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Abstract

We build an information-based two-country general equilibrium model. There are
two dividend processes with correlated growth rates. Agents from each country ob-
serve a global public signal informative about both growth rates. We first let agents
rationally process information, and then we allow for reasonable departures from ra-
tionality. In particular, agents are overconfident with respect to the signal, and as a
result have heterogeneous beliefs. In the rational case we report a significant increase
in comovement between stock returns. This result is significantly amplified when con-
sidering a small amount of misinterpretation of the global signal. Additionally, we find
that overconfidence leads to home equity bias. We show that home bias is further
increased when fundamentals are more and more correlated. On the technical side, a
new methodology for deriving the general equilibrium results is described.

1 Introduction

In recent years, we witnessed a significant increase in the correlation of returns across na-
tional stock markets. This raises the natural question of whether the correlations in returns
are justified by the (lower) correlations between countries’ economic fundamentals. On the
one hand, researchers asked themselves whether this increase in correlation could be seen
as a result of gradual international financial market integration1. On the other hand, this
surge in cross-country correlations could also be the result of an increase of the volume of
global public information available to investors.

In this paper, we try to isolate the impact of global economic news on the comovement
of international financial markets. That is, we theoretically revisit the role of global public
news about fundamentals in cross-country correlations. Our results are first derived within
a rational setting. We then alter this setup to account for small departures from rationality.
∗The authors are grateful for conversations with Benjamin Croitoru, Jérôme Detemple, Bernard Dumas,

Alexandre Jeanneret, Emilio Osambela, Giovanni Puopolo, and for helpful comments from participants in
finance seminars at Gerzensee and the AFBC 2009 conference in Sydney.
†Swiss Finance Institute, University of Lausanne - Institute of Banking and Finance, dandrei@unil.ch,

www.danielandrei.net.
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1see, for instance, Dumas, Harvey and Ruiz (2003)
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More precisely, irrationality is modeled as a difference in information processing as in Dumas
et al. [2009], for instance.

The point of this paper is made in two steps. First, in a benchmark model, perfectly
rational agents filter out the unobservable growth rate of dividends (or the fundamental),
after observing dividends as well as a global public signal pertaining to the fundamental of
each country. The model is solved in closed form and solutions are provided for stock prices,
cross-country stock markets comovement and volatilities. The increase in the correlation
between the global economic news and the fundamentals can be interpreted as an increase in
the relevance of the available global information. The latter increase endogenously produces
substantial comovement between stock returns along with an increase in returns volatility.
We measure the correlation in different states of the economy, and find that when agents
infer that the economy is in a bad state (i.e., they believe that both growth rates are low
compared their long term mean), the stock market comovement tends to increase, which
tangentially links our paper to the “international contagion” literature.

Second, we consider the case in which both agents perceive their own fundamental pro-
cess to be differently correlated with the global signal. In particular, each agent overstates
the correlation between the global signal and his own fundamental. This generates differ-
ences of beliefs across agents. While in this case the computations get more involved, we
can still solve the model by keeping the setup affine and applying the associated solution
techniques. We derive results in terms of comovement, volatilities and international portfolio
choice. We find that the overconfidence of investors amplifies the international stock market
comovement as well as the volatility of the stock markets. Moreover, an overstatement of
the correlation between the global signal and the domestic fundamental make investors tilt
their portfolio towards domestic assets, thus producing home equity bias. For small devi-
ations from rationality, the home equity bias is reinforced if the real correlation between
growth rates is high. This result is very intuitive and easy to understand within a standard
Markowitz portfolio allocation problem: if two assets become more and more correlated,
the diversification benefits are greatly reduced; thus, a small asymmetry in portfolio choice
which initially pushes agents to hold a particular asset will be amplified by the increase in
correlation. In other words, the correlation between the fundamentals might amplify the
home equity bias.

The main contribution of the present work is that we are able to disentangle the ef-
fect on comovement of different factors. We show first what fraction is explained by the
correlation of the fundamentals, then what percentage comes from the global public news
and, finally, we gauge how small deviations from rationality might as well influence comove-
ment. Aditionally, as it will be described in section 3, our solution method is somewhat
new and requires the transformation of a system or Riccati equations in a single matrix
Riccati equation and, then, to find the closed form in only one step. As it appears that the
solution method can be applied to most of general equilibrium models with affine processes,
we already exploit it in subsequent work. Finally, we document a mechanism which can be
of significant importance in the home equity bias puzzle. Namely, we show that for small
deviations from rationality, the correlation between fundamentals may act as an amplifier
of the home bias.
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Our paper is connected to several strands of literature. The most related research is
Dumas et al. [2008], with two main differences. First, we favor global news rather than com-
petitive signals to explain international stock markets comovement. Second, our objective
is different, since we want to explain how the global information and its interpretation in-
fluences the comovement of international stock markets. Our precise focus on international
stock markets comovement requires a richer model than theirs. While their model considers
two independent economies à la Dumas et al. [2009], our model bring synergies in their setup
by correlating fundamentals. Although this appears to be a straightforward extension, the
solution method requires total rethinking, as it will be described in section 3. Other related
papers are Karolyi and Stulz [2008] and Veldkamp [2006].

We proceed as follows. In section 2 we build the benchmark model and derive our first
results. In section 3 we consider departures from rationality and proceed to describe the
solution methodology. Section 4 presents the comovement results. Section 5 presents the
home-bias results. Section 6 concludes.

2 Benchmark Model

This section describes a two country model in which we isolate the effect of the global public
information on the comovement of asset prices. There is a representative agent located in
each of the two countries labeled A and B, respectively. Agents are provided with free access
to both financial markets, without any transaction fees. Agents in each country are endowed
with one share of their own dividend process. We consider the aggregate endowment process

dδA,t
δA,t

= fA,tdt+ σδdZ
δ
A,t, (1)

dfA,t = ζ (f − fA,t) dt+ σfdZ
f
A,t, (2)

for country A, and

dδB,t
δB,t

= fB,tdt+ σδdZ
δ
B,t, (3)

dfB,t = ζ (f − fB,t) dt+ σfρdZ
f
A,t + σf

√
1− ρ2dZfB,t, (4)

for country B. Notice that ζ, σδ, σf > 0, and that the fundamental processes are corre-
lated. Investors cannot observe the drift of dividends from each country. That is, since the
fundamental process is a hidden state, agents of both countries need to filter it out. They
do so by using the observable dividend process along with a global public signal st. This
signal obeys the dynamics

dst = ρHdZ
f
A,t +

ρF − ρHρ√
1− ρ2

dZfB,t +

√
1−

ρ2
H + ρ2

F − 2ρHρF ρ
1− ρ2

dZst (5)

The coefficients of the brownians in the signal structure are fixed in such a way that ρH
will be the correlation of the signal with the home growth rate and ρF the correlation of
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the global signal with the foreign growth rate. In this section only, we shall consider the
case in which ρF = ρH . Put differently, the global signal has the same correlation with the
processes of the fundamentals fA,t and fB,t. This makes the model completely symmetric,
and thus provide us with a proper benchmark to gauge the effect of a variation in both ρH
and ρF on the comovement of stock markets of both countries.

The uncertainty in the model is governed by the vector of independent Brownian motions[
ZδA, Z

δ
B , Z

f
A, Z

f
B , Z

s
]′

under the objective probability measure. The investor of each country knows that both
fundamentals are positively correlated with the global signal st, and that the fundamental
processes are correlated. They do not under or overestimate any of the correlations stated
above. Thus, our benchmark setup is a rational expectation general equilibrium model.

2.1 Information structure and filtering

As stated above, agents in each country have correct beliefs about the information con-
tained in the global signal. Therefore, when performing their filtering, both agents come
up with the same estimation for the conditional means of the growth of dividends, f̂A,t
and f̂B,t. Following Liptser and Shiryaev [2001], the unobservable process is denoted by
the vector dθ>t =

[
dfA,t dfB,t

]
, and the observable process is collected in the vector

dξ>t =
[
dδA,t/δA,t dδB,t/δB,t dst

]
. The details of the filtering derivations which fol-

low Theorem 12.7 from Liptser and Shiryaev [2001] are provided in Appendix, section 6.1.
For simplicity, we only write the conditional expected values, f̂A,t and f̂B,t, according to
individual of both countries:

[
df̂A,t

df̂B,t

]
=

([
ζf

ζf

]
−
[
ζ 0

0 ζ

][
f̂A,t

f̂B,t

])
dt+

 γ

σ2
δ

γHF
σ2
δ

ρHσf
γHF
σ2
δ

γ

σ2
δ

ρHσf




dδA,t
δA,t

− f̂A,tdt
dδB,t
δB,t

− f̂B,tdt

dst

 (6)

where γ is the steady-state variance of f̂A,t and f̂B,t, and γHF is the steady-state covariance
of f̂A,t and f̂B,t. As in Scheinkman and Xiong [2003], we assume for simplicity that there
has been a sufficiently long period of learning for people of both countries to converge to
their steady-state level of variance, irrespective of their prior. Thus, these variances and
covariances will be constant rather than deterministic functions of time. Note that, since
ρH = ρF , the steady-state variances of f̂A,t and f̂B,t are equal. Closed form solutions for γ
and γHF are provided in Appendix, section 6.1.

Since, in the particular case of this section, there is no difference of beliefs, both agents
consider the same probability measure. Because agents know the right correlations ρH = ρF

and ρ, the probability measure of both agents matches the objective measure in the economy.
Accordingly, we consider the vector Wt =

[
W δ
A,t W δ

B,t W s
t

]
of standard Brownian

motions under the probability measure that reflects the physical probability of states of
nature. We can then replace the observable process in the filtered drifts for both agents to
obtain
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[
df̂A,t

df̂B,t

]
=

([
ζf

ζf

]
−

[
ζ 0

0 ζ

][
f̂A,t

f̂B,t

])
dt+

[
γ
σδ

γHF
σδ

ρHσf
γHF
σδ

γ
σδ

ρHσf

] dW δ
A,t

dW δ
B,t

dW s
t

 (7)

The two dividend processes are accordingly given by

dδA,t
δA,t

= f̂A,tdt+ σδdW
δ
A,t, (8)

dδB,t
δB,t

= f̂B,tdt+ σδdW
δ
B,t. (9)

The Markovian system made of equations (7) and (8)-(9) completely characterizes the dy-
namics of the vector of four exogenous state variables which drives the economy. We define

this state vector as Xt =
[
δA,t δB,t f̂A,t f̂B,t

]>
. We denote by Σt the diffusion matrix

of the entire system, and we provide details in Appendix section 6.1.

2.2 Equilibrium

Both agents have power utility with the same risk aversion, 1−α, and rate of impatience φ.
Assuming complete financial markets, we may formulate optimization problems using the
martingale, “static” approach (as done in Cox and Huang [1989] and Karatzas et al. [1987]).
Accordingly, the problem for agent B is

sup
c

E
∫ ∞

0

e−φt
1
α

(
cBt
)α
dt; α < 1 (10)

s.t. E
∫ ∞

0

ξtc
B
t dt = E

∫ ∞
0

ξtδB,tdt, (11)

where ξt denotes the state-price density. The optimal consumption policy is given by

cBt =
(
λBe

φtξt
)− 1

1−α , (12)

where λB denotes the Lagrange multiplier of the static budget constraint. Agent A faces
an analogous optimization problem. The first-order condition for its consumption policy is
given by

cAt =
(
λAe

φtξt
)− 1

1−α . (13)

The equilibrium condition materialized by the aggregate resource constraint is

(
λBe

φtξt
)− 1

1−α +
(
λAe

φtξt
)− 1

1−α = δA,t + δB,t. (14)

Solving for ξt yields

ξt (δA,t, δB,t) = e−φt

[(
1
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

(δA,t + δB,t)
α−1

. (15)
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Therefore, the consumption shares will be linear in the aggregate dividend. Because we do
not consider terms of trade, the aggregate dividend is simply given by the sum of dividends
δA,t and δB,t.We have

cAt = ω (δA,t + δB,t) , (16)

cBt = (1− ω) (δA,t + δB,t) , (17)

where ω is the optimal share of consumption of investor A in aggregate output:

ω =

(
1
λA

) 1
1−α

(
1
λA

) 1
1−α

+
(

1
λB

) 1
1−α

. (18)

2.3 Securities Market Implementation

Because there are three Brownians that agents care about, we need three securities with
linearly independent payoffs along with a riskfree asset to complete the market. As in Dumas
et al. [2008], we consider two country stocks which are contingent claims to each country’s
dividends. In addition to the country stocks, we consider one riskless instantaneous bank
deposit with interest rate rt and a zero net supply futures contract which is marked to the
fluctuations of the global signal. Prices of single-payoff stocks, which pay dividends only
once in the fixed period T , are functions of δA,t, δB,t, f̂A,t and f̂B,t:

STA,t = Et
[
ξT
ξt
δA,T

]
=

e−φ(T−t)

(δA,t + δB,t)
α−1 Et

[
δA,T (δA,T + δB,T )α−1

]
, (19)

STB,t = EBt
[
ξT
ξt
δB,T

]
=

e−φ(T−t)

(δA,t + δB,t)
α−1 Et

[
δB,T (δA,T + δB,T )α−1

]
. (20)

Stock prices are then computed as the sum of the single-payoff stocks, i.e.

SA,t

(
δA,t, δB,t, f̂A,t, f̂B,t

)
=

∫ ∞
t

SuA,t

(
δA,t, δB,t, f̂A,t, f̂B,t

)
du, (21)

SB,t

(
δA,t, δB,t, f̂A,t, f̂B,t

)
=

∫ ∞
t

SuB,t

(
δA,t, δB,t, f̂A,t, f̂B,t

)
du. (22)

Single-payoff stock prices are computed by transform analysis. More precisely, consider
ζA,t = ln δA,t and ζB,t = ln δB,t. We notice that the setting is affine with respect to the
vector

Yt =
[
ζA,t ζB,t f̂A,t f̂B,t

]′
.

The general process follows the diffusion dynamics

dYt = (K0 +K1Yt) dt+ ΩtdWt, (23)
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with matricesK0, K1 and Ωt provided in the Appendix section 6.2. Consider some coefficient
functions α (τ) ∈ R and β (τ) ∈ R4, β (τ) =

[
β1 (τ) β2 (τ) β3 (τ) β4 (τ)

]
. In order

to derive solutions for the security prices in (19)-(20), we need to compute the moment
generating function for the joint distribution of δA and δB . Since the setup is standard
affine with respect to Y , we may directly postulate the functional form of the moment
generating function for the joint distribution of δA and δB (see Duffie [2008]):

E
[
exp

([
εA εB 0 0

]
Yt

)]
= Et

[
eεAζA,u+εBζB,u

]
= exp (α (u− t) + β (u− t)Yt) .

(24)
Let us call this function H

(
δA,t, δB,t, f̂A,t, f̂B,t

)
, and let τ = u− t. By standard arguments,

as in Duffie [2008], we need to solve a system of Riccati equations of dimension 5. With
slight abuse of notation, this system is of the form

β′ (τ) = K>1 β (τ) +
1
2
β (τ)>D1β (τ) (25)

α′ (τ) = K>0 β (τ) +
1
2
β (τ)>D0β (τ) (26)

where K and D refer to the affine drift and covariance matrix of the state vector Y , i.e.
µt = K0+K1Yt and

(
ΩtΩ>t

)
ij

= D0ij+D1ijYt. Notice that we implicitly use tensor products

as D1is a 3-dimensional matrix. In particular, we let β (τ)>D1β (τ) be the 4-dimensional
vector whose kthelement is

∑
i,j βi(τ)D1,ijkβj(τ). The boundary conditions are β1 (0) = εA,

β2 (0) = εB , β3 (0) = β4 (0) = 0 , and α (0) = 0. We first derive solutions for β (τ):

β1 (τ) = εA (27)

β2 (τ) = εB (28)

β3 (τ) =
εA
(
1− eτζ

)
ζ

(29)

β4 (τ) =
εB
(
1− eτζ

)
ζ

(30)

The solution for α (τ) is slightly more complicated and provided in the Appendix section
6.2. As in Dumas et al. [2008], we notice that H can be re-expressed as

H
(
ζA,t, ζB,t, f̂A,t, f̂B,t

)
= exp

(
CA,tεA + CB,tεB +

1
2
CA2,tε

2
A +

1
2
CB2,tε

2
B + CAB,tεAεB

)
,

(31)
with CA,t, CB,t, CA2,t, CB2,t and CAB,t being functions of ζA,t, ζB,t, f̂A,t, f̂B,t and τ ,
provided in the Appendix section 6.2. We recognize the Laplace transform of a 2-dimensional
Gaussian random variable distributed as(

ζA,t

ζB,t

)
∼ N

( [
CA,t

CB,t

]
,

[
CA2,t CAB,t

CAB,t CB2,t

] )
. (32)
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It follows that the expectations in (19)-(20) can be computed by double numerical integra-
tion, as shown below for STA,t:

STA,t =
e−φ(T−t)

(δA,t + δB,t)
α−1 Et

[
eζA,T

(
eζA,t + eζB,t

)α−1
]

=
e−φ(T−t)

(δA,t + δB,t)
α−1

∫ ∞
−∞

∫ ∞
−∞

eζA,T
(
eζA,t + eζB,t

)α−1N [·, ·] dζA,T dζB,T , (33)

where N [·, ·] refers to the bivariate normal distribution in equation (32). The solution for
STB,t is similar.

2.4 Volatilities and Comovement

In this section, we show how the volatility of the stocks depends on the correlation between
the global signal and the fundamentals. Moreover, we measure the effect of the correlation
between the global signal and the fundamentals on the comovement of stock markets. To
do so, we study the diffusion matrix of the stocks.

The diffusion matrix of the stocks represents the sensitivity or “exposure” to the shocks
in the fundamentals and the global signal, dW δ

A,t, dW
δ
B,t, and dW s

t , respectively. To that
purpose, we need to find the gradient of the price functions and post-multiply by the diffusion
matrix of the state variables, Σt. The diffusion matrix is:

∆t =

 ∂SA,t
∂δA,t

∂SA,t
∂δB,,t

∂SA,t

∂f̂A,t

∂SA,t

∂f̂B,t
∂SB,t
∂δB,t

∂SB,t
∂δB,t

∂SB,t

∂f̂A,t

∂SB,t

∂f̂B,t



δA,tσδ 0 0

0 δB,tσδ 0
γ
σδ

γHF
σδ

ρHσf
γHF
σδ

γ
σδ

ρHσf

 (34)

Solutions for the gradient of the price functions are provided in the Appendix section 6.2.
We denote by ∆A,t the first line of ∆t and by ∆B,t its second line. Accordingly, the variance-
covariance matrix for stock returns is given by

Σstocks =

[
∆A,t/SA,t

∆B,t/SB,t

][
∆′A,t/SA,t
∆′B,t/SB,t

]
(35)

2.4.1 Choice of parameter values

The parameter values are adapted from Dumas et al. [2009] and Brennan and Xia [2001]. We
make sure that the transversality condition is satisfied for both stock prices. The calibration
is reported in the table 1 below.

2.4.2 Results

We first study comovement implications of the benchmark case. The results are exposed in
Figure 1. First, we notice the direct increase of comovement due to an actual increase in
the correlation between the fundamentals. The result is not surprising as we expect that
assets with more correlated fundamentals will co-vary more significantly. Second, and more
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Parameters and state values Symbol Value
Long-term average growth rate of aggregate endowment f̄ 0.025
Volatility of expected growth rate of endowment σf 2.5%
Volatility of aggregate endowment σδ 11%
Mean-reversion parameter ζ 0.3
Agent A’s initial share of aggregate endowment λA/λB 1
Time preference parameter for both agents φ 0.15
Relative risk-aversion for both agents 1− α 7
The level of aggregate dividends δA, δB 1
The average belief about the expected rate of growth f̂A,t, f̂B,t 0.01

Table 1: Parameter values

interestingly, introducing a global signal rationally interpreted by both investors produces a
massive increase in the comovement. As an example, from Figure 1, we see that in the case
of no actual correlation between fundamentals, i.e. ρ = 0, the introduction of a global signal
which is only slightly correlated with the dividend growths, i.e ρH = ρF = 0.1, actually
reverses the strong and counter-factual correlation between the stock markets from -0.95 to
0.1. Then, the marginal increase in the strength of the signal appears to have a decreasing,
yet still positive, impact on comovement. These results come in line with Karolyi and Stulz
[2008]. In their study Karolyi and Stulz [2008] discriminate between “competitive” and
“global” information shocks, and favor the latter mechanism in explaining the stock return
comovement between Japanese and U.S. markets.

ΡH=ΡF=0.6

ΡH=ΡF=0.4

ΡH=ΡF=0.2

ΡH=ΡF=0
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Figure 1: Effect of global news about fundamentals on the comovement between stock
returns.

The hypothesis of investors observing and processing the same set of global information
is not hard to sustain. Indeed, Veldkamp [2006] shows that, when investors are allowed
to endogenously choose the quantity of information they want to buy, they tend to focus
on high-demand information that is less expensive. This maximizing behavior clusters the
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information in a common subset and make stocks move together. The global public signal,
although exogenous in our case, could reflect such a concentration of information across
investors.

Next we turn to the effect of the inclusion of the global signal on the volatility of stock
returns. Note that, since our calibration is symmetric, the volatilities of both stocks are
equal. Figure 2 presents the volatility results. As the global signal becomes more informative,
i.e. ρH and ρF simultaneously increase, the exposure of the stocks to the latter signal
increases. This translates into an increase of the volatility of returns of the stock prices.
This surge is amplified by the price effect: if payoffs are riskier, prices will be smaller, thus
the volatility of returns will increase. Increasing informativeness of the global signal can
thus be interpreted as an additional source of uncertainty. Put differently, as agents become
more aware of additional relevant sources of public information, they take into account more
sources of uncertainty. This raises the aggregate amount of uncertainty in the economy. As
a result, volatilities systematically increase. The same explanation applies when considering
the correlation between the fundamentals, ρ. A high ρ helps investors to better filter the
arriving news and thus increases the cross-exposure of stocks to foreign dividend news. This
raises the volatility of both stock returns.

ΡH=ΡF=0.6

ΡH=ΡF=0.4

ΡH=ΡF=0.2

ΡH=ΡF=0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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0.20

0.25

Ρ

E
qu

ity
vo
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Figure 2: Equity volatility

We are now interested to gauge the impact of the average beliefs about the expected
rate of growth of dividends on the correlation between the stock markets. In Figure 3,
we compute the cross-country stock market comovement when average beliefs vary from
f̂A = f̂B = 0 to −0.02. We can observe that the impact on comovement due to a decrease
in the average beliefs about fA and fB is unambiguously positive. When the economy is
in a bad state, the stock market comovement tends to increase, a phenomenon commonly
referred to as “contagion”. We plan to further analyze this issue using Malliavin calculus.

The results so far have been derived under the assumption of rationality. We find first
that an increase of the volume of global information endogenously produces significant co-
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Figure 3: Average beliefs and comovement

movement between stock returns. Second, it increases the amount of volatility in both stock
markets. Finally, we observe that a low average belief about the expected rate of growth of
dividends generates more comovement. In the next section, we introduce irrational views
about the global signal. We emphasize that the departure from rationality that we consider
is small in magnitude. Yet, the impact is sizable.

3 Difference of Beliefs

3.1 Information and Beliefs

We now consider the case in which both agents perceive the fundamental process of their own
country to be differently correlated with the global signal s. In particular, each agent thinks
that the domestic and foreign dividend conditional mean have a correlation of ρH and ρF
with the global signal, respectively. The latter difference of beliefs induces agents to process
information differently. More precisely, both agents tend to overstate or understate the
correlation of the fundamentals and the global signal with respect to the actual correlation.
The latter over or underconfidence brings irrationality into the benchmark setup in which
agents are perfectly and rationally inferring the hidden states of the home and foreign
economies. Instead, we now let them be subject to bias and allow them to commit mistakes
by letting ρH 6= ρF . Hence, the contribution of this section with respect to the benchmark
case is to gauge how well irrationality, yet to a reasonable extent, may help to reproduce
well-known international finance irregularities. In particular, we expect irrationality to
exacerbate comovement among assets. While rational inference about the correlation of
both fundamentals was producing some additional comovement, overconfidence with respect
to the global signal is likely to magnify this effect. Also, heterogeneity in beliefs introduces
an asymmetry across agents and, thus, a bias in portfolio holdings, i.e. our model generates
home bias towards domestic assets. This feature was not included in the benchmark model
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because agents, being fully rational, had perfectly symmetric beliefs. Therefore, perfect
diversification obtained and no incentives to deviate from perfect risk-sharing were produced.

Formally, agent A has the following model in mind

dst = ρHdZ
f
A,t +

ρF − ρHρ√
1− ρ2

dZfB,t +

√
1−

ρ2
H + ρ2

F − 2ρρHρF
1− ρ2

dZst (36)

whereas, agent B perceives that

dst = ρF dZ
f
A,t +

ρH − ρF ρ√
1− ρ2

dZfB,t +

√
1−

ρ2
H + ρ2

F − 2ρρHρF
1− ρ2

dZst . (37)

Let f̂ ji,t denote country i’s dividend growth rate filtered out by agent j. Since agents perceive
the global signal differently, f̂ ji,t is expected to differ across agents. Accordingly, let ĝi,t =
f̂Bi,t − f̂Ai,t denote the difference of agent A’s beliefs with respect to agent B’s beliefs about
country i’s fundamental. Because we do not wish to postulate that a given agent is irrational,
we assume that the objective measure is not defined on either agent’s σ−field. Notice that
the objective measure matches the probability measure used in the benchmark case. Again,
the assumption of rationality formulated in the previous section implied that agents were
processing information according to the physical measure. Although not considering the
latter measure, we still need to specify a reference measure which we let to be investor
B’s. That is, we consider the vector WB

t =
[
W δ,B
A,t W δ,B

B,t W s,B
t

]
of standard Brownian

motions under the probability measure that reflects the expectations of investor B. Then,
an application of Kalman-Bucy filtering (Liptser and Shiryaev [2001]) delivers the following
filtered dynamics [

df̂BA,t
df̂BB,t

]
=

([
ζf

ζf

]
−

[
ζ 0
0 ζ

][
f̂BA,t
f̂BB,t

])
dt+

+

[
γF
σδ

γHF
σδ

ρFσf
γHF
σδ

γH
σδ

ρHσf

] dW δ,B
A,t

dW δ,B
B,t

dW s,B
t

 (38)

We leave the derivation of these dynamics to the Appendix, section 6.3. Since dividend
growths are unobservable and the objective measure is unknown, the dividend dynamics (1)
and (3) may not be directly considered. Rather, we substitute the filtered dividend growth
given in (38) into the latter dividend dynamics and write

dδA,t
δA,t

= f̂BA,tdt+ σδdW
δ,B
A,t , (39)

dδB,t
δB,t

= f̂BB,tdt+ σδdW
δ,B
B,t . (40)

Because agent A filters out dividend growths differently, (39) and (40) do not hold under
his probability measure. They only do under agent B’s measure. Therefore, we need to
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define a change from the probability measure of investor B to the probability measure of
investor A. The differences of beliefs ĝ allow to pin down the required change of measure.
By Girsanov’s theorem, this is achieved through the Radon-Nikodym derivative

ηt = e−
1
2

∫ t
0 ‖νu‖

2du−
∫ t
0 νudW

B
u , (41)

dηt
ηt

= −νtdWB
t , (42)

with νt = 1
σδ

[
ĝA,t ĝB,t 0

]ᵀ
.

The law of motion of the difference of beliefs ĝA,t and ĝB,t are obtained using the dynamics
filtered by agent A. These are exposed in the Appendix, section 6.3. Putting everything
together, the setting is Markovian with respect to the seven state variables: (39), (40), (38),
(42) and

dĝA,t = −
((

ζ +
γH
σ2
δ

)
ĝA,t +

γHF
σ2
δ

ĝB,t

)
dt+

γF − γH
σδ

dW δ,B
A,t + (ρF − ρH)σfdW

s,B
t

dĝB,t = −
(
γHF
σ2
δ

ĝA,t +
(
ζ +

γF
σ2
δ

)
ĝB,t

)
dt+

γH − γF
σδ

dW δ,B
B,t + (ρF − ρH)σfdW

s,B
t (43)

3.2 Equilibrium

First, notice that agent B’s optimization problem is not altered with respect to the problem
considered in the benchmark case. However, agent A’s problem is modified to account for
the change of measure previously defined. That is, agent A’s problem remains similar to
agent B’s problem (10) except that the change of probability measure is now intervening
into his objective function. Therefore, agent A’s problem becomes

sup
c

EB
∫ ∞

0

ηte
−φt 1

α

(
cAt
)α
dt (44)

s.t. EB
∫ ∞

0

ξBt c
A
t dt = EB

∫ ∞
0

ξBt δA,tdt. (45)

The first-order condition for consumption transforms to

cAt =
(
λA
ηt
eφtξBt

)− 1
1−α

. (46)

The change of measure η now shows up in agent A’s optimal consumption. As usual, we
impose the equilibrium condition in the form of the aggregate resource constraint

(
λBe

φtξBt
)− 1

1−α +
(
λA
ηt
eφtξBt

)− 1
1−α

= δA,t + δB,t. (47)

Solving this equation for the state price density ξ, we obtain:
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ξBt (δA,t, δB,t, ηt) = e−φt

[(
ηt
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

(δA,t + δB,t)
α−1

. (48)

The marginal utility of the representative agent now additionally accommodates for the fact
that both agents “agree to disagree” through the change of measure η. Hence, the latter
pricing kernel is not only a function of the total output but also reflects the heterogeneity
in beliefs. Similar to the benchmark case, we may express individual consumptions as a
proportion of total output:

cAt = ω (ηt) (δA,t + δB,t) , (49)

cBt = [1− ω (ηt)] (δA,t + δB,t) , (50)

where ω (ηt) is the share of consumption of investor A:

ω (ηt) =

(
ηt
λA

) 1
1−α

(
ηt
λA

) 1
1−α

+
(

1
λB

) 1
1−α

. (51)

Notice that, unlike the benchmark case, ω is state-dependent. Indeed, the change of measure
induced by the difference of information processing among agents now kicks in into agent
A’s optimal consumption policy. As a result, the optimal consumption sharing rule exhibits
time-variation to account for the changes in difference of beliefs through time.

The menu of assets is not altered with respect to the benchmark case. However, the
pricing is different for the reasons mentionned above. The stock prices still satisfy (21)-(22).
However, the single-payoff stock prices are given by

SAt,T = e−φ(T−t) [1− ω (ηt)]
1−α

(δA,t + δB,t)
α−1

1−α∑
j=0

ΠjE
B
t

[
η

j
1−α
T δαA,T

(
1 +

δB,T
δA,T

)α−1
]

(52)

for asset A and, similarly,

SBt,T = e−φ(T−t) [1− ω (ηt)]
1−α

(δA,t + δB,t)
α−1

1−α∑
j=0

ΠjE
B
t

[
η

j
1−α
T δαB,T

(
1 +

δA,T
δB,T

)α−1
]

(53)

for asset B, with Πj =

(
1− α
j

)(
1
ηt

) j
1−α

(
ω(ηt)

1−ω(ηt)

)j
.

Details of these derivations are provided in the Appendix, section 6.4. The pricing of
the stocks requires the computation of the expectation appearing at the very end of the
formulae above, an issue to which we turn in the next subsection.
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3.3 Transform Analysis

The pricing of the stocks requires the computation of an expectation of the form:

Ĥ
(
ηt, δA,t, δB,t, f̂

B
A,t, f̂

B
B,t, ĝA,t, ĝB,t, τ ; εA, εB , χ

)
= EBt [(ηu)χ (δA,u)εA (δB,u)εB ] (54)

where τ = u− t. In this subsection, we proceed to describe the derivation of (56). For the
sake of clarity, the formal derivation is reproduced in the Appendix, section 6.6.

Unlike Dumas et al. [2009], we do not directly tackle the partial differential equation
(PDE) associated with the expectation (54) through Feynman-Kac theorem, i.e. we do not
directly solve

0 = LH +
∂

∂t
H

where L stands for the differential generator of
(
ηt, δA,t, δB,t, f̂

B
A,t, f̂

B
B,t, ĝA,t, ĝB,t

)
. The

reason is that we can split, by separation variables, this PDE into a set of simpler ordinary
differential equations (ODE). To that purpose, we take advantage of the affine quadratic
feature of our model with respect to the state vector

Yt =
(
ζA, ζB , f̂

B
A , f̂

B
B , ĝA, ĝB , µ

)
.

Interestingly, we observe that (54) is equivalent to EBt
[
eεAζA,u+εBζB,u+χµu

]
when using ζA,

ζB and µ instead of δA, δB and η. Put differently, the latter expectation takes the form of
a Laplace transform for the change of variable introduced in the benchmark section.

Moreover, Cheng and Scaillet [2002] have shown that an affine quadratic setup can
be made standard affine by augmenting the state space, i.e. by adding the squares and
the cross-product of the g state variables. The diffusion processes of the latter additional
state variables, i.e. ĝ2

A,t, ĝ
2
B,t, and ĝA,tĝB,t, are obtained by application of Itô’s lemma.

Accordingly, we prefer to consider the augmented vector process

Xt =
[
ζA,t, ζB,t, f̂

B
A,t, f̂

B
B,t, µt, ĝA,t, ĝB,t, ĝ

2
A,t, ĝ

2
B,t, ĝA,tĝB,t

]ᵀ
which obeys

dXt = (K0 +K1Y Xt) dt+ Ωt

 dW δ,B
A,t

dW δ,B
B,t

dW s,B
t

 (55)

where K0, K1 and Ωt are provided in the Appendix, section 6.5. Since the computation
of (54) boils down to the derivation of a Laplace transform within an affine setting, we
may follow Duffie [2008] and the references therein and postulate the following moment
generating function for the joint distribution of ζA,t, ζB,t, and µt

EBt
[
eεAζA,u+εBζB,u+χµu

]
= exp (α (u− t) + β (u− t)Xt) . (56)

As in the benchmark case, we have introduced some coefficient functions α (τ) ∈ R and
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β (τ) ∈ R10. Denote the latter expectation by

H
(
µt, ζA,t, ζB,t, f̂

B
A,t, f̂

B
B,t, ĝA,t, ĝB,t, u− t, εA, εB , χ

)
.

Also, similar to the previous section, this function may be obtained by solving a system of
Riccati equation which have the same form as (25) and (26). Apparently, this system should
be solved much in the same way only taking care of the higher dimensionality. However, not
only are there more equations but they also exhibit coupling, i.e. the coefficients functions we
are trying to solve for appear in such a way that equations may not be decoupled. This issue
is reminiscent of the structure of the diffusion matrix of the state vector Yt. Indeed, unlike
Dumas et al. [2008], we may not partition Yt into two subsets of exogenous state variables
and solve separately for the two economies. That is, (56) may not be viewed as the product
of the Laplace transforms associated with each separate economy. Rather, introducing
correlation among fundamentals restrict the present system of Riccati equation to be solved
globally. Accordingly, our model may not be considered as a general equilibrium with two
economies à la Dumas et al. [2009] because of the synergies induced by the correlation
between fundamentals.

In that respect, we need to select an appropriate method that allows to solve our problem.
First, we observe that β1 = εA, β2 = εB and β5 = χ. Those coefficients are directly given
by their boundary condition much as in the benchmark derivations. Next, we proceed to
transform the system of Riccati equations into a system of matrix Riccati equations and
accordingly reorganize the functions of time β3, β4, β6, β7, β8, β9 and β10 as elements of
the matrix

Z =


0 β3/2 0 0

β3/2 γ β6/2 β7/2
0 β6/2 β8 β10/2
0 β7/2 β10/2 β9

 .

This matrix deserves further explanations as it is central to our solving procedure: Rear-
ranging the system of Riccati equations into a system of matrix Riccati equations requires
the introduction of an arbitrary coefficient γ which we let to be a function of time. This
coefficient, although being completely irrelevant to the computation of (54) and, thus, the
equilibrium, serves as a degree of freedom. It is mechanically determined when we impose
the system of equations to be a system of matrix Riccati equations. It will prove useful to
notice that γ completely identifies every terms containing β3, β4, β6 and β7 in the ordinary
differential equation that α satifies. This is reminiscent of the location of γ in the matrix
Z. Also, notice that β3 appears in the first and second rows of Z and that β4 has been
substituted for εB

εA
β3. Although, as seen in the benchmark section, β3 and β4 are trivially

obtained, a closed-form solution to the latter matrix Riccati equation system requires them
to be included. Indeed, if we only had considered the system of matrix Riccati equation
associated with β6, β7, β8, β9 and β10, a solution would have been obtained only up to a
Magnus series approximation because the coefficient matrix would not have been constant.
Rather, our solution is obtained in closed-form. Hence, the inclusion of these coefficient is
critical to our solution.
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This allows us write our system of Riccati equations as

.

Z = J +R>Z + ZR+ ZQZ

where the coefficients J, R and Q are provided in the Appendix, section 6.6.
Because we are faced with a system of matrix Riccati equations, we may now apply

the usual methodology, for instance as in Fonseca et al. [2008]. More precisely, we invoke
Radon’s lemma according to which Z is of the form Z(u − t) = Y (u − t)X(u − t)−1. This
allows to split the system of matrix Riccati equations into a linear Cauchy problem of the
form

.

X = −RX −QY, X(0) = I,
.

Y = JX +R>Y, Y (0) = 0,

where I is the 4× 4 identity matrix. The solution to that system is in the form of a matrix
exponential:

[
X(t) Y (t)

]
=
[
X(0) Y (0)

]
exp

([
−R J

−Q R>

]
t

)
.

Because this requires the computation of the matrix exponential of a 8× 8 matrix, a direct
attempt would be tedious. We bypass this issue by considering the Jordan decomposition of
the matrix appearing in the matrix exponential. This decomposition allows to rewrite the
matrix as S exp (Jot)S−1 where J0 denotes the Jordan matrix and S is a so-called similarity
matrix pertaining to the Jordan decomposition. This has the major advantage of producing
an almost diagonal matrix J0 and, hence, to considerably facilitate the computation of the
matrix exponential.

This is sufficient to pin down each and every coefficients appearing in the Laplace trans-
form, except for the part of the function α that γ does not identify.

The solutions of the β coefficients are given by

β3 (t) =
εA
(
1− e−ζt

)
ζ

, β4 (t) =
εB
(
1− e−ζt

)
ζ

,

β6 (t) =
n60 +

∑11
i=1 n6ie

bit

d0 +
∑3
i=1 die

ait
, β7 (t) =

n70 +
∑11
i=1 n7ie

bit

d0 +
∑3
i=1 die

ait
,

β8 (t) =
n80 +

∑6
i=1 n8ie

cit

d0 +
∑3
i=1 die

ait
, β9 (t) =

n90 +
∑6
i=1 n9ie

cit

d0 +
∑3
i=1 die

ait
, β10 (t) =

n100 +
∑6
i=1 n10ie

cit

d0 +
∑3
i=1 die

ait
.

For the sake of tractability, we do not go any further in displaying n, d, a, b and c, not even
in the Appendix. Those coefficients are available upon request.

Due to the functional form of the latter coefficients, we are not able to solve for α in
closed-form. As mentionned below, only part of α may be analytically derived. Fortunately,
a closed-form solution for the remaining part is not necessary for the purpose of calculating
the equilibrium and we simply compute it numerically.
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Similar to the benchmark case, we notice that H may be re-expressed as

H
(
µt, ζA,t, ζB,t, f̂

B
A,t, f̂

B
B,t, ĝA,t, ĝB,t, u− t, εA, εB , χ

)
= δεAA δεBB ηκ ×Mζ .

Mζ stands for the Laplace transform of the 2−dimensional Gaussian random variable (ζA,t, ζB,t)
distributed as

(
ζA,t

ζB,t

)
∼ N


[
CA(f̂BA,t, f̂

B
B,t, ĝA,t, ĝB,tt, u;χ)

CB(f̂BA,t, f̂
B
B,t, ĝA,t, ĝB,tt, u;χ)

]

,

[
CA,2(f̂BA,t, f̂

B
B,t, ĝA,t, ĝB,tt, u;χ) CA,B(f̂BA,t, f̂

B
B,t, ĝA,t, ĝB,tt, u;χ)

CA,B(f̂BA,t, f̂
B
B,t, ĝA,t, ĝB,tt, u;χ) CB,2(f̂BA,t, f̂

B
B,t, ĝA,t, ĝB,tt, u;χ)

]
 .

The C functions are more complicated, though. Moreover, these functions are only obtained
in semi closed-form because we solve for α numerically. For these reasons, we do not wish
to include them into the discussion.

In order to identify the parts of α pertaining to each C function, we notice that (26) can
be rewritten as

α′(t) = cα (t) + cα,A (t) εA + cα,B (t) εB + cα,A,2 (t) ε2
A + cα,B,2 (t) ε2

B + cα,A,B (t) εAεB .

That γ is given in closed-form allows to analytically identify all the coefficients c except for
cα. This should not be a concern for the computation of the equilibrium, though, as cα may
be numerically obtained. On the other hand, although the computation of the equilibrium
does not require to dispose of an analytical form for the c coefficient appearing in the
2−dimensional Laplace transform above, their closed-form solution allows to considerably
alleviate computations by discarding numerical integration. Again, for the sake of clarity,
the c functions are available upon request.

As in the benchmark case, we may rewrite H making explicit use of the joint distribution
of (ζA,t, ζB,t). Because we are provided with the joint distribution of ζA and ζB , any kind
of well-behaved expectation may be computed. Hence, this is sufficient to determine the
expectations required for the computation of the equilibrium.

4 Comovements

We first proceed to study the comovements among assets in our economy. To that purpose,
we need to obtain an expression for the covariance matrix of stocks. The diffusion matrix
is obtained much as in the benchmark section except for the gradient of the stock prices to
account for a larger dimensionality due to the higher number of state variables. Details are
provided in the Appendix section 6.7.

The results obtained in this section are to be compared with the benchmark case ρH =
ρF = 0.2. We will proceed as follows. In figure 4 we consider three extents of departure
from the rational benchmark case. Those three cases are represented in the figure by dashed
lines. First, we observe a significant increase in comovement due to agents’ overstating of
the correlation between the domestic fundamental and the global signal. We notice that a
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slight misperception of the latter correlation is sufficient to generate a sizable increase in
stock returns comovement. As an example, consider the case in which ρ = 0 in figure 4. An
increase in ρH from 0.2 to 0.4, ceteris paribus, brings the stock markets comovement from
0.1 to 0.5. Moreover, the effect seems to be marginally decreasing. Hence, observed levels of
comovement may be consistent with a reasonable degree of misinterpretation of the global
public signals.

Also, as highlighted in Dumas et al. [2009], agent B anticipates A’s beliefs through ξB .
Indeed, as previously outlined, the pricing kernel now accommodates for the fluctuations
of beliefs. This reflects “higher-order beliefs”. To our knowledge, Grisse [2009] is the only
paper linking comovement to higher order beliefs. By explicitly modeling higher order beliefs,
Grisse [2009] finds that, compared to expectations of fundamentals, expectations of other
investors’ expectations of fundamentals places more weight on public information. This
effect magnifies the spillover of information across assets and generates excess comovement.
As previously mentioned, this mechanism is also likely to generate financial contagion as the
agents overreact to the global signal about their fundamentals.
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Figure 4: Difference of beliefs and comovement

The effect of difference of beliefs on the stock market volatilities is exposed in figure 5.
As overconfidence increases, the equity volatilities increase. The difference of beliefs brings
a new risk factor into the model, referred to as “sentiment risk” by Dumas et al. [2009]. The
fluctuations in the difference of beliefs increases the trading volume in the market, in turn
increasing the volatilities of the stock return.

Both the increase in comovement from figure 4 and the increase in volatility from figure
5 reinforce the fact that one of the causes of the “contagion phenomenon” could be the
overconfidence of investors.
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Figure 5: Difference of beliefs and equity volatility

5 Home Bias

We are now interested in checking whether our model is able to generate home bias. Ac-
cordingly, we turn to the issue of computing the assets holdings of each population. While
the stock prices are computed as in (21)-(22), agent B’s financial wealth is given by

WB
t

(
δA,t, δB,t, f̂A,t, f̂B,t, ηt

)
=
∫ ∞
t

EBt
[
ξBu
ξBt
cB,u

]
du. (57)

More precisely, we have

WB
t

(
δA,t, δB,t, f̂A,t, f̂B,t, ηt

)
=

(1−ω(ηt))
1−α

(δA,t+δB,t)
α−1

∑−α
j=0 ΥjH

(
δA,t, δB,t, f̂A,t, f̂B,t, ηt, t, u, α,

j
1−α , α

)
(58)

with Υj =

(
−α
j

)(
1
ηt

) j
1−α

(
ω(ηt)

1−ω(ηt)

)j
. The steps are similar to the stock price computa-

tion and we postpone them to the Appendix, section 6.7.
We are able to proceed through the computation of the exposure by multiplying the

gradient of wealth with respect to the seven state variables with the diffusion of the vector
of states. Once the exposures are obtained, we solve a linear system of equations for the
portfolio holdings which involves the gradient just derived and the diffusion matrix of stock
prices. Again, details are given in the Appendix, section 6.7.

As in Dumas et al. [2008], we construct the measure of home equity bias described
in Ahearne et al. [2004]. The results are exposed in figure 6. An overestimation of the
correlation between the global signal and the domestic fundamental makes investors tilt their
portfolio towards domestic assets. This effect is more pronounced when the overestimation
is stronger. Remarkably, for low levels of overconfidence, we observe that the home bias
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is further increased when fundamentals are more correlated. Considering the economic
intuition of portfolio diversification gathered from Markowitz, this result simply states that
when international diversification benefits are reduced, investors will have even less incentives
to diversify globally. More precisely, from the learning process, overconfidence decreases the
perceived variance of the estimated domestic fundamental. This informational advantage
will initially make investors tilt their portfolio towards domestic assets. Furthermore, when
correlation between fundamentals increases, and thus reducing the benefits of international
diversification, the agents will amplify their initial bias and invest even more in domestic
assets.
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Figure 6: Difference of beliefs and home bias

The fact that we explain equity home bias using overconfidence when Dumas et al.
[2008] derive similar results within an underconfidence setting, may be puzzling at first
sight. However, both views may be reconciled: in Dumas et al. [2008], the agents are
underconfident about the foreign growth rate of dividends, while in our setup agents are
overconfident about the domestic growth rate. This makes the two models complementary.
Actually, both models can be embedded in a unified setup while maintaining the same
number of state variables. This would only increase the dimensionality of the diffusion
matrix. In order to be consistent, we performed computations within the latter unified
setup and checked that the under and overconfidence effects do not cancel each other out.
On the other hand, they do not reinforce each other either. Still, a substantial amount of
home bias is achieved within the unified framework, while considering a more reasonable
calibration for the Dumas et al. [2008] parameter φ.

Figure 7 depicts the home bias for broader ranges of values for ρH and ρF . More
generally, home bias is obtained whenever the absolute value of the perceived correlations,
ρH is larger than the absolute value of ρF . This suggests that home bias is mainly a matter
of precision of the estimates of the conditional growth rate of dividends. If investors use a
ρH larger in absolute value than |ρF |, their estimate of the domestic growth rate is more
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precise. Accordingly, they prefer to hold more of the domestic asset. The same reasoning
holds if |ρH | < |ρF |, except that foreign equity bias obtains. As figure 7 illustrates, there is
a simple relationship between the home or foreign bias and the two perceived correlations,
ρH and ρF . If those two correlations are equal in absolute value, then there is no home or
foreign bias. Whenever the absolute values differ, there will be deviations from the optimal
market portfolio assuming that the international CAPM holds.

ΡH
-1 0 1

ΡF 0

1

ÈΡH È<ÈΡF È
Foreign Bias

ÈΡH È<ÈΡF È
Foreign Bias

ÈΡH È>ÈΡF È
Home Bias

ÈΡH È>ÈΡF È
Home Bias

Figure 7: Difference of beliefs and home bias 3

This suggests that home bias generated by heterogeneous beliefs is more a mechanical
result. However, the result that correlation between fundamentals might amplify an initial
assymetry is very intuitive and reminiscent from the works of Markowitz. Still, to our
knowledge, we are the first to document such an intuitive mechanism within a general
equilibrium setting in international finance.

6 Conclusion

We presented an information-based model of a two country general equilibrium. As a first
result, we show that information, when rationally collected, increases the comovement among
asset prices. This effect is due to agents getting more concerned with alternative sources
of uncertainty pertaining to both assets. That is, information relevant to both countries
is concentrated in a common subset to which agents give more weight. Along with the
literature, we interpret this as a consequence of information clustering. Accordingly, we favor
a global signal rather than competitive signals in explaining excess stock price comovements.
In that respect, our model strongly departs from Dumas et al. [2008]. In particular, using
competitive signals, their model does not allow to reproduce excess comovement. This
confirms that a global signal appears as a more reasonnable source of international stock
markets comovement, as pointed out by Karolyi and Stulz [2008].

Also, we argue that an increase in the flow of information is likely to generate a so-called
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“contagion” effect. Consistent with Dumas et al. [2009], we show that an increase in the
information intensity raises asset prices volatility. Moreoever, as already mentionned and
unlike Dumas et al. [2009], we are also able to show that in an economy with multiple
assets, such an increase not only produces a surge in volatility but also strengthens the
correlation among asset prices. In particular, we demonstrate that bad economic outlooks
induce higher levels of comovements. This extends the results derived in Dumas et al. [2009],
to an economy with two stocks. In other words, we show that their results not only obtain
within a two-tree economy, but that they can be extended to the correlation between assets.

As a second result, we gauge the impact of departures from rationality. More precisely, we
let both agents overconfidently process global information with respect to the fundamental
of the country in which they are respectively located. We report a significant increase in
the asset price comovements due to heterogeneity in beliefs. Remarkably, we observe that a
slight deviation from rationality is sufficient to deliver a sizable improvement over the pure
rational benchmark. It is critical to observe that underconfidence as modeled in Dumas et al.
[2008] would not produce the same effect. On the other hand and consistent with Dumas
et al. [2009], time-variation in the difference of beliefs stimulates trades between agents
and, therefore, increases asset prices volatility. That is, heterogeneous beliefs magnifies the
information impact on volatility and comovement.

We grant evidence that our model is able to produce a substantial amount of home bias.
Heterogeneity in beliefs introduces an asymmetry which tilts portfolio holdings towards do-
mestic assets. In particular, we emphasize that home bias is due to a lack of precision in
the estimate of each country’s fundamental. This provides domestic investors with an in-
formational advantage which gets larger as the correlation between fundamentals increases.
Therefore, investors bias their portfolio towards domestic assets as they perceive the benefits
of international diversification to be less attractive. On the one hand, we argue that over-
confidence and underconfidence in processing information would only prove complementary
in a unified model. On the other hand, underconfidence as modeled in Dumas et al. [2008]
does not capture the mentionned magnifying effect as fundamentals remain uncorrelated
and, hence, keep international diversification as an attractive outlook.

Finally, we technically contribute to the existing literature in designing a general method-
ology allowing to solve for general equilibrium with multiple stocks and fundamental corre-
lation. Dumas et al. [2009] have shown, within a complete financial markets economy with a
single stock and learning, that a general equilibrium could be solved by deriving the Fourier
transform of the stochastic processes that make the equilibrium Markovian. Dumas et al.
[2008] build on this result to show that this procedure may be extended to the multiple Lucas
trees case, yet only when the fundamentals remain uncorrelated. We show how the general
case in which fundamentals are correlated may be solved. To that purpose, unlike both ar-
ticles which attempt to solve the partial differential equation associated with transform in a
direct manner, we first extend the state-space to make it affine quadratic much as in Cheng
and Scaillet [2002]. We, then, obtain a system of Riccati equations which we recast into a
system of matrix Riccati equations. We show that it is feasible to do so provided that one
decomposes the system in a very particular way which we carefully describe. This allows to
obtain the Fourier transform in closed-form up to an integral which may be computed nu-
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merically. Given the importance of the correlation between fundamentals illustrated above,
we hope that this approach will prove useful for other applications.

Appendix

6.1 Benchmark Case: Filtering

[TO BE ADDED]

6.2 Benchmark Case: Transform Analysis

[TO BE ADDED]

6.3 Difference of Beliefs: Filtering

[TO BE ADDED]

6.3.1 Agent A

We first wish to determine the filtered dividend growth dynamics associated with agent A’s
perception. Following Liptser and Shiryaev (2001), we denote the unobservable process by
θt and write its dynamics as follows:

dθt =

[
dfAt

dfBt

]
=

([
ζf

ζf

]
+

[
−ζ 0
0 −ζ

][
fAt

fBt

])
dt+

+

[
σf 0
σfρ σf

√
1− ρ2

][
dZfA,t
dZfB,t

]
+

[
0 0 0
0 0 0

] dZδA,t
dZδB,t
dZSt



=

(
a0 + a1

[
fAt

fBt

])
dt+ b1

[
dZfA,t
dZfB,t

]
+ b2

 dZδA,t
dZδB,t
dZSt

 . (59)

The observable process is denoted by ξt and obeys the following dynamics:
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dξt =


dδAt
δAt
dδBt
δBt

dst

 =


 0

0
0

+

 1 0
0 1
0 0

[ fAt

fBt

] dt+

 0 0
0 0
ρH ρF

[ dZfA,t
dZfB,t

]
+

+

 σδ 0 0
0 σδ 0
0 0

√
1− ρ2

H − ρ2
F


 dZδA,t
dZδB,t
dZSt



=

(
A0 +A1

[
fAt

fBt

])
dt+B1

[
dZfA,t
dZfB,t

]
+B2

 dZδA,t
dZδB,t
dZSt

 . (60)

Still using Liptser and Shiryaev (2001) notations, we get

b ◦ b = b1b
′
1 + b2b

′
2 =

[
σ2
f ρσ2

f

ρσ2
f σ2

f

]
(61)

B ◦B = B1B
′
1 +B2B

′
2 =

 σ2
δ 0 0

0 σ2
δ 0

0 0 1

 (62)

b ◦B = b1B
′
1 + b2B

′
2 =

[
0 0 ρHσf

0 0
(√

1− ρ2ρF + ρρH

)
σf

]
. (63)

Applying theorem 12.7 (Liptser and Shiryaev (2001)), we get the following dynamics for
estimates

[
df̂A,At

df̂B,At

]
=(

a0 + a1

[
f̂A,At

f̂B,At

])
dt+ [(b ◦B) + γB,tA

′
1] (B ◦B)−1

[
dξt −

(
A0 +A1

[
f̂A,At

f̂B,At

])
dt

]
(64)

γ̇t = a1γA,t + γA,ta
′
1 + (b ◦ b)− [(b ◦B) + γA,tA

′
1] (B ◦B)−1 [(b ◦B) + γA,tA

′
1]′ (65)

along with covariance matrix

γA,t =

[
γH,t γHF,t

γHF,t γF,t

]
(66)

6.3.2 Variances

As in Scheinkman & Xiong (2003), we assume that agents have gained mature learning such
that variances have reached their steady-state level. In particular, agents’ posterior variance
at the steady state solves the equation
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0 = a1γA + γAa
′
1 + (b ◦ b)− [(b ◦B) + γAA

′
1] (B ◦B)−1 [(b ◦B) + γAA

′
1]′ . (67)

Denote by γH the steady state variance of fA estimated by the investor A as it pertains
to the variance of the estimated drift of the home dividends. We have then:

γH =

√√√√√(Ω1 + Ω2)σ2
δ

 (ρ2ρi2+ρj
2−1)(Ω2−Ω1)σ2

f

2ρρF ρH+1 +(
ζ2(Ω1 + Ω2)−

(
−ρF ρHρ2 +

(
ρF

2 + ρH
2 − 1

)
ρ+ ρF ρH

)2
σ4
f

)
σ2
δ


Ω1− Ω3

−ζσ2
δ

where i = F and j = H and

Ω1 = 2

(
(2ρρF ρHζ + ζ)2σ4

δ+√
(2ρρF ρH + 1)3σ4

δΩ4

)
,

Ω2 = (−2ρρF ρH − 1)
((
ρ2 + 1

)
ρF

2 +
(
ρ2 + 1

)
ρH

2 − 2
)
σ2
fσ

2
δ ,

Ω3 =
(
2ρ
(
ρ2 + 1

)
ρHρF

3 +
(
ρ2 + 1

)
ρF

2 + 2ρρH
((
ρ2 + 1

)
ρH

2 − 2
)
ρF +

(
ρ2 + 1

)
ρH

2 − 2
)
σ2
fσ

2
δ ,

and

Ω4 =
(
ρ2 − 1

) (
ρF

2 + ρH
2 − 1

)
σ4
f−ζ2

((
ρ2 + 1

)
ρF

2 +
(
ρ2 + 1

)
ρH

2 − 2
)
σ2
δσ

2
f+ζ4(2ρρF ρH+1)σ4

δ .

Similarly, the steady state variance of fB estimated by the investor A is denoted by γF
and is obtained just by setting i = H and j = F .

Notice that the variances γH and γF are equal only if ρ2
H = ρ2

F . Also, the steady state
variance of the estimated drift for the foreign dividends will be larger if ρ2

H > ρ2
F .

Finally, the steady state covariance for the estimated fA and fB is:

γHF =

(
ρF ρHρ

2 −
(
ρF

2 + ρH
2 − 1

)
ρ− ρF ρH

)
σ2
fσ

2
δ

(2ρρF ρH + 1)
√

Ω1+Ω2
(2ρρF ρH+1)2

(68)

We observe that the covariance will be negative when ρH and ρF have the same sign and
positive otherwise. It will be nihil whenever ρH or ρF is null.

The filtered drifts for agent A are

[
df̂A,At

df̂B,At

]
=

([
ζf

ζf

]
−

[
ζ 0
0 ζ

][
f̂A,At

f̂B,At

])
dt

+

 γH
σ2
δ

γHF
σ2
δ

ρHσf
γHF
σ2
δ

γF
σ2
δ

(√
1− ρ2ρF + ρρH

)
σf

(dξt −(A0 +A1

[
f̂A,At

f̂B,At

])
dt

)
(69)

6.3.3 Agent B

Proceeding similarly, the unobservable process for agent B is given by
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dθt =

[
dfAt

dfBt

]
=

([
ζf

ζf

]
+

[
−ζ 0
0 −ζ

][
fAt

fBt

])
dt+

+

[
σf 0
σfρ σf

√
1− ρ2

][
dZfA,t
dZfB,t

]
+

[
0 0 0
0 0 0

] dZδA,t
dZδB,t
dZSt



=

(
a0 + a1

[
fAt

fBt

])
dt+ b1

[
dZfA,t
dZfB,t

]
+ b2

 dZδA,t
dZδB,t
dZSt

 (70)

The observable process is

dξt =


dδAt
δAt
dδBt
δBt

dst

 =


 0

0
0

+

 1 0
0 1
0 0

[ fAt

fBt

] dt+

 0 0
0 0
ρF ρH

[ dZfA,t
dZfB,t

]
+

+

 σδ 0 0
0 σδ 0
0 0

√
1− ρ2

H − ρ2
F


 dZδA,t
dZδB,t
dZSt



=

(
A0 +A1

[
fAt

fBt

])
dt+B1

[
dZfA,t
dZfB,t

]
+B2

 dZδA,t
dZδB,t
dZSt

 (71)

Note that the only modified matrix in the case of agent B is B1. Moreover,

b ◦ b = b1b
′
1 + b2b

′
2 =

[
σ2
f ρσ2

f

ρσ2
f σ2

f

]
(72)

B ◦B = B1B
′
1 +B2B

′
2 =

 σ2
δ 0 0

0 σ2
δ 0

0 0 1

 (73)

b ◦B = b1B
′
1 + b2B

′
2 =

[
0 0 ρFσf

0 0
(√

1− ρ2ρH + ρρF

)
σf

]
(74)

Again, applying theorem 12.7 (Liptser and Shiryaev (2001)), we find:
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[
df̂A,Bt

df̂B,Bt

]
=(

a0 + a1

[
f̂A,Bt

f̂B,Bt

])
dt+ [(b ◦B) + γB,tA

′
1] (B ◦B)−1

[
dξt −

(
A0 +A1

[
f̂A,Bt

f̂B,Bt

])
dt

]
(75)

γ̇t = a1γB,t + γB,ta
′
1 + (b ◦ b)− [(b ◦B) + γB,tA

′
1] (B ◦B)−1 [(b ◦B) + γB,tA

′
1]′ (76)

along with covariance matrix

γB,t =

[
γF,t γHF,t

γHF,t γH,t

]
(77)

Intuitively, we also find the same variances and covariances, except that γH represents
now the steady state variance of fB estimated by the investor B, and γF represents the
steady state variance of fA estimated by the investor B. The filtered drifts for agent B are
as follows:[

df̂A,Bt

df̂B,Bt

]
=

([
ζf

ζf

]
−

[
ζ 0
0 ζ

][
f̂A,Bt

f̂B,Bt

])
dt+

+

 γF
σ2
δ

γHF
σ2
δ

ρFσf
γHF
σ2
δ

γH
σ2
δ

(√
1− ρ2ρH + ρρF

)
σf

(dξt −(A0 +A1

[
f̂A,Bt

f̂B,Bt

])
dt

)
. (78)

6.4 Difference of Beliefs: Stock Prices

The stock prices still satisfy (). However, the single-payoff stocks are given by

SAt,T = EBt

[
ξBT
ξBt
δA,T

]
(79)

= EBt


e−δT

[(
ηT
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

(δA,T + δB,T )α−1

e−δt
[(

ηt
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

(δA,t + δB,t)
α−1

δA,T

 (80)

Using (51), we may write

(
ηtλB
λA

) 1
1−α

=
ω (ηt)

1− ω (ηt)
(81)

and

[(
ηt
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

=
(

1
1− ω (ηt)

)1−α 1
λB

(82)

Substituting the latter expression into the denominator of (80), we obtain
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SAt,T = e−δ(T−t)
[1− ω (ηt)]

1−α

(δA,t + δB,t)
α−1E

B
t


[(

ηT
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

(δA,T + δB,T )α−1

1
λB

δA,T

 (83)

= e−δ(T−t)
[1− ω (ηt)]

1−α

(δA,t + δB,t)
α−1E

B
t

λB [( ηT
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

δαA,T

(
1 +

δB,T
δA,T

)α−1
 (84)

On the other hand, we know that[(
ηT
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

=
1
λB

1−α∑
j=0

(
1− α
j

)(
ηTλB
λA

) j
1−α

(85)

=
1
λB

1−α∑
j=0

(
1− α
j

)(
1
ηt

) j
1−α

(
ηtλB
λA

) j
1−α

η
j

1−α
T (86)

=
1
λB

1−α∑
j=0

(
1− α
j

)(
1
ηt

) j
1−α

(
ω (ηt)

1− ω (ηt)

)j
η

j
1−α
T (87)

Inserting this expression into (84), we finally get

SAt,T = e−δ(T−t)
[1− ω (ηt)]

1−α

(δA,t + δB,t)
α−1 ×

×EBt

1−α∑
j=0

(
1− α
j

)(
1
ηt

) j
1−α

(
ω (ηt)

1− ω (ηt)

)j
η

j
1−α
T δαA,T

(
1 +

δB,T
δA,T

)α−1


=
e−δ(T−t) [1−ω(ηt)]

1−α

(δA,t+δB,t)
α−1

∑1−α
j=0

(
1− α
j

)(
1
ηt

) j
1−α

×
(

ω(ηt)
1−ω(ηt)

)j
EBt

[
η

j
1−α
T δαA,T

(
1 + δB,T

δA,T

)α−1
] (88)

6.4.1 Stock Price B

We have

SBt,T = EBt

[
ξBT
ξBt
δB,T

]
(89)

= EBt


e−δT

[(
ηT
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

(δA,T + δB,T )α−1

e−δt
[(

ηt
λA

) 1
1−α

+
(

1
λB

) 1
1−α
]1−α

(δA,t + δB,t)
α−1

δB,T

 (90)

Thus, by the same reasoning, we get
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SBt,T =
e−δ(T−t) [1−ω(ηt)]

1−α

(δA,t+δB,t)
α−1

∑1−α
j=0

(
1− α
j

)(
1
ηt

) j
1−α

×
(

ω(ηt)
1−ω(ηt)

)j
EBt

[
η

j
1−α
T δαB,T

(
1 + δA,T

δB,T

)α−1
] (91)

One notices that the only changing element is the function of δA,T and δB,T located at the
end of the expression for the stock prices.

6.4.2 Agent B’s wealth

From the derivation of the equilibrium, we substitute the expression for consumption of
agent B and obtain

WB
t

(
δA,t, δB,t, f̂A,t, f̂B,t, ηt

)
=

∫ ∞
t

EBt
[
ξBu
ξBt

(1− ω (ηu)) (δA,u + δB,u)
]
du (92)

=
∫ ∞
t

EBt


((

ηu
λA

) 1
1−α+

(
1
λB

) 1
1−α

)1−α

((
ηt
λA

) 1
1−α+

(
1
λB

) 1
1−α

)1−α
(δA,t+δB,t)

α−1

× (1− ω (ηu)) (δA,u + δB,u)α

 du.
On the other hand,((

ηT
λA

) 1
1−α

+
(

1
λB

) 1
1−α
)−α(

1
λB

) 1
1−α

=

((
ηTλB
λA

) 1
1−α

+ 1

)−α
1
λB

=
1
λB

−α∑
j=0

(
−α
j

)(
ηTλB
λA

) j
1−α

=
1
λB

−α∑
j=0

(
−α
j

)(
1
ηt

) j
1−α

(
ηtλB
λA

) j
1−α

η
j

1−α
T

=
1
λB

−α∑
j=0

(
−α
j

)(
1
ηt

) j
1−α

(
ω (ηt)

1− ω (ηt)

)j
η

j
1−α
T

where the second equality follows from the binomial theorem. We can then substitute this
expression into (92) and obtain for

WB
t

(
δA,t, δB,t, f̂A,t, f̂B,t, ηt

)
=

(1− ω (ηt))
1−α

(δA,t + δB,t)
α−1

−α∑
j=0

(
−α
j

)(
1
ηt

) j
1−α

(
ω (ηt)

1− ω (ηt)

)j
Et
[
η

j
1−α
T δαA,T

(
1 +

δB,T
δA,T

)α]
.
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Finally, notice that the expectation appearing in the wealth may be computed using the
Fourier transform previously derived such that

WB
t

(
δA,t, δB,t, f̂A,t, f̂B,t, ηt

)
(93)

=
(1− ω (ηt))

1−α

(δA,t + δB,t)
α−1

−α∑
j=0

(
−α
j

)(
1
ηt

) j
1−α

(
ω (ηt)

1− ω (ηt)

)j
H

(
δA,t, δB,t, f̂A,t, f̂B,t, ηt, t, u, α,

j

1− α
, α

)
.

6.5 Difference of Beliefs: State Vector

Here, we only provide the details of the matrix K0, K1 and Ωt characterizing the state
vector. These are given by:

K0 =



−σ
2
δ

2

−σ
2
δ

2

ζf

ζf

0
0
0

(γF−γH)2

σ2
δ

+ (ρ−1)2(ρF−ρF )2σ2
f

(1+2ρρF ρH)2

(γF−γH)2

σ2
δ

+ (ρ−1)2(ρF−ρF )2σ2
f

(1+2ρρF ρH)2

(ρ−1)2(ρF−ρH)2σ2
f

(1+2ρρF ρH)2



, (94)

K1 = −



0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 ζ 0 0 0 0 0 0 0
0 0 0 ζ 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2σ2
δ

1
2σ2
δ

0

0 0 0 0 0 ζ + γH
σ2
δ

γHF
σ2
δ

0 0 0

0 0 0 0 0 γHF
σ2
δ

ζ + γF
σ2
δ

0 0 0

0 0 0 0 0 0 0 2
(
ζ + γH

σ2
δ

)
0 2γHF

σ2
δ

0 0 0 0 0 0 0 0 2
(
ζ + γF

σ2
δ

)
2γHF
σ2
δ

0 0 0 0 0 0 0 γHF
σ2
δ

γHF
σ2
δ

2ζ + γF+γH
σ2
δ



,

(95)
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and

Ωt =



σδ 0 0
0 σδ 0
γF
σδ

γHF
σδ

(ρF+ρHρ)σf
1+2ρρF ρH

γHF
σδ

γH
σδ

(ρH+ρF ρ)σf
1+2ρρF ρH

− ĝA,tσδ
− ĝB,tσδ

0
γF−γH
σδ

0 − (ρ−1)(ρF−ρH)σf
1+2ρρF ρH

0 γH−γF
σδ

− (ρ−1)(ρH−ρF )σf
1+2ρρF ρH

2ĝA,t(γF−γH)
σδ

0 − 2ĝA,t(ρ−1)(ρH−ρF )
1+2ρρF ρH

σf

0 2ĝB,t(γH−γF )
σδ

− 2ĝB,t(ρ−1)(ρH−ρF )
1+2ρρF ρH

σf
ĝB,t(γF−γH)

σδ

ĝA,t(γH−γF )
σδ

− (ρ−1)(ρF−ρH)σf
1+2ρρF ρH

(ĝB,t − ĝA,t(ρH − ρF ))



(96)

6.6 Difference of Beliefs: Transform Analysis

We first observe that β1 (t) = εA, β2 (t) = εB , β5 (t) = χ such that the solution of the
moment generating function is of the form

H (X,u− t|εA, εB , χ) = δεAA δεBB ηκHfg

(
f̂BA,t, f̂

B
B,t, ĝA, ĝB,t

)
(97)

where

Hfg

(
f̂BA,t, f̂

B
B,t, ĝA, ĝB,t

)
= exp

(
α(u− t) + β3(u− t)f̂BA,t + β4(u− t)f̂BB,t

+β6(u− t)ĝA,t + β7(u− t)ĝB,t

)
(98)

× exp(β8(u− t)ĝ2
A,t + β9(u− t)ĝ2

B,t + β10(u− t)ĝA,tĝB,t).

The functions of time β3, β4, β6, β7, β8, β9 and β10 are obtained as elements of the matrix

Z =


0 β3/2 0 0

β3/2 γ β6/2 β7/2
0 β6/2 β8 β10/2
0 β7/2 β10/2 β9


where γ is an arbitrary function of time whose differential equation is mechanically provided
by the system of matrix Riccati equations to be written and whose solution is completely
irrelevant to the present model. We can write the following matrix Riccati equation

.

Z = J +R>Z + ZR+ ZQZ (99)
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where

J =


0 εA

2 0 0
εA
2 0 −εAχ

2
−εBχ

2

0 −εAχ
2

χ(χ−1)
2σ2
δ

0

0 −εBχ
2 0 χ(χ−1)

2σ2
δ

 ,

R =


−ζ 0 −χ(εAγF+εBγHF )

εAσ2
δ

−χ(εBγH+εAγHF )
εAσ2

δ

0 0 0 0
0 εA (γF − γH) −ζ + −χγF+(χ−1)γH

σ2
δ

−γHF
σ2
δ

0 εB (γH − γF ) −γHF
σ2
δ

−ζ + −χγH+(χ−1)γF
σ2
δ

 ,

Q =


0 0 a b

0 0 0 0

a 0 2(ρ−1)2(ρF−ρH)2σ2
f

(1+2ρρF ρH)2
+ 2(γF−γH)2

σ2
δ

−2(ρ−1)2(ρF−ρH)2σ2
f

(1+2ρρF ρH)2

b 0 −2(ρ−1)2(ρF−ρH)2σ2
f

(1+2ρρF ρH)2
2(ρ−1)2(ρF−ρH)2σ2

f

(1+2ρρF ρH)2
+ 2(γF−γH)2

σ2
δ

 .

with

a =
2
(

(ρ−1)(ρF−ρH)(εB(ρρF+ρH)+εA(ρF+ρρH))

(1+2ρρF ρH)2
σ2
f + (γF−γH)(εAγF+εBγHF )

σ2
δ

)
εA

and

b =
2
(

(ρ−1)(ρF−ρH)(εB(ρρF+ρH)+εA(ρF+ρρH))

(1+2ρρF ρH)2
σ2
f −

(γF−γH)(εBγH+εAγHF )
σ2
δ

)
εA

.

Although β3 and β4 are trivially obtained (refer to the benchmark case), a closed-form solu-
tion to the latter matrix Riccati equation system requires them to be included. Indeed, if we
had only considered the system of matrix Riccati equation associated with β6, β7, β8, β9 and
β10, a solution would have been obtained only up to a Magnus series approximation because
the coefficient matrix would not have been constant. Instead, our solution is analytical and
exact.

Reminiscent of Radon’s lemma, we introduce the following change of variable Z(u− t) =
Y (u− t)X(u− t)−1. Then, we have that

.

Y − Z
.

X = JX +R>Y + ZRX + ZQY.

Hence, by separation of variables, the matrices X(u−t) and Y (u−t) are the unique solutions
of the linear Cauchy problem

.

X = −RX −QY, X(0) = I, (100)
.

Y = JX +R>Y, Y (0) = 0,

where I is the 4× 4 identity matrix. This system may be rewritten as

d

dt

[
X(t) Y (t)

]
=
[
X(t) Y (t)

] [ −R J

−Q R>

]
(101)
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whose solution is of the form

[
X(t) Y (t)

]
=
[
X(0) Y (0)

]
exp

([
−R J

−Q R>

]
t

)
. (102)

(102) involves the matrix exponential function applied to a 8×8 matrix. Since this operation
is expectated to be tedious, we prefer to consider the Jordan decomposition D of the matrix

M =

[
−R J

−Q R>

]
. This allows to rewrite (102) as

[
X(t) Y (t)

]
=
[
X(0) Y (0)

]
S exp (Jot)S−1 (103)

where J0 is the Jordan matrix and S is a so-called similarity matrix pertaining to the Jordan
decomposition ofM . (103) is sufficient to pin down each and every β involved in Hfg except
α.

6.7 Difference of Beliefs: Diffusion Matrix and Portfolio Holdings

6.7.1 Diffusion matrix

The diffusion matrix is obtained as in the benchmark case by premultiplying the diffusion
of the state vector with the gradient of the stock prices:

Σ1,t =

 ∂SA,t
∂δA,t

∂SA,t
∂δB,t

∂SA,t

∂f̂A,t

∂SA,t

∂f̂B,t

∂SA,t
∂ηt

∂SA,t
∂ĝA,t

∂SA,t
∂ĝB,t

∂SB,t
∂δA,t

∂SB,t
∂δB,t

∂SB,t

∂f̂A,t

∂SB,t

∂f̂B,t

∂SB,t
∂ηt

∂SB,t
∂ĝA,t

∂SB,t
∂ĝB,t

×

×



σδδA,t 0 0
0 σδδB,t 0
γF
σδ

γHF
σδ

ρF+ρρH
1+2ρρHρF

σf
γHF
σδ

γH
σδ

ρH+ρρF
1+2ρρHρF

σf

− ĝA,tσδ
ηt − ĝB,tσδ

ηt 0
γF−γH
σδ

0 − (ρ−1)(ρF−ρH)
1+2ρρHρF

σf

0 γH−γF
σδ

− (ρ−1)(ρH−ρF )
1+2ρρHρF

σf


=

[
σδASA σδBSA σsSA
σδASB σδBSB σsSB

]
.
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6.7.2 Exposures

EB,t =
[

∂WB
t

∂δA,t

∂WB
t

∂δB,t

∂WB
t

∂f̂A,t

∂WB
t

∂f̂B,t

∂WB
t

∂ηt

∂WB
t

∂ĝA,t

∂WB
t

∂ĝB,t

]
×

×



σδδA,t 0 0
0 σδδB,t 0
γF
σδ

γHF
σδ

ρF+ρρH
1+2ρρHρF

σf
γHF
σδ

γH
σδ

ρH+ρρF
1+2ρρHρF

σf

− ĝA,tσδ
ηt − ĝB,tσδ

ηt 0
γF−γH
σδ

0 − (ρ−1)(ρF−ρH)
1+2ρρHρF

σf

0 γH−γF
σδ

− (ρ−1)(ρH−ρF )
1+2ρρHρF

σf


=

[
EδAB,t EδBB,t EsB,t

]
.

The optimal 1x3 portfolio vector held by investor located in country B solves

[
EδAB,t EδBB,t EsB,t

]
=
[
θBSA,t θBSB ,t θBFs,t

]
×

 σδASA σδBSA σsSA
σδASB σδBSB σsSB

0 0 1

 .
Here, we used the same technique as in Dumas, Lewis and Osambela (2008) to construct
the diffusion matrix by parts. We added a line to the diffusion matrix previously derived in
order to account for the presence of the futures contract contained in the menu of assets.
Since the latter asset is only marked to the signal and that its variance is normalized to
1, the third line follows. Also, the exposures are obtained by premultiplying the diffusion
matrix by the gradient of Agent B’s wealth.

References

Alan G. Ahearne, William L. Griever, and Francis E. Warnock. Information costs and home
bias: an analysis of us holdings of foreign equities. Journal of International Economics,
62(2):313–336, March 2004.

Michael J. Brennan and Yihong Xia. Stock price volatility and equity premium. Journal of
Monetary Economics, 47(2):249–283, April 2001.

Peng Cheng and Olivier Scaillet. Linear-quadratic jump-diffusion modeling with application
to stochastic volatility. (rp67), November 2002.

John C. Cox and Chi-fu Huang. Optimal consumption and portfolio policies when asset
prices follow a diffusion process. Journal of Economic Theory, 49(1):33–83, October 1989.

D. Duffie. Financial Modeling with Affine Processes. 2008.

Bernard Dumas, Karen Lewis, and Emilio Osambela. Differences of opinion in an interna-
tional financial market equilibrium. Unpublished manuscript, 2008.

35



Bernard Dumas, Alexander Kurshev, and Raman Uppal. Equilibrium portfolio strategies in
the presence of sentiment risk and excess volatility. Journal of Finance, 64(2):579–629,
04 2009.

JosE Da Fonseca, Martino Grasselli, and Claudio Tebaldi. A multifactor volatility heston
model. Quantitative Finance, 8(6):591–604, 2008.

Christian Grisse. Higher order beliefs and the comovement of asset prices. 2009.

I. Karatzas, J.P. Lehoczky, and S.E. Shreve. Optimal portfolio and consumption decisions
for a «small investor» on a finite horizon. SIAM journal on control and optimization, 25:
1557–1586, 1987.

G. Andrew Karolyi and Rene Stulz. Why do markets move together? an investigation of
u.s.-japan stock return comovements using adrs. (9501), 2008.

R. Liptser and A. Shiryaev. Statistics of Random Processes, Second Edition. New York:
Springer, 2001.

J. A. Scheinkman and W. Xiong. Overconfidence and speculative bubbles. Journal of
Political Economy, 111(6):1183–1219, December 2003.

Laura L. Veldkamp. Information markets and the comovement of asset prices. Review of
Economic Studies, 73(3):823–845, 07 2006.

36


