΘλ2,t +

BQ,t
octσ

2
S

λ2,t

(
BQ,t

∑

n∈N
µt(n)(noct + σ2

S)− σ2
So

c
tkt

)
+ γB2

Q,t. (210)

Observing that noct + σ2
S = L(n), the summation only involves the cross-sectional average number

of signals φ and the equation becomes

d

dt
λ2,t = aΘλ2,t − ktλ2,tBQ,t +B2

Q,t

(
λ2,t

φto
c
t + σ2

S

octσ
2
S

+ γ

)
. (211)

Furthermore, assuming that aΘ ≡ 0 and substituting (209) into (211), I get

d

dt
λ2,t = −ktλ2,tBQ,t. (212)

To finally show that this equation holds, substitute first (209) in the left-hand side of (212) and
obtain

d

dt
λ2,t = −γ σ

2
S

(
σ2
S

d
dto

c
t − (oct)

2 d
dtφt

)

(σ2
S + φtoct)

2
(213)

=
(oct)

2 d
dtφt

(
γ2σ2

Sσ
2
Θ + d

dtφt
)

γσ2
Θ(σ2

S + φtoct)
2

(214)

where the second line follows from substituting (202) and using (79). Substituting (209) in the
right-hand side of (212) and using (202), I further obtain

−ktλ2,tBQ,t =
(oct)

2 d
dtφt

(
γ2σ2

Sσ
2
Θ + d

dtφt
)

γσ2
Θ(σ2

S + φtoct)
2

. (215)

Clearly, (213) and (215) coincide and (212) must therefore hold. Finally, inspecting the boundary
condition in (182) shows that it also satisfies (209), which concludes the proof.

Appendix D. Proof of Proposition 4 (Holdings)

In this appendix, I derive an explicit expression for the informational holding (Definition 1).
Using (179), I can write the portfolio θi of manager i as

θit = d∆,t(n
i)∆i

t + dΘ,t(n
i)Θ̂i

t (216)

= dΘ,t(n
i)Θt + d∆,t(n

i)∆i
t +

λ1,t

λ2,t
dΘ,t(n

i)(Π− Π̂i
t) (217)

where, using Lemma C.2 and C.3 and Equation (61), the coefficients d∆ and dΘ satisfy

dΘ,t(n) =
σ2
S + noct

σ2
S + octφt

, (218)

d∆,t(n) =
1

γoct
dΘ,t(n). (219)
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Furthermore, using Definition 1 and Equation (216), I can write the informational holding θ̂i of
manager i as

θ̂it = d∆,t(n
i)∆i

t +
λ1,t

λ2,t
dΘ,t(n

i)(Π− Π̂i
t) +

(
dΘ,t(n

i)− 1
)

Θt. (220)

Substituting the expression for Π̂i in (190) and reorganizing, I obtain

θ̂it = d∆,t(n)

(
αt(n)(Π− Π̂c

t) +
ot(n)

σS

√
nεit

)
+
(
dΘ,t(n

i)− 1
)

Θt (221)

+
λ1,t

λ2,t
dΘ,t(n)

(
(1− αt(n))(Π− Π̂c

t)−
ot(n)

σS

√
nεit

)
(222)

≡
(
d∆,t(n)αt(n) +

λ1,t

λ2,t
dΘ,t(n)(1− αt(n))

)
∆t +

(
d∆,t(n)− λ1,t

λ2,t
dΘ,t(n)

)
ot(n)

σS

√
nεit +

oct(n− φt)
σ2
S + octφt

Θt

(223)

where I use the fact that incremental number of signals ∆ni in (190) are independent and therefore
∑

s≤t
(
∆nis

) 1
2 εis∆N

i
s ∼

√
nitε

i
t. Finally, using Theorem C.1 and simplifying shows that

d∆,t(n)αt(n) +
λ1,t

λ2,t
dΘ,t(n)(1− αt(n)) =

n− φt
γ(σ2

S + octφt)
(224)

and
(
d∆,t(n)− λ1,t

λ2,t
dΘ,t(n)

)
ot(n)

σS
=

1

γσS
, (225)

which substituted in (221) yields the decomposition of informational holdings in (18).

Appendix E. Proof of Proposition 5 (Alpha)

In this appendix, I derive explicit expressions for the unconditional estimate of a manager’s
alpha, its standard error and its t−statistic.

Matching the performance regression in (21) to a manager’s budget constraint in (5), the econo-
metrician computes a manager i’s instantaneous alpha according to:

αit =
1

dt
θ̂itE [dQt|Ft] =

(
nit − φt

γ(σ2
S + octφt)

(∆t + γoctΘt) +

√
nit

γσS
εit

)
AQ,tΨt (226)

≡ (at(n
i
t)(∆t + γoctΘt) + b(nit)ε

i
t)AQ,tΨt (227)

where I used the informational portfolio decomposition of Proposition 4 and where F denotes the
econometrician’s filtration defined in (20). The unconditional estimator α̂i of alpha for a manager
i who holds ni ideas in turn satisfies

α̂t(n
i) = E[αit|nit = ni] =

1

dt
E
[
θ̂itdQt

∣∣∣nit = ni
]

= at(n
i)E[(∆t + γoctΘt)AQ,tΨt] (228)

where I used that εi is an independent Gaussian variable with mean zero. Furthermore, using
Lemma C.2 and C.3 and Equation (61) and simplifying, the vector AQ defined in Lemma A.3 is
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explicitly given by

AQ,t =
σ4
Skt(kt − γσΘ)oct
(σ2
S + octφt)

2

[
1
γoct

]>
. (229)

Substituting AQ back into (228) and rearranging yields

α̂t(n
i) = at(n

i)
σ4
Skt(kt − γσΘ)oct
(σ2
S + octφt)

2
E
[
(∆t + γoctΘt)

2
]
, (230)

from which the estimator in (23) follows. To obtain the unconditional expectation E
[
(∆t + γoctΘt)

2
]
,

observe that (8) with aΘ ≡ 0 yields Θt = Θ0 + σΘB
Θ
t . Hence, the unconditional expectation in

(230) is explicitly given by

E
[
(∆t + γoctΘt)

2
]

= E
[
∆2
t

]
+ 2γoctE [∆tΘt] + (γoct)

2(t+ 1)σ2
Θ (231)

= E
[
E[(Π− Π̂c

t)
2|F c

t ]
]

+ 2γoctE
[
E[(Π− Π̂c

t)Θt|F c
t ]
]

+ (γoct)
2(t+ 1)σ2

Θ (232)

= oct − 2γ(oct)
2λ1,t

λ2,t
+ (γoct)

2(t+ 1)σ2
Θ (233)

= oct + 2(oct)
2φt/σ

2
S + (γoct)

2(t+ 1)σ2
Θ, (234)

which yields Eq. (25).
The standard error σi of a manager i’s instantaneous alpha in (226) is the square root of the

quadratic variation of the orthogonal noise in (21), which is given by

σit =

√
1

dt
(at(nit)(∆t + γoctΘt) + b(nit)ε

i
t)

2d〈Q〉t = |BQ,t||at(nit)(∆t + γoctΘt) + b(nit)ε
i
t| (235)

=
σ2
S(|kt|+ γσΘ)oct
σ2
S + octφt

|at(nit)(∆t + γoctΘt) + b(nit)ε
i
t| (236)

where the second equality follows from using Lemma C.2 and C.3 to write the diffusion BQ (defined

in Lemma A.3) explicitly as BQ,t =
σ2
S(kt−γσΘ)oct
σ2
S+octφt

. Using (235), a manager i’s instantaneous alpha

t−statistic tiα is the ratio of alpha to its standard error under the econometrician’s filtration F :

tiα,t =
αit
σit

=
θ̂it∣∣∣θ̂it
∣∣∣
AQ,tΨt

|BQ,t|
= sign

(
θ̂it

) σ2
S |kt|

σ2
S + octφt

(∆t + γoctΘt) (237)

where the second line follows from substituting (229) and the expression for BQ above and simpli-
fying. It follows that the unconditional t−statistic t̂iα of the estimator α̂i for a manager who holds
ni ideas is given by

t̂α,t(n
i) = E

[
tiα,t
∣∣nit = ni

]
=

σ2
S |kt|

σ2
S + octφt

E
[

sign
(
θ̂it

)
(∆t + γoctΘt)

∣∣∣nit = ni
]
. (238)

To compute the expectation in (238), define the variable

Xt := ∆t + γoctΘt ∼ N
(
0,E

[
X2
t

])
(239)
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and observe that

sign(θ̂it) = 1⇔
{
Xt > − b(n)

at(n)ε
i
t, n ≥ φt

Xt < − b(n)
at(n)ε

i
t, n < φt

(240)

with the same result applying symmetrically for sign(θ̂it) = −1. Using this result, I compute the
expectation in (238) as

E
[
sign

(
θ̂it

)
Xt

]
= (−1)1n<φtE


 P

[
Xt > − b(n)

at(n)ε
]
E
[
Xt|Xt > − b(n)

at(n)ε
]

−P
[
Xt < − b(n)

at(n)ε
]
E
[
Xt|Xt < − b(n)

at(n)ε
]

 (241)

= (−1)1n<φt
1√

2πE
[
X2
t

]E
[∫ ∞

− b(n)
at(n)

ε
Xte

− 1
2

X2
t

E[X2
t ] dXt −

∫ − b(n)
at(n)

ε

−∞
Xte

− 1
2

X2
t

E[X2
t ] dXt

]

(242)

= (−1)1n<φt

√
2

π

1√
E[X2

t ]
E

[∫ ∞

− b(n)
at(n)

ε
Xte

− 1
2

X2
t

E[X2
t ] dXt

]
(243)

= (−1)1n<φt

√
2

π

√
E[X2

t ]

∫

R
exp

(
−1

2

1

E[X2
t ]

(
b(n)

at(n)

)2

ε2

)
φ(ε)dε (244)

= (−1)1n<φt

√
2

π

E[X2
t ]√

E[X2
t ] +

(
b(n)
at(n)

)2
. (245)

Substituting (241) in (238), I finally obtain (24).

Appendix F. Population dynamics

In this appendix, I derive the dynamics of information sharing for the general setting of Section
2.1 (Appendix F.1). I then derive an explicit solution for the average number of ideas under network
formation in Section 5.2.2 (Appendix F.2). Finally, I derive a manager’s average trajectory of
number of ideas, which I use for the main analysis in Section 5 (Appendix F.3).

F.1. Population dynamics in the general setting of Section 2.1

In the general setting of Section 2.1, the dynamics of a manager i’s number ni of ideas satisfy

dnit = ∆nitdN
i
t , ni0 ∼ π0, ∆nit ∼ πt(·;nit−) (246)

where (N i)t≥0 denotes a Poisson process with intensity η(nit−). These dynamics imply a certain
cross-sectional distribution, µ, of number of ideas, i.e., the distribution µ must satisfy a certain
Kolmogorov Forward Equation (KFE), which I derive using the result formulated in Lemma F.1.

Lemma F.1. Define the expectation

gt ≡ E[f(nt)] =
∑

k∈N
f(k)µt(k) (247)
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for some continuous function f(·). Then, the function g must satisfy the differential equation

d

dt
gt =

∑

n∈N
ηt(n)µt(n)

∑

m∈N
f(n+m)πt(m;n)−

∑

n∈N
ηt(n)µt(n)f(n) (248)

with initial condition g0 =
∑

k∈N f(k)π0(k).

Proof. Observe that the generator of the process in (246) satisfies

Af(n) = ηt(n)
∑

m∈N
πt(m;n)(f(n+m)− f(n)) (249)

and rewrite the expectation in (247) as

gt = E[f(n0)] +

∫ t

0
E[Af(ns)]ds = E[f(n0)] +

∫ t

0

∑

n∈N
Af(n)µs(n)ds. (250)

Differentiating Eq. (250) with respect to time and rearranging yields (248).

To obtain the KFE in (3), I then change the summation order in (248). Specifically, introduce
the change of variable k ≡ n+m and rewrite the first term in (248) as

∑

n∈N

∑

m∈N
f(n+m)ηt(n)πt(m;n)µt(n) =

∑

k∈N

k−1∑

m=1

f(k)ηt(k −m)πt(m; k −m)µt(k −m). (251)

Plugging (251) into (248) and rearranging, I obtain

∑

n∈N
f(n)

d

dt
µt(n) =

∑

n∈N
f(n)

(
η

n−1∑

m=1

ηt(n−m)πt(m;n−m)µt(n−m)− ηt(n)µt(n)

)
. (252)

Observing that this equation must hold for any continuous function f(·), the KFE in (3) follows.

F.2. Proof of Corollary 4

In the particular case of Section 5.2.2, I further assume that a manager belongs to two different
classes, indexed by k ∈ {A,B}, depending on whether her number ni of ideas is in A = {n ∈ N? :
n < N} or B = {n ∈ N? : n ≥ N}, for some integer N ≥ 1. Any manager is matched with some
other manager with intensity η. Upon meeting someone, a manager is matched with someone of her
network with probability p and with someone of the other network with probability 1− p. Hence,
two managers i and j are matched with intensity

η(ni, nj) = η (p(1ni∈A1nj∈A + 1ni∈B1nj∈B) + (1− p)(1ni∈A1nj∈B + 1ni∈B1nj∈A)) . (253)

It follows that, conditional on having n signals at time t, manager i meets someone with intensity

ηt(n) =
1

dt
P
[
dN i

t = 1
∣∣nit− = n

]
=
∑

m∈N
η(n,m)µt(m) (254)

= η (1n∈A (pqt + (1− p)(1− qt)) + 1n∈B ((1− p)qt + p(1− qt))) (255)
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where qt =
∑

m∈A µt(m) represents the fraction of managers in class A at time t. Upon meeting
manager j at time t, manager i gets m additional signals according to

πt(m;n) =

(
1n∈A

p1m∈A + (1− p)1m∈B
pqt + (1− p)(1− qt)

+ 1n∈B
(1− p)1m∈A + p1m∈B
p(1− qt) + (1− p)qt

µt(m)

)
µt(m). (256)

Substituting Eqs. (254) and (256) into the KFE in Eq. (3) and simplifying yields the following
population dynamics:

d

dt
µt(n) = η


1n≤2(N−1)p

(n−1)∧(N−1)∑

m=1∨(n−(N−1))

µt(m)µt(n−m) + 1n≥N+1(1− p)
n−1∑

m=N∨(n−(N−1))

µt(m)µt(n−m)




(257)

+ η


1n≥N+1(1− p)

(n−N)∧(N−1)∑

m=1

µt(m)µt(n−m) + 1n≥2Np

n−N∑

m=N

µt(m)µt(n−m)




(258)

− η (1n∈A (pqt + (1− p)(1− qt)) + 1n∈B (p(1− qt) + (1− p)qt))µt(n), µ0(n) = δn=1.
(259)

To obtain the cross-sectional average number φ of ideas in (45), notice that the KFE in (257)
decouples into a simpler equation for all n ∈ A:

d

dt
µt(n) = ηp

n−1∑

m=1

µt(m)µt(n−m)− η (pqt + (1− p)(1− qt))µt(n), µ0(n) = δn=1, ∀n ∈ A.

(260)

The equation in (260) has a solution of the form

µt(n) = an−1
t b−1

t , n ∈ A, (261)

which substituted in (260) yields

(n− 1)a−1
t

d

dt
at − b−1

t

d

dt
bt = −η (pqt + (1− p)(1− qt)) + ηp(n− 1)b−1

t a−1
t . (262)

Separating variables and using (261) to write qt =
∑

n∈A a
n−1
t b−1

t = b−1
t

aN−1
t −1
at−1 , the Boltzmann

equation in (260) decouples into the system of ODEs

d

dt
bt = η

(
(1− p)bt + (2p− 1)

aN−1
t − 1

at − 1

)
, b0 = 1, (263)

d

dt
at = ηpb−1

t , a0 = 0. (264)

To solve the system in (263), conjecture that at ≡ G−1(ηpt + G(0)) for some function G(·) to be
determined. Substituting this conjecture in the last ODE in (263) immediately yields bt = G′(at).
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Substituting this expression in the first ODE in (263) yields an ODE for G′(x):

d log(G′(x)) =
1− p
p

G′(x) +
2p− 1

p

xN−1 − 1

x− 1
, G′(0) = 1, G(1) = 0. (265)

This equation has an explicit solution of the form

G(x) =
p

p− 1
log


1−

1−p
p

∫ x
1 exp

(
2p−1
p

∑
n∈A

zn

n

)
dz

1 + 1−p
p

∫ 0
1 exp

(
2p−1
p

∑
n∈A

zn

n

)
dz


 (266)

≡ p

p− 1
log

(
1−

1−p
p F (x)

1 + 1−p
p F (0)

)
, ∀x ∈ R+ (267)

where the function F (·) is defined as

F (x) =

∫ x

1
exp

(
2p− 1

p

∑

n∈A

1

n
zn

)
dz, ∀x ∈ R+. (268)

The inverse of the function G(·) is thus given by

G−1(y) = F−1




(
1− exp

(
p−1
p y
))

(p+ (1− p)F (0))

1− p


 , ∀y ∈ R+. (269)

Substituting back into at = G−1(ηpt+G(0)) and differentiating (266) to get bt = G′(at) yields:

at = F−1
(
p(1−exp((p−1)ηt))+(1−p)F (0)

1−p

)
and bt = pF ′(at)

p+(1−p)(F (0)−F (at))
. (270)

Although Eq. (257) does not have an explicit solution for all n ∈ B, it can be solved through Fast
Fourier Transform (FFT). Define the function

ϕAt (ω) =
∑

n∈A
eiωnµt(n) = b−1

t

eiω − eiωNaN−1
t

1− eiωat
, ∀ω ∈ R (271)

where i =
√
−1. Further denote the Fourier transform of µ by ϕt(ω) =

∫
R e

iωndµt(n). Using (248)
with f(n) ≡ eiωn and (271), the Fourier transform ϕ must satisfy the Riccati equation

d

dt
ϕt = η

(
p(ϕt − 2ϕAt )(2qt + ϕt − 2ϕAt − 1) + 2ϕAt (qt + ϕt)− qtϕt − 2(ϕAt )2 − ϕAt

)
, ϕ0 = eiω.

(272)

Using (270) and (271), I now define

φAt =
∑

n∈A
nµt(n) =

1

i

∂

∂ω
ϕAt (ω)

∣∣∣∣
ω=0

= b−1
t

1 + aN−1
t (at(N − 1)−N)

(1− at)2
. (273)

Substituting f(n) ≡ n and (273) in (248), it follows that the cross-sectional average number of
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signal φt =
∑

n∈N nµt(n) satisfies the ODE

d

dt
φt = η

(
(pqt + (1− p)(1− qt))

∑

n∈A
nµt(n) + ((1− p)qt + p(1− qt))

∑

n∈B
nµt(n)

)
(274)

= η
(
(2p− 1)(2qt − 1)φAt + (p+ qt − 2pqt)φt

)
φ0 = 1. (275)

The solution to this equation is given explicitly by

φt = b−1
t eηt

(
1 + η(2p− 1)

∫ t

0
e−ηsbs(2qs − 1)φAs ds

)
≤ exp(ηt). (276)

Substituting (273) into this equation, I obtain (45).

F.3. Average trajectories of number of ideas

Finally, for the analysis it is useful to obtain the average trajectory of a manager i’s number
of ideas conditional on manager i holding niT = k ideas at the horizon date, i.e., E

[
nit
∣∣niT = k

]
.

Applying Bayes’ rule, first observe that

P
[
nit = m

∣∣niT = k
]

=
P[nit = m]P[niT = k

∣∣nit = m]

P[niT = k]
=
µt(m)ρT−t(k;m)

µT (k)
(277)

where ρ is the probability that manager i gets k − m ideas by the horizon date conditional on
holding m ideas at time t. To compute this probability, apply the result of Lemma F.1 to gs ≡∑

n∈N f(n)ρT−s(n;m) for s > t with initial condition, gt = m, which yields:

ρT−t(k;m) = 1{k≥m}e
t−(k−m+1)T

((
eηT − 1

)k−m−1
(
eη(T−t) − 1

))1{k−m≥1}
(278)

under idea sharing, whereas under idea origination:

d

dt
ρs(k;m) = −ηρs(k;m) + ηρs(k;m− 1), (279)

with initial condition, ρt(n;m) = δn=m, where δn=m is a Dirac mass at n = m. It then follows that
the average trajectory of manager i’s number of ideas is given by

E
[
nit
∣∣niT = k

]
=

1

µT (k)

k∑

m=1

mµt(m)ρT−t(k;m), (280)

which has a closed-form solution under idea sharing:

E
[
nit
∣∣niT = k

]
=

1− eηT + ekη(T−t) (eηt − 1
)k (

eηT − 1
)1−k

1− eη(T−t) . (281)

Appendix G. Proof of Proposition 8 (Density of t−statistics)

In this appendix, I derive the probability density function of conditional alpha t−statistics
explicitly.
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Consider first the probability that a manager i’s conditional t−statistics in Eq. (38) is below
some threshold x ∈ R conditional on holding n ideas at time t:

P
[
tiα,t ≤ x

∣∣nit = n
]

= P
[

sign(θ̂it)
σ2
S |kt|

σ2
S + octφt

Xt ≤ x
∣∣∣∣nit = n

]
(282)

= P
[
θ̂it < 0, Xt ≥ −x

σ2
S + octφt
σ2
S |kt|

∣∣∣∣nit = n

]
+ P

[
θ̂it > 0, Xt ≤ x

σ2
S + octφt
σ2
S |kt|

∣∣∣∣nit = n

]
.

(283)

Further conditioning on n > φt and using Eq. (240), we can write this expression as:

P
[
tiα,t ≤ x

∣∣nit = n ≥ φt
]

= P
[
Xt < −

b(n)

at(n)
εit, Xt ≥ −x

σ2
S + octφt
σ2
S |kt|

∣∣∣∣n ≥ φt
]

(284)

+ P
[
Xt > −

b(n)

at(n)
εit, Xt ≤ x

σ2
S + octφt
σ2
S |kt|

∣∣∣∣n ≥ φt
]

(285)

= 2P
[
εit ≤

at(n)

b(n)

σ2
S + octφt
σ2
S |kt|

x,−xσ
2
S + octφt
σ2
S |kt|

≤ Xt < −
b(n)

at(n)
εit

∣∣∣∣n ≥ φt
]

(286)

= 2

∫ at(n)
b(n)

σ2
S+octφt

σ2
S
|kt|

x

−∞

(
Φ

(
− b(n)

at(n)

ε√
E[X2

t ]

)
− Φ

(
− x√

E[X2
t ]

σ2
S + octφt
σ2
S |kt|

))
φ(ε)dε

(287)

where the second equality follows from the symmetry of the normal distribution and from reorga-
nizing. Repeating the same steps, but conditioning on n < φt similarly yields

P
[
tiα,t ≤ x

∣∣nit = n < φt
]

= P
[
Xt ≥ max

{
−xσ

2
S + octφt
σ2
S |kt|

,− b(n)

at(n)
εit

}∣∣∣∣n < φt

]
(288)

+ P
[
Xt ≤ min

{
x
σ2
S + octφt
σ2
S |kt|

,− b(n)

at(n)
εit

}∣∣∣∣n < φt

]
(289)

= 2P
[
Xt ≤ min

{
x
σ2
S + octφt
σ2
S |kt|

,− b(n)

at(n)
εit

}∣∣∣∣n < φt

]
(290)

= 2


 P

[
εit > −at(n)

b(n)

σ2
S+octφt
σ2
S |kt|

x
∣∣∣n < φt

]
P
[
Xt ≤ xσ

2
S+octφt
σ2
S |kt|

]

+P
[
εit < −at(n)

b(n)

σ2
S+octφt
σ2
S |kt|

x,Xt ≤ − b(n)
at(n)ε

i
t

∣∣∣n < φt

]

 (291)

= 2




(
1− Φ

(
−at(n)

b(n)

σ2
S+octφt
σ2
S |kt|

x
))

Φ

(
x√
E[X2

t ]

σ2
S+octφt
σ2
S |kt|

)

+
∫ −at(n)

b(n)

σ2
S+octφt

σ2
S
|kt|

x

−∞ Φ

(
− b(n)
at(n)

ε√
E[X2

t ]

)
φ(ε)dε


 . (292)

Now observe that the density of manager i’s conditional t−statistics conditional on holding n ideas
at time t is obtained by differentiating Eq. (282) with respect to x:

P[tiα,t ∈ (x, x+ dx)|nit = n] = 1n<φt
d

dx
P
[
tiα,t ≤ x

∣∣nit = n < φt
]

+ 1n≥φt
d

dx
P
[
tiα,t ≤ x

∣∣nit = n ≥ φt
]
.

(293)
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Differentiating the expressions in Eqs. (284) and (288) and reorganizing yields

d

dx
P
[
tiα,t ≤ x

∣∣nit = n < φt
]

=
d

dx
P
[
tiα,t ≤ x

∣∣nit = n ≥ φt
]

= lt(x)

(
1 + erf

(
at(n)√
2b(n)

σ2
S + octφt
σ2
S |kt|

x

))
,

(294)

where lt(·) denotes the Gaussian density defined in Eq. (40). It follows that the density of condi-
tional t−statistics at time t satisfies

P[tiα,t ∈ (x, x+ dx)] =
∑

n∈N∗
µt(n)P[tiα,t ∈ (x, x+ dx)|nit = n] (295)

= lt(x)

(
1 +

∑

n∈N∗
µt(n)erf

(
at(n)√
2b(n)

σ2
S + octφt
σ2
S |kt|

x

))
. (296)

I finally use the Taylor series of the error function to write this density as

P[tiα,t ∈ (x, x+ dx)] = lt(x)

(
1 +

∑

n∈N∗
µt(n)

2√
π

∑

k∈N

(−1)k

k!(2k + 1)

(
at(n)√
2b(n)

σ2
S + octφt
σ2
S |kt|

x

)2k+1
)

(297)

= lt(x)

(
1 +

∑

k∈N
(−1)kc(k)x2k+1

∑

n∈N∗
µt(n)Rt(n)2k+1

)
(298)

where the coefficients c(k) are all positive, decreasing and satisfy:

c(k) = 1√
π

1
k!(2k+1)

(
1√
2

)2k−1
, k ∈ N. (299)

Appendix H. Proof of Proposition 9 (Distribution shift)

In this appendix I show that the cross-sectional distribution of t−statistics is shifted to the left
when the distribution of number of ideas is symmetric or satisfies Corollary 1.

I start by computing the probability that a manager i’s t−statistic is negative:

P[tiα,t ≤ 0] =

∫ 0

−∞
lt(x)

(
1 +

∑

n∈N∗
µt(n)erf

(
x√
2
Rt(n)

))
dx (300)

=
1

2
− 1

π

∑

n∈N∗
µt(n)tan−1

(
n− φt√

n

√
E[SR2

t ]

σS |kt|

)
. (301)

Proving that Eq. (43) holds is thus equivalent to proving:

∑

n∈N∗
µt(n)tan−1

(
n− φt√

n
ϕt

)
≡ Υt < 0, (302)

where ϕt > 0 is positive at all finite times.
Assuming the functional form for µt in Corollary 1, I start by bounding tan−1(·) in Eq. (302)
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by a piecewise linear function:

tan−1
(
ϕt

n−φt√
n

)
≤ 1n≤bφtc

φt−n
φt−1 tan−1(ϕt(1− φt)) + 1n>bφtcmin

{
n−φt√
φt
, π2

}
≡ g(n), n ∈ N∗ ,

(303)

where the first term exploits that the support is bounded at 1 and the second term exploits both that
the function is concave for all n ≥ φt and thus bounded above by its first-order Taylor expansion
and that tan−1(·) is bounded above at π/2. Although this bound can be tightened, it is sufficient
to prove Eq. (302) and simple enough to compute explicit expressions: rewriting µt in Eq. (27) as

µt(n) = φ−nt (φt − 1)n−1, (304)

and taking expectations over the function g(·) in Eq. (303) yields the explicit bound:

Υt <

(
φt − 1

φt

)bφtc ϕt bφtc√
φt



(

1 + π
√
φt

2ϕt
−
⌈
φt + π

√
φt

2ϕt

⌉)(
φt−1
φt

)
⌈
φt+

π
√
φt

2ϕt

⌉
−(bφtc+1)

+
√
φt

(
tan−1(ϕt(1−φt))

ϕt(φt−1) + 1√
φt

)


 . (305)

By assumption, η > 0, which implies that φt > 1 and thus the term inside the bracket is nonpositive,
from which the inequality in Eq. (302) follows.

Note that the result also obtains when µt is strictly symmetric at all times. Since the function
tan−1(·) in Eq. (302) is odd and negative for all n ≤ bφtc, I define a new function f : [bφtc +
1, 2bφtc]→ R+ by reflecting tan−1(·) in Eq. (302) first horizontally about zero and then vertically
about φt to obtain:

f(n) = tan−1

(
ϕt

n−(2bφtc+1−φt)√
2bφtc+1−n

)
, n = bφtc+ 1, . . . , 2bφtc. (306)

The concavity of the skill-to-luck ratio then implies that

f(n) > tan−1
(
ϕt

n−φt√
n

)
, n = bφtc+ 1, . . . , 2bφtc. (307)

Using this result I obtain a strict bound for Eq. (302):

Υt <
∑

n∈[1,bφtc]∪(2bφtc,...,∞)

µt(n)tan−1

(
n− φt√

n
ϕt

)
+

∑

n∈(bφtc,2bφtc]

µt(n)f(n), (308)

at all finite times. Symmetry further implies that

∑

n∈[1,bφtc]

µt(n)tan−1

(
n− φt√

n
ϕt

)
+

∑

n∈(bφtc,2bφtc]

µt(n)f(n) = 0 (309)

and that µt has zero mass beyond twice its mean:

µt(n) = 0, n ≥ 2bφtc, (310)

since it is symmetric and its support is bounded from the left at 1. Hence, in the symmetric case
Eq. (308) directly leads to Eq. (302).
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Appendix I. Details on computations in Section 6

In this appendix I discuss computational details related to the equilibrium solution in the
presence of fund flows and fees. For brevity, I simply pinpoint results that differ from the baseline
model.

Note first that flows and fees do not affect the results of Proposition 1. However, they modify
portfolio strategies. To see how, I go over the main steps of Appendix B in the presence of fees and
flows. Maximizing manager i’s expected utility over compensation in Eq. (48) implies:

max
θi

E
[
− exp

(
−γf((τ + 1)W i

T − τBT )
)∣∣F i

t

]
. (311)

The solution to this maximization problem is

θiT− ≡ θi(Ψ, n, T−) =
1

f(τ + 1)γ
(oT−(n))−1 λ>T−Ψ +

τ

τ + 1

(
λ1,T−
λ2,T−

∆i
T− + Θ̂i

T−

)
. (312)

which substituted in the value function yields the boundary condition

J(W,B,Ψ, n, T−) = − exp

(
−γf((τ + 1)W − τB)− 1

2
(oT−(n))−1 Ψ>ΛT−Ψ

)
. (313)

The problem has an additional state variable, B, which applying Ito’s lemma to Eq. (50) satisfies:

dBt = Θ̂c
tdPt =

(
λ1,t

λ2,t
1
)

Ψi
tdPt ≡ ω>t Ψi

tdPt. (314)

The associated HJB equation now satisfies

0 = max
θi

{
JWAQΨiθi +

1

2
JWWB

2
Q(θi)2 +BQBΨ(ni)>JWΨθ

i + JWBB
2
Qω
>Ψθi

}
+ Jt + J>ΨAΨΨi

(315)

+
1

2
tr(JΨΨBΨ(ni)BΨ(ni)>) + JB(Ψi)>ω>AQΨi +

1

2
JBBB

2
Q(Ψi)>ω>ωΨi +BQω

>ΨiBΨ(ni)>JBΨ

(316)

+ η(ni)ELt(Ŷ i,∆ni)
[
J(W i, Bi,Ψi + σ(ni,∆ni)Ŷ i, ni + ∆ni, t)− J(W i, Bi,Ψi, ni, t)

]
. (317)

The first-order condition then yields the following portfolio policy:

θit ≡ θt(Ψi, ni) = −
JWAQΨi +BQBΨ(ni)>JWΨ + JWBB

2
Qω
>Ψ

JWWB2
Q

. (318)

Substituting back in the HJB equation, tedious derivations show the ansatz of Theorem B.1 be-
comes:

J(W,B,Ψ, n, t) = − exp

(
−γf((τ + 1)W − τB)− ut(n)− 1

2

(
Ψ>Rt(n) +Rt(n)>Ψ + Ψ>Mt(n)Ψ

))
,

(319)

where R and M satisfy the system of equations in Theorem B.1. The equation for u differs, but
is irrelevant for portfolio strategies and is thus omitted. As a result, the solution for R and M is
identical to Lemma B.3. Substituting these expressions in the optimal policy yields Eq. (51).
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To obtain price coefficients I now go over the main steps in Appendix C. Aggregating first
portfolios at the horizon date:

∫ 1

0
θiT−di =

∑

n∈N
µT (n)

1

γf
(oT−(n))−1 λ>T−ΓT−(n)ΨT + τωT−ΨT = (τ + 1)1?ΨT , (320)

which yields the boundary conditions

λ1,T− =
ocT−φT

(τ+1)(φT o
c
T−+σ2

S)
and λ2,T− = −γf ocT−σ

2
S

(φT o
c
T−+σ2

S)
. (321)

Similarly, aggregating portfolios at date t, Eq. (204) becomes:

∑

n∈N
µt(n)

(
AQ,t −BQ,t (ot(n))−1BΨ,t(n)>Λt

)
Γt(n)ωt = −λ1,t

λ2,t
γf(τ + 1)B2

Q,t, (322)

since ω>t ωt = 0, which yields,
λ1,t

λ2,t
= − φt

γf(τ+1)σ2
S

, and thus

oct =

(
1

σ2
Π

+

(
φ0

γf(τ + 1)σΘσ2
S

)2

+

(
1

σΘσ2
Sγf(τ + 1)

)2 ∫ t

0

(
d

ds
φs

)2

ds

)−1

. (323)

Finally, spelling out the second equation of the system Eq. (211) becomes

d

dt
λ2,t = −ktλ2,tBQ,t +B2

Q,t

(
λ2,t

φto
c
t + σ2

S

octσ
2
S

+ γf

)
, (324)

the solution of which is Eq. (52).
Furthermore, going through the steps of Appendix D and simplifying yields

θ̂it =
nit − φt

fγ(τ + 1)(σ2
S + octφt)

(
σ2
S(τ + 1) + τoctφt
σ2
S(τ + 1)

∆t + fγoctΘt

)
+

√
nit

fγ(τ + 1)σS
εit (325)

+ τ
σ2
Skt(fγσ

2
SσΘ(τ + 1) + kto

c
tφt)

(σ2
S(τ + 1)(fγσΘ − kt)− τktoctφt)2

(
φt

fγσ2
S(τ + 1)

∆t −Θt

)
(326)

≡ a∆,t(n
i
t)∆t + aΘ,t(n

i
t)Θt + aε,t(n

i
t)ε

i
t, (327)

where the second line corresponds to the function H(·) in Eq. (53). To compute informational
alphas, I substitute the equilibrium solution in Eq. (86) to obtain

AQ,t = τ

(
ktoct (fγσ

4
SσΘ(τ+1)+ktoctφt(2σ

2
S+octφt))

(τ+1)(σ2
S+octφt)

2

0

)
+

(
1

γfoct

)
σ4
Skto

c
t(kt − (τ + 1)σΘγf)

(σ2
S + octφt)

2
(328)

≡ b∆,t(nit)∆t + bΘ,t(n
i
t)Θt, (329)

and

BQ,t =
oct |σ2

S(τ + 1)(kt − fγσΘ) + τktφto
c
t |

(τ + 1)(σ2
S + φtoct)

. (330)

With these expressions can then compute t−statistics by simulations using Eq. (22).
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Table 1
Summary of the notation. This table summarizes the main parameters (part 1), variables
(part 2-4), and information sets (part 5) of the model.

Symbol Definition

1. parameters of the model

T horizon date
γ coefficient of absolute risk aversion

σΠ volatility of the fundamental

σΘ volatility of the supply

σS volatility of the noise in individual ideas

η arrival rate of ideas

N network threshold
τ performance-flow parameter

f fulcrum performance fee (rate)

2. equilibrium variables

Π fundamental value of the stock

Θ (noisy) supply of the stock

X̂j expectation of X conditional on F j

oj posterior variance of the fundamental conditional on F j

∆ informational advantage achieved under perfect information

P equilibrium stock price

λ1 price sensitivity to the fundamental

λ2 price sensitivity to the supply

k speed at which prices reveal information

3. idea-gathering variables

n number of ideas
µ cross-sectional distribution of number of ideas

π distribution of incremental number of ideas
φ cross-sectional average number of ideas

4. performance variables

W wealth (assets under management)

θ holdings in the stock

θ̂ informational holdings (holdings net of per capital supply shocks)

α informational alpha (alpha relative to average manager)

tα alpha t−statistic

tmax maximal level of statistical significance

s(n) skill (distance between n and the cross-sectional average number of ideas)

R(n) skill-to-luck ratio (trading intensity on informatioin relative to noise)

SR market Sharpe ratio

5. information sets

F c common information set (price history)

F i information set of manager i (price history and collection of ideas)

F information set of the econometrician (fundamental, supply, informational holdings)
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Fig. 1. Simulated Path of a Manager’s Expectations. This figure plots a simulated path of
a manager i’s number ni of ideas (left panel), her posterior variance oi (the middle panel),

and her expectations of the fundamental Π̂i (the right panel).
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lower panel depict the cross-sectional distribution of unconditional alpha t−statistics under
idea sharing and origination, respectively. The calibration is σΘ = σS = σΠ = 1, and γ = 3;
it assumes a yearly sample size, T = 1, and η = 4 ideas a year on average. Each panel shows
the average manager’s performance and the maximal level of statistical significance, tmax,T.
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is σΘ = σS = σΠ = 1, and γ = 3; it assumes a yearly sample size, T = 1, and η = 4 ideas a
year on average. Each panel shows the distribution generated by the average manager (the
red dashed line). All distributions are obtained from 500000 simulations of the economy.
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the population is endogenously segmented into Network A (dashed red line) and B (solid
black line). The calibration is σΘ = σS = σΠ = 1, and γ = 3; it assumes a yearly sample
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Fig. 8. Fund flows and performance under idea sharing. The left panel plots the distribution
of average t−statistics under idea sharing with fund flows; the red dashed line is the distribu-
tion under pure luck. In the same setup, the middle and right panels plot the unconditional
alpha and its t−statistic as a function of time. The dashed red line corresponds to the aver-
age unskilled manager (Group A) and the solid black line corresponds to the average skilled
manager (Group B). The calibration is σΘ = σS = σΠ = 1, and γ = 3; it assumes a yearly
sample size, T = 1, and η = 4 ideas a year on average, and τ = 0.86, and all distributions
are obtained from 200000 simulations.
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