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Abstract

We build an equilibrium model to explain why stock return predictability is con-

centrated in bad times. The key ingredient is counter-cyclical investors’ disagreement,

which originates from heterogeneous models. As economic conditions deteriorate, dif-

ference in investors’ learning speed increases, investors’ opinions eventually polarize

and disagreement spikes, causing returns to react to past news. The model explains

several findings: the link between disagreement and future returns, time series momen-

tum and how it crashes after sharp market rebounds. The model further predicts that

time series momentum increases with disagreement and strengthens in bad times. We

provide empirical support to these new predictions.
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1 Introduction

Stock return predictability concentrates in bad times.1 For instance, Garcia (2013) shows

that the content of news (Tetlock, 2007) better predicts future returns in recessions. Yet,

the reason return predictability varies over the business cycle remains unclear.

In this paper, we provide a theoretical mechanism that causes stock return predictability

to concentrate in bad times, a mechanism we validate empirically. We base our explanation

on the empirical finding that disagreement among professional forecasters originates from

model heterogeneity and moves counter-cyclically (Patton and Timmermann, 2010).2 The

main idea is that investors revise their expectations at different speeds. Some investors focus

on sharp variations in the business cycle and revise their expectations rapidly, while others

focus on persistent fluctuations and revise their expectations slowly. As economic conditions

deteriorate, the difference in adjustment speeds increases, investors’ opinions eventually po-

larize and disagreement spikes, causing returns to react to past news. Return predictability

therefore concentrates in bad times.

We introduce model heterogeneity within a dynamic general equilibrium populated with

two investors, A and B. Investors trade one stock and a riskless bond and consume the

dividends that the stock pays out. Agents do not observe the expected growth rate of

dividends, which we call the fundamental, and have different views regarding the empirical

process that governs it. Agent A assumes that the fundamental transits smoothly from good

to bad times. In contrast, Agent B postulates that the fundamental may transit precipitously

from good to bad times. While investors observe the same data, they disagree about the

fundamental because they use different models and therefore interpret the data differently.

Model heterogeneity causes investors to revise their expectations at different speeds and to

reassess fundamental uncertainty differently depending on economic conditions.3 The pattern

1Rapach, Strauss, and Zhou (2010), Henkel, Martin, and Nardari (2011), and Dangl and Halling (2012)
find that macro variables, such as the price-dividend ratio, have better predictive power in recessions. Sim-
ilarly, Cen, Wei, and Yang (2014) and Loh and Stulz (2014) find that return predictability using investors’
disagreement, as proxied by the dispersion of analysts’ forecasts (Diether, Malloy, and Scherbina, 2002), is
concentrated in recessions. We provide evidence that current excess returns and disagreement better predict
aggregate future excess returns in recessions (Section 5).

2Similarly, Kandel and Pearson (1995) show that disagreement stems from model heterogeneity and
Veronesi (1999), Carlin, Longstaff, and Matoba (2014), and Barinov (2014) show that it is counter-cyclical.

3Chalkley and Lee (1998), Veldkamp (2005), and Van Nieuwerburgh and Veldkamp (2006) obtain similar
learning asymmetries. In their setup, however, the information flow fluctuates with economic conditions.
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of investors’ disagreement therefore changes over the business cycle. In good times, investors’

expectations adjust at comparable speeds and disagreement exhibits little variation. The

difference in investors’ adjustment speeds becomes apparent in normal times. While investors

have similar views, Agent B adjusts her expectations significantly faster than Agent A,

which exacerbates disagreement in the short term. As economic conditions deteriorate,

the difference in investors’ assessment of uncertainty strengthens. In the eyes of Agent A,

Agent B overstates bad economic outcomes. This polarization of opinions results in large

disagreement spikes in bad times. We show that this counter-cyclical pattern of disagreement

is strongly positively correlated to the observed dispersion of analysts’ forecasts.

Counter-cyclical disagreement leads return predictability to concentrate in bad times.

To see this, suppose there is a good news today. In bad times, the news polarizes opinions:

while Agent A revises her expectations upwards, Agent B revises her expectations down-

wards. Agent B’s pessimism in turn induces returns to move opposite to the news, thereby

producing short-term under-reaction. In normal times, the news exacerbates the difference

in adjustment speeds: while the news corroborates both agents’ expectations, it precipitates

an upward revision in Agent B’s expectations. Agent B’s overoptimism relative to Agent

A in turn causes returns to over-react in the short term. In the long term, agents’ opinions

align and returns systematically revert. In good times, predictability vanishes because the

news generates little disagreement and reversion to fundamentals therefore occurs instantly.

Return continuation in bad and normal times produces time series momentum in excess

returns (Moskowitz, Ooi, and Pedersen, 2012). Consistent with empirical findings, returns

exhibit momentum over a 1-year horizon and then revert over subsequent horizons. Moreover,

the term structure of returns’ serial correlation is hump shaped: momentum is strong at short

horizons and decays at intermediate horizons. Importantly, at short horizons, time series

momentum is strongest in bad times. The reason is that the polarization of opinions in

bad times, as opposed to the difference in adjustment speeds in normal times, leads to a

sharper spike in disagreement. By contrast, in good times, excess returns exhibit strong

reversal at short horizons. An important consequence of this reversal spike is that a time

series momentum strategy may crash after sharp market rebounds.

We provide empirical support to three new predictions of the model: (1) future excess

returns are positively related to contemporaneous disagreement. Furthermore, time series

momentum at short horizons (2) increases with disagreement and (3) is, therefore, strongest
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in bad times. Using the dispersion of analysts’ forecasts as an empirical proxy for disagree-

ment to mirror our theoretical analysis, we first show that dispersion positively predicts

future excess returns on the S&P 500. We then show that time series momentum increases

significantly with dispersion at short horizons. We finally show that, over the last century,

time series momentum at a one-month lag is significantly stronger during recessions.

This paper contributes to the vast literature on heterogeneous beliefs. While we borrow,

to a large extent, the methodology of Dumas, Kurshev, and Uppal (2009) and the numer-

ical method of David (2008), we introduce a new form of disagreement. In contrast with

other sources of disagreement considered in the literature, investors in this paper disagree

because they use heterogeneous models (an autoregressive process and a Markov chain).4

The resulting pattern of disagreement differs from the dynamics that prevail when agents

use different sets of parameters within the same parametric model. Specifically, when both

agents use a Markov chain with different parameters (David, 2008), beliefs polarize in bad

times, as in our model, but disagreement does not spike under our calibration—we need

disagreement spikes to generate return predictability. When both agents use an autoregres-

sive model with different parameters (e.g., Buraschi and Whelan (2013), Ehling, Gallmeyer,

Heyerdahl-Larsen, and Illeditsch (2013) and Buraschi, Trojani, and Vedolin (2014)), dis-

agreement concentrates in normal times—we need counter-cyclical disagreement to explain

why predictability concentrates in bad times.

This paper is also related to the large literature on momentum. In particular, other

studies link heterogeneous beliefs to momentum.5 In a rational-expectations model, Baner-

jee, Kaniel, and Kremer (2009) show that heterogeneous beliefs only generate price drift in

the presence of higher-order difference of opinions. In contrast, we obtain momentum, even

4In our model, Agent A’s model follows a mean-reverting process (Detemple (1986, 1991), Wang (1993),
Brennan and Xia (2001), Scheinkman and Xiong (2003), Bansal and Yaron (2004), and Dumas et al. (2009)),
while Agent B’s model follows a Markov switching process (David (1997, 2008), Veronesi (1999, 2000), Chen
(2010), Bhamra, Kuehn, and Strebulaev (2010), and David and Veronesi (2013)). In the literature, the
pattern of disagreement differs whether investors are overconfident (e.g., Dumas et al. (2009), Scheinkman
and Xiong (2003), Xiong and Yan (2010)), whether they have different initial priors (e.g., Detemple and
Murthy (1994), Zapatero (1998), Basak (2000)), or whether they have heterogeneous dogmatic beliefs (e.g.,
Kogan, Ross, Wang, and Westerfield (2006), Borovicka (2011), Chen, Joslin, and Tran (2012), Bhamra and
Uppal (2013)). See Xiong (2014) for a literature review

5Other theories of momentum include Berk, Green, and Naik (1999), Holden and Subrahmanyam (2002),
Johnson (2002), Sagi and Seasholes (2007), Makarov and Rytchkov (2012), Vayanos and Woolley (2013),
Biais, Bossaerts, and Spatt (2010), Cespa and Vives (2012), Cujean (2013), Albuquerque and Miao (2014),
and Andrei and Cujean (2014).
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when heterogeneous prior beliefs are commonly known. Importantly, as in Ottaviani and

Sorensen (2015), we also generate price under-reaction, short-term momentum and long-

term reversal through the combination of heterogeneous beliefs and wealth effects. Unlike

Ottaviani and Sorensen (2015), however, our paper offers an explanation for fluctuations in

momentum over the business cycle. Specifically, counter-cyclical disagreement causes prices

to under-react (Hong and Stein, 1999) in bad times and to over-react (Daniel, Hirshleifer,

and Subrahmanyam, 1998) in normal times.6 Our emphasis is that these two phenomena

may alternate over the business cycle and that the former effect is stronger at short horizons.

The remainder of the paper is organized as follows. Section 2 presents and solves the

model, Section 3 calibrates the model to the U.S. business cycle, Section 4 contains theoretical

results, Section 5 tests the predictions of the model, and Section 6 concludes. Derivations

and computational details are relegated to the Internet Appendix A.

2 The Model

We develop a dynamic general equilibrium in which investors use heterogeneous models to

estimate the business cycle. We first describe the economy and the learning problem of

investors. We then solve for the equilibrium stock price.

2.1 The Economy and Models of the Business Cycle

We consider an economy with an aggregate dividend that flows continuously over time. The

market consists of two securities, a risky asset—the stock—in positive supply of one unit

and a riskless asset—the bond—in zero net supply. The stock is a claim to the dividend

process, δ, which evolves according to

dδt = δtftdt+ δtσδdWt. (1)

The random process (Wt)t≥0 is a Brownian motion under the physical probability measure,

which governs the empirical realizations of dividends. The expected dividend growth rate

f—henceforth the fundamental—is unobservable.

6Barberis, Shleifer, and Vishny (1998) provide conditions to enforce under- or over-reaction, or both.

4



The economy is populated by two agents, A and B, who consume the dividend and

trade in the market. Agents understand that the fundamental affects the dividend they

consume and the price of the assets they trade. Since the fundamental is unobservable,

agents need to estimate it. To do so, they use the empirical realizations of dividends, the

only source of information available. This information is, however, meaningless without a

proper understanding of the data-generating process that governs dividends; agents need to

have a model in mind.

Agent A assumes that the fundamental follows a mean-reverting process. In particular,

she has the following model in mind

dδt = fAt δtdt+ σδδtdW
A
t

dfAt = κ
(
f − fAt

)
dt+ σfdW

f
t , (2)

where WA and W f are two independent Brownian motions under Agent A’s probability

measure PA, which reflects her views about the data-generating process. Under Agent A’s

representation of the economy, the fundamental fA transits smoothly from good states to

bad states of the business cycle, reverting to a long-term mean f at speed κ.

Agent B, instead, believes that the fundamental follows a 2-state continuous-time Markov

chain and therefore uses the following model

dδt = fBt δtdt+ σδδtdW
B
t

fBt ∈ {fh, f l} with generator matrix Λ =

(
−λ λ

ψ −ψ

)
, (3)

where WB is a Brownian motion under B’s probability measure PB. Under Agent B’s model,

the fundamental fB is either high fh or low f l. The economy transits from the high to the

low state with intensity λ > 0 and from the low to the high state with intensity ψ > 0.

Each model has a natural interpretation. While Agent A’s model is typically used to fit

consumption growth in the long-run risk literature (Bansal and Yaron (2004)), the perspec-

tive of Agent B is closer to models used in the economics literature to forecast business cycle
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turning points.7 The financial economics literature has focused, to a large extent, on the two

types of model presented in Equations (2) and (3) to forecast the growth rate of dividends.

These models, however, have always been considered separately. In this paper, we consider

these models within a unified framework and show that the resulting disagreement among

investors can explain several empirical facts related to return predictability.

2.2 Bayesian Learning and Disagreement

Agents learn about the fundamental by observing realizations of the dividend growth rate

and, given the model they have in mind, update their expectations accordingly. Doing so,

they come up with an estimate of the fundamental, which, from now on, we call the filter.

We present the dynamics of the filter of Agents A and B in Proposition 1 below.

Proposition 1. aaa

1. The filter, f̂At = EPA
t

[
fAt
]
, of Agent A evolves according to the dynamics

df̂At = κ
(
f − f̂At

)
dt+

γ

σδ
dŴA

t , (4)

where γ =
√
σ2
δ

(
σ2
δκ

2 + σ2
f

)
−κσ2

δ denotes the steady-state posterior variance and where

ŴA is a Brownian motion under Agent A’s probability measure PA.

2. The filter, f̂Bt = EPB
t

[
fBt
]

= PBt
(
fBt = fh

)
fh +

(
1− PBt

(
fBt = fh

))
f l , of Agent B

satisfies the dynamics

df̂Bt = (λ+ ψ)
(
f∞ − f̂Bt

)
dt+

1

σδ

(
f̂Bt − f l

)(
fh − f̂Bt

)
dŴB

t , (5)

where f∞ = limt→∞ E
[
fBt
]

= f l+ ψ
λ+ψ

(
fh − f l

)
denotes the unconditional mean of the

filter and where ŴB is a Brownian motion under Agent B’s probability measure PB.

7The model in Equation (2) is adopted by Detemple (1986), Brennan and Xia (2001), Scheinkman and
Xiong (2003), Dumas et al. (2009), Xiong and Yan (2010), Colacito and Croce (2013), and Bansal, Kiku,
Shaliastovich, and Yaron (2014) among others. The model in Equation (3) is based on the work of David
(1997) and Veronesi (1999) and extensions thereof. In the Economics literature, time series models of the
business cycles include Threshold AutoRegressive (TAR) models, Markov-Switching AutoRegressive (MSAR)
models, and Smooth Transition AutoRegressive (STAR) models. See Hamilton (1994) and Milas, Rothman,
and van Dijk (2006) for further details.
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Proof. See Appendix A.1 for Part 1. and Lipster and Shiryaev (2001a) for Part 2. �

The mechanism through which Agent A and B update their views differs. First, both

agents’ expectations mean-revert, yet at a different speed λ+ψ 6= κ and towards a different

long-term mean f∞ 6= f , as shown in Equations (4) and (5). In particular, unlike Agent A’s

filter that mechanically inherits the mean-reversion of her initial model, the mean-reversion

in Agent B’s filter reflects her effort to continuously reassess the likelihood of each state

using the information that continuously flows from dividends. Second, unlike the volatility

of Agent A’s filter, which is constant, the volatility of Agent B’s filter is stochastic. In

Section 3.2, we discuss how these learning differences affect the dynamics of disagreement

among the two agents.

We choose to work under Agent A’s probability measure, a choice we clarify in Section

3.1. We convert Agent B’s views into those of Agent A through the change of measure:

dPB

dPA

∣∣∣∣
Ft

≡ ηt = exp

[
−1

2

∫ t

0

g2
u

σ2
δ

du−
∫ t

0

gu
σδ

dŴA
u

]
, (6)

where g ≡ f̂A−f̂B represents agents’ disagreement about the estimated fundamental. Impor-

tantly, the change of measure in (6) implies that Agents A and B have equivalent perceptions

of the world, a result we establish in Proposition 2.

Proposition 2. The probability measures PA and PB restricted to the filtration Ft are equiv-

alent, for all t ∈ R+. The Brownian motions ŴA and ŴB therefore satisfy the relation

dŴB
t = dŴA

t +
gt
σδ

dt.

Proof. See Appendix A.2. �

Proposition 2 ensures that we can translate the perception of Agent B into that of Agent

A. To illustrate the economic relevance of this result, suppose that Agent A’s model is the

true data-generating process. Then, observing a finite history of data, Agent B cannot falsify

her own model. That is, if agents could sell a claim contingent on which model is correct,

this claim would never pay off (except perhaps at an infinite horizon).

Because the economy runs forever, a conceptual issue—although immaterial for the

equilibrium construction—is that agents asymptotically observe an infinite history of data.
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Hence, at least one agent asymptotically falsifies her model. Which model is wrong requires

a statement about the true data-generating process, f . While we, even as modelers, do not

observe the true fundamental, f , we think about it in the spirit of Hong, Stein, and Yu

(2007). If Agent A’s and B’s models are both reasonable representations of the world, then

the true data-generating process should be some combination, C, of the two and noise, ε:

ft = C(fAt , f
B
t , ε).

In Section 3.1, we will show that the combination, C, of agents’ models is such that Agent

A’s model is historically closer to the true data-generating process.

2.3 Equilibrium

Agents choose their portfolios and consumption plans to maximize their expected lifetime

utility of consumption. They have power utility preferences defined by

U (c, t) ≡ e−ρt
c1−α

1− α
,

where α > 0 is the coefficient of relative risk aversion and ρ > 0 the subjective discount rate.

Since markets are complete, we solve the consumption-portfolio problem of both agents

using the martingale approach of Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang

(1989). We present the equilibrium risk-free rate, rf , and the market price of risk, θ, in

Proposition 3 below.

Proposition 3. The market price of risk, θ, as perceived by Agent A and the risk-free rate,

rf , satisfy

θt = ασδ +
(1− ω(ηt))

σδ
gt (7)

rft = ρ+ αf̂At −
1

2
α(α + 1)σ2

δ + (1− ω(ηt)) gt

(
1

2

α− 1

ασ2
δ

ω(ηt)gt − α
)
, (8)
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where

ω(ηt) =

(
1

φA

) 1
α

((
ηt
φB

) 1
α

+

(
1

φA

) 1
α

)−1

(9)

denotes the consumption share of Agent A and where φA and φB are the Lagrange multipliers

associated with Agent A’s and Agent B’s budget constraints, respectively.

Proof. See Appendix A.3. �

The market price of risk is the product of the diffusion of Agent A’s consumption growth√
1

dt
varP

A

t

(
dcAt
cAt

)
= σδ +

1− ω(ηt)

ασδ
gt (10)

and her coefficient of risk aversion, α. Agent A wants to be compensated for holding assets

that co-vary positively with her consumption growth and is willing to pay a premium for

holding assets that co-vary negatively with her consumption growth. In particular, her con-

sumption varies either when dividends fluctuate or when her consumption share fluctuates.

Hence, the market price of risk is proportional to the diffusion of dividend growth and the

diffusion of the growth of her consumption share. The market price of risk then scales with

risk aversion, reflecting that the more risk averse Agent A is, the more she wants to hedge.

The consumption share of Agent B, 1− ω, determines the extent to which disagreement

affects the market price of risk. To see this, suppose disagreement is positive today (Agent A

is more optimistic than Agent B). A positive dividend shock tomorrow then indicates that

Agent A’s beliefs were more accurate than Agent B’s—the likelihood, η, of Agent B’s model

relative to Agent A’s decreases and the consumption share of Agent A increases through (9).

In this case, Agent A wants to be rewarded for holding assets that co-vary positively with the

dividend shock and thus with her consumption share. Moreover, as the consumption share of

Agent B decreases, the risk of Agent A’s consumption share growth decreases: were Agent A

the only agent populating the economy, disagreement would become irrelevant and Agent A

would be compensated for holding assets that are positively correlated with dividend growth

only. This mechanism applies symmetrically when disagreement is negative.

The risk-free rate reacts to the fundamental through one main channel—the income effect.

Suppose that only one agent populates the economy (disagreement is irrelevant) and that the
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fundamental increases today. Equation (8) then indicates that the risk-free rate increases.

The reason is that a fundamental increase today leads to a consumption increase tomorrow.

Hence, the agent consumes more today, saves less and the bond price drops (the risk-free

rate increases). This income effect dominates irrespective of the value of risk aversion.

Disagreement affects the risk-free rate through two opposite channels—the income and

the substitution effects—and constitutes a key driver of the risk-free rate because agents use

the bond to hedge their consumption growth risk. To see this, notice that the risk of Agent

A’s consumption growth can be alternatively written as

1

dt
varP

A

t

(
dcAt
cAt

)
=

1

dt

[
varP

A

t

(
dδt
δt

)
+ varP

A

t

(
dω(ηt)

ω(ηt)

)
+ 2covPA

t

(
dδt
δt
,
dω(ηt)

ω(ηt)

)]
.

Three sources of risk drive Agent A’s consumption growth: the risk of dividend growth, the

risk of consumption share growth and the co-movement between the two. When agents’

coefficient of risk aversion is less than one, the risk-free rate decreases with all three sources

of risk, because consumption growth risk induces agents to save more today to consume

tomorrow. That is, the income effect dominates. When the risk aversion coefficient is larger

than one, instead, the risk-free rate increases with the risk of consumption share growth.

The reason is that, as agents become more risk averse, consumption growth risk induces

agents to lock in consumption by saving less and consuming more today. This substitution

effect decreases the bond price and hence increases the risk-free rate.

We conclude the equilibrium description by providing in Proposition 4 the equilibrium

stock price S, the derivation of which follows the methodology in Dumas et al. (2009).

Proposition 4. Assuming that the coefficient of relative risk aversion α is an integer, the

equilibrium stock price satisfies

St
δt

= ω(ηt)
αSt
δt

∣∣∣∣
O.U.

+ (1− ω(ηt))
αSt
δt

∣∣∣∣
M.C.

+ ω (ηt)
α
α−1∑
j=1

(
α

j

)(
1− ω (ηt)

ω (ηt)

)j
F j
(
f̂At , gt

)
(11)

where S
δ

∣∣
O.U.

and S
δ

∣∣
M.C.

denote the prices that prevail in a representative-agent economy pop-

ulated by Agent A and B, respectively. The functions F j
(
f̂A, g

)
represent price adjustment

for investors’ disagreement. We derive these equilibrium functions in Appendix A.4.
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Proof. See Appendix A.4. �

The price in Equation (11) has three terms. When agents have logarithmic utilities

(α = 1), only the first two terms are relevant and the price is just an average of the prices

that obtain in a representative-agent economy populated by Agent A and B, respectively.

When agents are more risk averse than a logarithmic agent (α > 1), the third term becomes

relevant. This term isolates how the joint interaction of fundamental and disagreement

operates on the price through the function F .

3 Calibration and Dynamics of Disagreement

In this section we calibrate the models of Agent A and B and discuss their relative fit to the

U.S. business cycle (Section 3.1). We then study the resulting term structure of disagreement

and show that disagreement is counter-cyclical and persists over long horizons (Section 3.2).

3.1 Calibration and Model Fit to the U.S. Economy

In our model, agents use a single source of information—the time series of dividends δ—to

update their expectations. As a proxy for the dividend stream, we use the S&P 500 dividend

time series recorded at a monthly frequency from January 1871 to November 2013, which we

obtain from Robert Shiller’s website. Looking back to the 19th century allows us to cover a

large number of business cycle turning points, but obviously adds strong seasonality effects

(Bollerslev and Hodrick (1992)). To reduce these effects, we apply the filter developed by

Hodrick and Prescott (1997) to the time series of dividends.

We assume that both agents observe the S&P 500 dividend time series after seasonalities

have been smoothed out. Since this data is available monthly, agents need to first estimate a

discretized version of their model by Maximum Likelihood.8 Agents then map the parameters

they estimated into their continuous-time model. Doing so, agents obtain the parameter

values presented in Table 1. All discussions and results that follow are based on these

parameter values. For convenience, we discuss the methodological details in Appendix A.5.

8See Hamilton (1994) for the likelihood function of each model. We present the estimated parameters,
their standard errors, and their statistical significance in Table 5 in Appendix A.5.
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Parameter Symbol Value
Volatility of Dividend Growth σδ 0.0225∗∗∗

(3.94 × 10−4)

Mean-Reversion Speed of fA κ 0.1911∗∗∗
(0.0264)

Long-Term Mean of fA f̄ 0.0630∗∗∗
(0.0083)

Volatility of fA σf 0.0056∗∗∗
(2.34 × 10−4)

High State of fB fh 0.0794∗∗∗
(0.0032)

Low State of fB f l −0.0711∗∗∗
(0.0038)

Intensity of fB: High to Low λ 0.3022
(1.1294)

Intensity of fB: Low to High ψ 0.3951
(1.1689)

Relative Risk Aversion α 2
Subjective Discount Rate ρ 0.01

Table 1: Parameter Calibration.

This table reports the estimated parameters of the continuous-time model of Agent A and
Agent B. Standard errors (computed using the Delta Method) are reported in brackets
and statistical significance at the 10%, 5%, and 1% levels is labeled with * , **, and ***,
respectively. The last two rows report our choice of preference parameters.

The parameters of Table 1 show that both models produce distinct interpretations of

the data. First, Agent A finds a low reversion speed κ and therefore concludes that the

fundamental is highly persistent, a conclusion largely supported by the long-run risk litera-

ture (e.g., Bansal and Yaron (2004)). Second, Agent B finds that the high state fh and the

low state f l identify an expansion and a recession state, respectively. Importantly, Agent B

finds an asymmetry between the two states—expansions are more persistent than recessions

(ψ > λ). The sum of λ and ψ further imply that Agent B’s filter reverts about 3.5 times

faster than that of Agent A. In addition, the long-term mean of Agent B’s filter (f∞ ≈ 0.014)

is lower than that of Agent A (f = 0.063). Finally, in contrast to the volatility of Agent B’s

filter, that of Agent A is constant. Overall, the two models differ with respect to persistence,

long-term means, and volatilities.

Which model is best is obviously specific to an agent’s needs. We can, however, determine

which model better fits historical data by applying a model selection method such as the

Akaike Information Criterion (AIC). Because an Ornstein-Uhlenbeck process is more versa-

tile and relies on fewer parameters than a 2-state Markov chain, the information criterion
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favors Agent A’s model.9 Hence, over the last century, Agent A’s probability measure was

closer to the physical probability measure in-sample. This fact ultimately justifies our choice

of computing and analyzing the equilibrium under Agent A’s probability measure PA. It

does, however, not necessarily question Agent B’s rationality—a model that performs better

in-sample does not necessarily perform better out-of-sample.10 In particular, for agents who

process the data in real time, it is difficult to assess the relative fit of their model.

3.2 Dynamics of Disagreement

We first show that model heterogeneity leads to countercyclical disagreement (Section 3.2.1).

We then identify which particular aspect of model heterogeneity is key to generate this result

relative to alternative specifications (Section 3.2.2).

3.2.1 Differences in Adjustment Speed and Polarization of Beliefs

Our previous discussion suggests that model heterogeneity causes agents to disagree about

three aspects of the fundamental: its persistence, its long-term mean, and its volatility. We

now show that these three aspects together give rise to counter-cyclical disagreement that

persists over long horizons, consistent with the observed pattern of disagreement among

forecasters (e.g., Kandel and Pearson (1995) and Patton and Timmermann (2010)).

We first define three regimes of the economy on which we focus our study. To do so, we

adopt the terminology used to describe the different phases of the business cycle: we say

that the economy is going through good times when agents’ expectations are above f̄ , while

the economy is going through bad times when agents’ expectations are below

fm ≡
1

2
f l +

1

2
fh,

the point at which Agent B assigns equal probabilities to the expansion and the recession

states. Otherwise, we say the economy is in normal times when filters lie between fm

9The Akaike Information Criterion is defined as follows: AIC = 2K − 2 log (L), where K is the number
of parameters estimated and L is the Likelihood function. Hence, the smaller the criterion is, the better
is the model. We find that the AIC for Agent A and B’s model are AICAgent A = −1.7229 × 104 and
AICAgent B = −1.2154× 104.

10For instance, Welch and Goyal (2008) show that, while any predictive model performs better than the
historical mean in-sample, the latter tends to have better predictive power out-of-sample.
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Good Times Normal Times Bad Times

(f̂A, f̂B) ∈ [f̄ , fh], g = 0 (f̂A, f̂B) ∈ [fm, f̄ ], g = 0 (f̂A, f̂B) ∈ [f l, fm], g = 0

Table 2: Definition of Regimes.

This table describes the 3 different regimes of the economy—good, normal, and bad times.

and f̄ . We postpone an extensive discussion on the relevance of f̄ and fm as the thresholds

defining each regime to Section 3.2.2. Furthermore, to emphasize that future disagreement—

as opposed to current disagreement—drives our result, we set current disagreement to zero

in each case. Finally, as a convention, we assume that agents’ filters always start in the

middle of each interval.11 Table 2 summarizes the definition of the three regimes.

To illustrate how agents update their expectations in each regime, we plot in Figure 1

Agent A and B’s average filter over time. Each panel corresponds to a different regime.

In good times (the left panel), both agents adjust their views at comparable speeds and

disagreement exhibits little variation. In normal times (the middle panel), the difference in

adjustment speed between Agent A and B becomes apparent. Although both agents expect

economic conditions to improve—both filters move upwards on average—Agent B adjusts her

expectations significantly faster than Agent A. Due to this difference in adjustment speed,

disagreement increases in the short term. Disagreement does not evaporate over subsequent

horizons, but persists in the long term.

The learning pattern differs in bad times, as illustrated in the right-hand panel of Figure

1. Two forces are at play. First, there is a polarization of opinions in the short term: agents

disagree about the direction in which the economy is heading and average filters diverge.

In particular, Agent A is optimistic and expects the economy to recover, while Agent B

is pessimistic and expects economic conditions to further deteriorate. This polarization

of opinions creates a spike in disagreement in the short term. Second, the difference in

adjustment speed reappears in the long run. As Agent B realizes that the economy is

recovering, she rapidly catches up with Agent A and eventually becomes more optimistic

than Agent A. As a result, disagreement evaporates in the medium term and regenerates in

the long term through the difference in adjustment speeds.

11The dynamics of disagreement are consistent within each region, irrespective of the starting point within
each region, except in two knife-edge intervals, (0.063, 0.067) and (−0.056,−0.0711), around f̄ and f l,
respectively. In Appendix A.9.2, we explain why disagreement dynamics differ, but show that our results
remain unaffected, within these intervals.
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Figure 1: Filtered Dynamics in 3 States of the Economy.

The solid black and solid red lines represent Agent A and B’s average filters (EPA [f̂At ] and

EPA [f̂Bt ]), respectively. The dotted lines depict the corresponding 90% confidence intervals.
Filters are plotted against time. Each Panel corresponds to a specific state of the economy:
good, normal, and bad times.

Finally, while Agent A postulates constant uncertainty throughout the business cycle,

the variance of Agent B’s filter greatly varies over the business cycle, as the confidence

interval in each panel of Figure 1 demonstrates. Specifically, the variance of Agent B’s filter

increases as economic conditions deteriorate. Hence, the difference in agents’ assessment

of economic uncertainty is greater in bad times. We now show analytically that this effect

precisely generates the polarization of beliefs in bad times that we just described.

3.2.2 Discussion of the Main Mechanism and Alternative Specifications

In our framework, model heterogeneity makes disagreement counter-cyclical: starting in good

times, there is little disagreement because agents have similar views. Disagreement then

increases in normal times through the difference in agents’ adjustment speeds and spikes in

bad times through the polarization of agents’ beliefs. Short-term disagreement is largest in

bad times because opposite views generate more disagreement than a same view adjusting

at different speeds. In this section, we investigate which aspect of model heterogeneity—

difference in persistence, long-term mean or volatility—specifically generates counter-cyclical

disagreement. We explain how disagreement differs under alternative specifications in which

agents use different sets of parameters within the same parametric model.

To guide our discussion, we introduce a formal definition of “adjustment speed” and

“polarization of beliefs”, which we provide in Definition 1.
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Definition 1. The speed, Σi
t, at which Agent i updates her expectations conditional on the

initial value of her filter is the rate of change of her average filter, EPA
0 [f̂ it |f̂ i0 = x0], over time

Σi
t :=

d

dt
EPA

0 [f̂ it |f̂ i0 = x0], i = A,B.

Furthermore, a polarization of beliefs occurs at time t when sign(ΣA
t ) 6= sign(ΣB

t ).

An important observation is that the volatility of Agent B’s filter introduces a nonlinear

term in the filter’s drift under PA,

1

dt
EPA
t [df̂Bt ] = (λ+ ψ)

(
f∞ − f̂Bt

)
+

1

σ2
δ

(
f̂At − f̂Bt

)(
f̂Bt − f l

)(
fh − f̂Bt

)
︸ ︷︷ ︸

nonlinear change of measure

, (12)

through the change of measure of Proposition 2. To understand how this term affects Agent

B’s expectations, we first linearize the drift in (12), which boils down to assuming that both

agents use Agent A’s model with different parameters. Denoting by f̃B the filter resulting

from this linearization, we obtain an approximation for the adjustment speed of Agent B,

which we present in Proposition 5 along with the adjustment speed of Agent A.

Proposition 5. The adjustment speeds of the filter f̂A and f̃B, which prevail under the

calibration in Table 1 and in a neighborhood of t ≈ 0, are approximately given by

ΣA
t =

d

dt
EPA

0

[
f̂At |f̂A0 = x0

]
≈ κ(f̄ − x0) (13)

ΣB
t =

d

dt
EPA

0

[
f̃Bt |f̃B0 = x0

]
≈ (λ+ ψ)(f∞ − x0) +

(f l − x0)(x0 + f l)(fκ+ x0(λ+ ψ − κ))

σ2
δ

t.

(14)

Proof. See Appendix A.6. �

The first term in (13) and (14) shows that Agent A’s and B’s expectations revert towards

their long-term mean f̄ and f∞ at speed κ and λ + ψ, respectively. Clearly, differences in

persistence or long-term mean—even within the same parametric model—generate differ-

ences in adjustment speeds across agents. Most importantly, the two linear filters can only

generate polarization of beliefs in normal times, i.e., agents’ beliefs diverge in the interval
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x0 ∈ (f∞, f). This observation in turn implies that, under the alternative specification in

which both agents use Agent A’s model with different parameters (e.g., Buraschi and Whe-

lan (2013), Ehling et al. (2013) and Buraschi et al. (2014)), polarization of beliefs only arises

within the range spanned by the long-term means (i.e., in normal times, but not in bad

times). Hence, under this alternative specification, short-term disagreement concentrates in

normal times. Moreover, in this range, the second term in (14) reveals that both agents’

expectations eventually align.12

The polarization of beliefs in bad times, which arises in our model, must therefore come

from the nonlinearity of the change of measure in (12). This second-order effect makes

Agent B’s expectations centrifugal under PA. To show this, we now perform a second-order

approximation of the drift of Agent B’s filter. Denoting by f̌B the filter resulting from this

approximation, we obtain a new expression for the adjustment speed of Agent B, which we

highlight in Proposition 6.

Proposition 6. The adjustment speed of the filter f̌B, which prevails under the calibration

in Table 1 and in a neighborhood of t ≈ 0, is approximately given by

ΣB
t =

d

dt
EPA

0

[
f̌Bt |f̌B0 = x0

]
(15)

≈ (λ+ ψ)(f∞ − x0) + σ−4
δ

(
f l − x0

) (
f l + x0

) (
2x0(f l)2 + fκσ2

δ + x0σ
2
δ (−κ+ λ+ ψ)− 2x3

0

)
t.

Proof. See Appendix A.6. �

While a second-order approximation does not modify Agent A’s adjustment speed (be-

cause her model is linear), it introduces an additional term

ϕ× t ≡ 1

σ4
δ

(
f l − x0

) (
f l + x0

) (
2x0(f l)2 − 2x3

0

)
t (16)

in Agent B’s. The coefficient ϕ is of order o(σ−4
δ ) and our calibration implies that, for

any t > σδ, the expression in (16) drives the speed of learning in (15). The coefficient ϕ

changes sign in the neighborhood of x0 = f l, x0 = fh and x0 = fm ≈ 0. Specifically, as f̌B

approaches f l, the adjustment speed becomes positive to reflect the process upwards and as

12Our calibration implies that λ+ ψ > κ and f l < 0 and thus the term multiplying t in (14) is positive.
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f̌B approaches fh, it becomes negative to reflect the process downwards. Most important

is the behavior of ϕ around fm. As f̌B rises above fm, the term 2x0((f l)2 − x2
0) > 0 makes

the adjustment speed positive. Instead, when f̌B drops below fm, this term makes the

adjustment speed negative. That is, under PA, the nonlinear change of measure in (12)

causes Agent B’s expectations to become centrifugal outward fm (see Figure 14 in Appendix

A.6). The overall effect is that the polarization of beliefs—agents’ expectations diverge—now

only occurs when expectations drop below fm (i.e., in bad times).

We draw four conclusions from the discussion above. First, to generate polarization of

beliefs in bad times there must be at least one agent who does not postulate constant uncer-

tainty throughout the business cycle (i.e., her filter exhibits stochastic volatility). Second,

to generate differences in adjustment speed agents’ model must feature either differences in

persistence or long-term mean, or both. Third, the relevant business cycle turning point for

Agent A is f̄ , while that for Agent B is fm, thus justifying the specification of regimes in

Table 2. Finally, the behavior of adjustment speeds implies that, relative to Agent A, Agent

B revises her beliefs rapidly in both normal and good times and slowly in bad times.

Our discussion also suggests that polarization of beliefs in bad times occurs when both

agents use Agent B’s model with different parameters (David, 2008). We conclude this sec-

tion by showing that this specification, however, does not generate a spike in disagreement

under our calibration. To see this, suppose that Agent A estimates a Markov chain using

Agent B’s state values f l and fh, but with intensities λ = κ(fh−f)
fh−f l and ψ = κ(f−f l)

fh−f l that match

the persistence and long-term mean of her initial model.13 This specification also produces

polarization of beliefs in bad times and differences in adjustment speed in normal times, as

in our framework. Under this specification, however, the dispersion around average disagree-

ment is significantly different. To illustrate this, we plot plot in Figure 2 the distribution

of disagreement under our specification (upper panel) and that under the specification of

David (2008) using our calibration (lower panel).14

Although disagreement moves in the same direction with both specifications, the distri-

bution of disagreement shifts immediately with our specification, reflecting short-term spikes

in disagreement. We emphasize, however, that the specification of David (2008) can generate

spikes in disagreement under alternative calibrations.

13Assuming that both agents use the same state values is consistent with the calibration of David (2008).
14We relegate computational details to Appendix A.7.
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Figure 2: Distribution of Disagreement: OU-MC and MC-MC Specifications.

This figure plots the distribution of disagreement along with average disagreement (EPA [gt]
(the solid red line) over a 1-month horizon under Agent A’s probability measure (PA(f̂Bt )).
The upper panels correspond to our specification, while the lower panels correspond to the
specification in David (2008) under our calibration. Each column corresponds to a specific
state of the economy: Normal and Bad Times.

4 Disagreement driving Stock Return Predictability

Recent empirical studies find that stock return predictability concentrates in bad times. In

this section, our objective is to determine the mechanism that causes return predictability

to vary over the business cycle. We show that counter-cyclical disagreement leads to return

continuation, which strengthens as economic conditions deteriorate.

To understand how disagreement, current and future excess returns are related, and thus

how disagreement and current returns predict future returns, it is insightful to first describe

agents’ trading strategy. Following Dumas et al. (2009), we decompose Agent A’s strategy

into two components, which we present in Proposition 7.

Proposition 7. The number of shares, Q, that Agent A holds can be decomposed into a
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myopic portfolio, M , and a hedging portfolio, H, according to

Qt = Mt +Ht =
µt − rft
ασ2

t

Vt
St

+
α− 1

ασtSt
EPA
t

[∫ ∞
t

ξs
ξt
cAs

(
Dtξs
ξs
− Dtξt

ξt

)
ds

]
(17)

where ξ denotes the state-price density, which is given by

ξt = e−ρtδ−αt

[(
ηt
φB

) 1
α

+

(
1

φA

) 1
α

]α
(18)

and where V denotes Agent A’s wealth, which we provide in Appendix A.8.

Proof. See Appendix A.8. �

Agent A’s portfolio in (17) tells us how she trades on return predictability. While the

first part, M , is a myopic demand through which Agent A seeks to extract the immediate

Sharpe ratio, the second term, H, is an hedging demand through which she exploits return

predictability. To see this, notice that the hedging demand in (17) incorporates Agent A’s

outlook on future returns through the future response of state-price densities to a shock

occurring today, Dtξs. This response represents Agent A’s attempt to predict future returns.

We first analyze the relation between disagreement and contemporaneous excess returns,

which are contained in Agent A’s myopic demand (Section 4.1). We then study how Agent

A attempts to predict future returns through her hedging demand and explain how current

disagreement and future excess returns are related (Section 4.2). We finally show that

disagreement creates a positive relation between current and future excess returns in the

short term, a phenomenon known as “time series momentum” (Section 4.3).

4.1 Disagreement and Contemporaneous Excess Returns

In our model, disagreement and contemporaneous excess returns are negatively related. To

show this, we observe that contemporaneous (expected) excess returns, µ− rf = σθ, are the

product of the stock return diffusion, σ, and the market price of risk, θ, which we discussed

in Section 2.3. To infer the properties of contemporaneous excess returns, we discuss the
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diffusion of stock returns, which satisfies

σ =
1

σδS

γ ∂

∂f̂A
S︸ ︷︷ ︸

<0

+
(
γ −

(
fh + g − f̂A

)(
f̂A − g − f l

)) ∂

∂g
S︸︷︷︸

>0

−gη ∂

∂η
S︸︷︷︸

>0

+ σδ. (19)

We first explain the sign of the price sensitivities in (19). The price decreases with the

fundamental through the income effect (when risk aversion is larger than one (Veronesi,

2000)): anticipating that a fundamental increase today leads to higher consumption tomor-

row, Agent A decreases her savings, which decreases the price. In contrast, the price increases

with disagreement through the substitution effect: an increase in disagreement implies that

Agent A is optimistic relative to Agent B and therefore increases her stock holdings, which

leads to a price increase. Finally, an increase in the likelihood of Agent B’s model implies

an increase in the risk of Agent A’s consumption growth through (9) and (10), to which she

responds by increasing her hedging demand, leading to a price increase.

We now identify the main term driving the diffusion of stock returns in (19). Although

Equation (19) indicates a nontrivial relation between the stock return diffusion and the state

variables, Figure 3 shows that most of the variations in the diffusion is implied by the third

diffusion component, − ηg
σδS

∂
∂η
S, irrespective of the relative likelihood, η (and the fundamental

(see Figure 15 in Appendix A.9.1)). Because the price sensitivity, ∂
∂η
S > 0, is positive, the

diffusion of stock returns reacts negatively to an increase in disagreement—it is decreasing

in disagreement and changes sign around zero. As a result, the diffusion of stock returns

and disagreement mostly have opposite signs: as shown in Figure 3, the diffusion of stock

returns is positive when disagreement is negative and vice-versa.

The market price of risk in (7), instead, is increasing in disagreement: it is positive when

disagreement is positive and mostly negative when disagreement is negative. Hence, con-

temporaneous excess returns—the product between the diffusion of stock returns and the

market of risk—have an inverse U-shaped relation with disagreement around zero. Specifi-

cally, contemporaneous excess returns are low when disagreement is strong and high when

disagreement is weak. The main conclusion is that contemporaneous excess returns are

decreasing with absolute disagreement.
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Figure 3: Stock Return Diffusion vs. Disagreement.

The left and the right panels depict the stock return diffusion and the third diffusion com-
ponent,

−Sηgη
σδS

, respectively, both as a function of disagreement for different values of the

change of measure. The other state variables are set to δ = η = 1 and f̂A = f̄ . The values
for the change of measure η = 0.2, η = 1, and η = 5 yield consumption shares that are worth
ω(0.2) ≈ 0.7, ω(1) = 0.5, and ω(5) ≈ 0.3, respectively. The range for the disagreement is
the 90% confidence interval obtained from 1,000 simulations of the economy over a 100-year
horizon.

4.2 Disagreement, Future Excess Returns and Reaction to News

We now show that future excess returns react to contemporaneous news in a way that is

predictable if disagreement spikes in the short term. In bad times, news polarizes opinions,

causing returns to persistently under-react. In normal times, news exacerbates the difference

in adjustment speed, causing returns to persistently over-react. In good times, the news

provokes an immediate return adjustment. As a result, the content of news (Tetlock, 2007)

better predicts future returns in bad times (Garcia, 2013).

Agent A’s hedging demand in (17) shows that forecasting future returns in our model

involves computing the response of future state-price densities to a shock occurring today.

Hence, as emphasized in Dumas et al. (2009), the concept of future returns that is relevant

for portfolio choice is the future response, Dtξs/ξs, of state-price densities, as opposed to the

usual multiperiod rate of return, ξt/ξs. We will accordingly refer to “future returns” and the

“the response of state-price densities” indifferently and denote future returns cumulated up

to an horizon s > t by R(t, s) = Dtξs/ξs. This concept can be mapped into the empirical

measures of Tetlock (2007) and Garcia (2013): its average, EPA
t [R(t, s)], is the regression

coefficient of the news arriving at time t on cumulative stock returns from time t to s.
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Figure 4: Illustration of the State-Price Density’s Response to a News Shock.

The upper panel shows a trajectory of news before (dashed blue line) and after (solid red
line) a news surprise. The lower panel shows the associated trajectory of the state-price
density before (dashed blue line) and after (solid red line) a news surprise. The shaded area
represents the reaction Dξ to a news shock and the solid black line represents the average
reaction E[Dξ] of the state-price density.

We start with an illustration of the concept of future response. To compute a response

to a news shock, Agent A first considers a trajectory of the Brownian innovation ŴA, the

only source of news in our model. She then contemplates a news surprise today (an initial

perturbation of the news trajectory), while keeping the news trajectory otherwise unchanged,

as illustrated in the upper panel of Figure 4. To each news trajectory, both perturbed and

unperturbed, corresponds a trajectory of the state-price density, as illustrated in the lower

panel. The difference, Dξ, between these trajectories (the shaded area) precisely captures

the reaction of the state-price density to the news surprise relative to the state-price density

that would have prevailed, had there been no news surprise. Because Agent A is interested

in all possible trajectories, she computes an average reaction E[Dξ] (the solid black line).

When the news surprise is “small”, the reaction, Dξ, of the state-price density becomes

a well-defined mathematical object known as a Malliavin derivative.15 It has the economic

meaning of an impulse-response function following a shock in initial values (in our case, a

news shock). However, unlike a standard impulse-response function, a Malliavin derivative

takes future uncertainty into account: Agent A does not assume that the world becomes

15See, e.g., Detemple and Zapatero (1991), Detemple, Garcia, and Rindisbacher (2003, 2005), Berrada
(2006), and Dumas et al. (2009) for applications of Malliavin calculus in Financial Economics.
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deterministic after the shock has occurred and therefore computes an average response.

To obtain an analytical expression for average future returns in our model, notice that

the state-price density, ξ(δ, η), in (18) depends on two state variables, dividends and the

likelihood of Agent B’s model. As a result, the way future state-price densities react to a

news depends, first, on how they react to a change in these state variables and, second, on

how these state variables themselves react to the news. Applying chain rule to (18), the

average response of the state-price density satisfies

EPA
t [R(t, s)] = −αDtδs

δs︸ ︷︷ ︸
fundamental channel

+EPA
t

[
(1− ω(ηs))

Dtηs
ηs

]
︸ ︷︷ ︸

disagreement channel

. (20)

We now decompose this chain reaction and relegate mathematical details to Appendix 7.

As the news hits, dividends react in a perfectly predictable fashion,

Dtδs
δs

= σδ +
γ

κσδ

(
1− e−κ(s−t)) > 0, ∀s > t ∈ R+ (21)

because the fundamental mean reverts with constant uncertainty, γ
σδ

, under Agent A’s mea-

sure. In particular, Equation (21) indicates that dividends respond positively to a good news

and that their response gradually weakens at Agent A’s learning speed, κ. In contrast, the

likelihood of Agent B’s model reacts ambiguously to the news on average

EPA
t

[
Dtηs
ηs

]
= − 1

σ2
δ

EPA
t

[∫ s

t

guDtgudu
]

(22)

as the news may either corroborate or invalidate Agent B’s model depending on economic

conditions. Specifically, when the reaction of disagreement, g × Dg, to the news is persis-

tently negative, Agent B is overly optimistic relative to Agent A and a good news therefore

corroborates her model, as Equation (22) indicates. If, instead, the reaction of disagreement

is persistently positive, Agent B is pessimistic and a good news invalidates her model.

As dividends and the likelihood of Agent B’s model move, the state-price density in turn

respond. It decreases after a dividend increase, ∂
∂δ
ξ(δ, η) = −αξ(δ, η)/δ < 0, and increases

following an increase in the likelihood of Agent B’s model, ∂
∂η
ξ(δ, η) = (1−ω(η))ξ(δ, η)/η > 0.

The reason is that an increase in dividends decreases marginal utility. An increase in the
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likelihood, η, instead, increases the risk of Agent A’s consumption share growth, which

increases her hedging demand and thus her marginal utility, φAξ.

Overall, a news shock moves state-price densities through two channels, the fundamental

and disagreement. The fundamental channel in (20) triggers a negative state-price density

reaction following a good news, as it hints future dividend abundance. The disagreement

channel conveys an ambiguous reaction depending on whether the news corroborates Agent

B’s model, thereby making Agent A’s consumption share growth riskier. Our calibration

indicates that the magnitude of the former channel ranges from −0.045 to −0.058, while that

of the latter ranges from −0.3 to 0.3. Clearly, disagreement is the main channel driving future

returns in our model. As a result, average cumulative returns move alongside the average

reaction of the likelihood, η, and therefore against the average reaction of disagreement:

sign(EPA
t [R(t, s)]) ≈ sign(EPA

t [Dtηs]) ≡ −sign

(
EPA
t

[∫ s

t

guDtgudu
])

. (23)

We plot the 3-year average cumulative return in the left panel of Figure 5 along with the

average reaction of disagreement, Et[guDtgu], in the right panel. When interpreting average

cumulative returns, based on (23), a negative sign implies that returns move opposite to the

news, i.e., they under-react. A positive sign either means that returns adjust to the news or

over-react, in which case returns subsequently revert, i.e., average cumulative returns change

direction. Finally, when interpreting the average reaction of disagreement, a negative sign

implies that Agent B is overly optimistic and a positive sign means that she is pessimistic.

In bad times (the black dashed line), the news exacerbates disagreement by polarizing

agents’ opinions: Agent A interprets the news positively, whereas Agent B interprets it

negatively and disagreement spikes (the right panel). Since the news invalidates Agent B’s

model, returns move against the news, i.e., a good news is followed by negative returns in

the short term (the left panel). Hence, Agent B’s pessimism slows down returns’ adjustment

to the news (decreasing reaction). A similar under-reaction phenomenon arises in Hong and

Stein (1999) and Ottaviani and Sorensen (2015).

In normal times (the solid red line), the news shock precipitates an upward adjustment in

Agent B’s expectations, sharpening the difference in adjustment speeds across agents. While

agents interpret the news in similar ways, Agent B overreacts to the news and becomes overly

optimistic relative to Agent A (the right panel). Because the news corroborates Agent B’s
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Figure 5: Impulse Response of Excess Returns to a News Shock.

The left panel plots the total (sum of fundamental and disagreement channels) impulse
response of stock returns. The right panel plots the response of disagreement to a news
shock EPA

t [guDtgu]. Each line corresponds to a different regime.

overoptimism, returns over-react to the news in the short term (the left panel). That is,

Agent B’s overreaction accelerates return’s adjustment to the news (increasing reaction),

similar to the over-reaction phenomenon of Daniel et al. (1998).

In good times (the dash-dotted blue line), the reaction of disagreement to the news is

weak and exhibits little persistence (the right panel). Because the news is consistent with

Agent B’s model and induces little disagreement, returns adjust immediately (the left panel).

Hence, return continuation only arises when disagreement spikes in the short term.

In the long term (after about 6 months), excess returns systematically revert, i.e., cumu-

lative returns change direction. This later phase of correction arises through the long-term

behavior of Agent B’s consumption share, 1 − ω(η), which multiplies the reaction of dis-

agreement to the news shock in (20). Since the drift of Agent B’s consumption share,

− 1

dt
EPA
t [dωt] =

g2
t (2ωt − 1− α)(1− ωt)ωt

2α2σ2
δ

< 0,

is negative and decreases with absolute disagreement, strong disagreement today leads to

a strong downward trend in Agent B’s future consumption share. Agent B’s consumption

share therefore gradually dampens the disagreement response in (22) (the right panel of

Figure 5), which generates a reversion in excess returns in the long term.
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We draw three conclusions from our discussion. First, in our model, continuation arises

through a spike in disagreement whereby future returns react to past news. Reversal, instead,

arises through a correction in the likelihood, η, of Agent B’s model. Second, whether a spike

in disagreement results from the polarization of opinions in bad times or the difference in

adjustment speeds in normal times dictates whether returns under- or over-react. Hence,

unlike Ottaviani and Sorensen (2015), continuing under- and over-reaction alternate over the

business cycle. Third, in our model, the content of news predicts future returns (Tetlock,

2007) and this effect concentrates in bad times (Garcia, 2013).

4.3 Time Series Momentum and Momentum Crashes

One of the most pervasive facts in finance is momentum (Jegadeesh and Titman, 1993).

Recently, Moskowitz et al. (2012) uncover a similar pattern in aggregate returns, which they

coin “time series momentum”. In our model, counter-cyclical disagreement creates a positive

relation between contemporaneous and future excess returns in the short term. We now show

that this relation explains time series momentum, its term structure, how it crashes following

sharp market rebounds and why it is stronger in bad times at short horizons.

To relate contemporaneous and future excess returns, which we have discussed separately,

we use Agent A’s strategy in (17). Forcing Agent A to hold the entire supply, Qt ≡ 1,

of the stock, market clearing implies that she consumes, cA,t = δt, aggregate dividends

and that her wealth, Vt = St, coincides with the stock price. We then substitute these

identities in (17) along with the instantaneous response of the state-price density, which is

just a negative Sharpe ratio, Dtξt
ξt

= −θt. We finally obtain a CAPM-like relation between

contemporaneous (expected) excess returns and the concept of future excess returns, R, that

matters to investors in our model:

µt − rft = σt

(
σt +

1− α
α

1

St
EPA
t

[∫ ∞
t

ξs
ξt
δsR(t, s)ds

])
. (24)

The relation in (24) indicates that contemporaneous excess returns only predict future

excess returns when agents are nonmyopic. Specifically, if α = 1, investors myopically reap

the immediate Sharpe ratio (the first term in (17)) and contemporaneous excess return,

µt − rft = σ2
t , do not provide information regarding future returns. When α > 1, instead,

return predictability arises through the inter-temporal hedge (the second term in (17)) that
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reflects the prospects on future returns. Hence, contemporaneous and future returns relate

through agents’ hedging demands. Since contemporaneous excess returns are negatively

related to disagreement (Section 4.1) and future excess returns are negatively related to

the reaction of disagreement (Section 4.2), contemporaneous and future excess returns are

positively related—returns exhibit time series momentum.

To analyze the pattern of serial correlation of returns in a way that is consistent with

empirical studies, we compute monthly excess returns as

ret ≡
∫ t

t−∆

(
dSu + δudu

Su
− rfudu

)
=

∫ t

t−∆

σu(θudu+ dŴA
u ),

with ∆ = 1/12 = 1 month. Following Banerjee et al. (2009), we then measure time series

momentum at different lags h according to

ρ(h) =
covPA

(
ret+h∆, r

e
t

)
varPA (ret )

.

The coefficient, ρ(h), determines whether returns exhibit momentum (ρ(h) > 0) or reversal

(ρ(h) < 0). In Figure 6, we plot the t-statistics of this coefficient for lags ranging from 1

month to 3 years. For robustness, we also report the coefficient value in Appendix A.9.3.

The serial correlation of returns has a similar term structure in normal times (the center

panel) and in bad times (the right panel): returns exhibit time series momentum over an

horizon of 10 to 18 months, followed by reversal over subsequent horizons. Moreover, the

magnitude of momentum varies according to the horizon considered: momentum is large at

short horizons (up to four months) and then decays over longer horizons. In Appendix A.9.4

we show that these patterns are also robust unconditionally. Both the magnitude and the

timing of time series momentum are in line with empirical evidence.16 Indeed, Moskowitz

et al. (2012) find significant time series momentum at short horizons (1 to 6 months), weaker

momentum at intermediate horizons (7 to 15 months), and reversal at longer horizons.

Time series momentum results from a spike in disagreement, whereby returns continue to

react to past news (Section 4.2). Hence, although similar, the term structures of momentum

in normal times and in bad times differ in one important dimension. Because the polarization

16In Appendix A.9.8 we confirm empirically that time series momentum persists up to one year and is
followed by long-term reversal in both NBER expansions and NBER recessions.
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Figure 6: Time Series Momentum of Excess Returns.

This figure plots the t-statistics of the coefficient ρ(h) for lags h ranging from 1 month to
3 years. Each panel corresponds to a different state of the economy. Standard errors are
adjusted using Newey and West (1987) procedure. The values reported above are obtained
from 10,000 simulations of the economy over a 20-year horizon.

of opinions in bad times induces a sharper spike in disagreement relative to the difference in

adjustment speeds in normal times, time series momentum at short horizons is significantly

larger in bad times. That is, more disagreement leads to more time series momentum. This

implication finds strong empirical support (see Section 5.2).

Excess returns have different time series properties in good times (the left panel): returns

exhibit strong reversal in the very short term and weak momentum thereafter. The reason

is that the main force driving returns in good times is reversion to fundamentals, as opposed

to disagreement (see Figure 5). Suppose there is a bad news today. Investors, who want to

smooth consumption over time, save by increasing their holdings in the stock, thus causing

an immediate price increase. As the fundamental reverts, they unwind part of their stock

holdings, leading to a price decrease and thus to reversal.

An important consequence of the initial reversal spike, which occurs in good times, is that

a time series momentum strategy may crash if the market rises sharply. To see this, suppose

we start implementing a momentum strategy in bad times. The right panel then indicates

that this strategy remains profitable as long as the economy does not transit suddenly from

bad to good times. If, instead, the market sharply rebounds, the trend suddenly reverts and

the momentum strategy crashes. Sharp trend reversals typically occur at the end of financial
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crises. For instance, a momentum strategy incurred large losses at the end of the Global

Financial Crisis in March, April and May of 2009 (Moskowitz et al., 2012).17 Furthermore, we

show in Appendix A.9.7 that the model implies stronger time series momentum in extreme

markets, consistent with Moskowitz et al. (2012).

5 Testable Predictions and Empirical Evidence

Our model offers three novel predictions: (1) future excess returns are positively related to

contemporaneous absolute disagreement. Furthermore, time series momentum at short hori-

zons (2) increases with absolute disagreement and (3) is, therefore, strongest in bad times.

In this section, we first define several measures that quantify these qualitative predictions to

obtain testable predictions (Section 5.1). These measures have immediate empirical coun-

terparts that allow us to guide our empirical analysis. Mirroring our theoretical analysis, we

then provide empirical support to the predictions of the model (Section 5.2).

5.1 Testable Predictions

Section 5.1.1 quantifies the relation between absolute disagreement and future excess re-

turns. Section 5.1.2 measures the relation between momentum, disagreement and economic

conditions.

5.1.1 Dispersion and Future Excess Returns

Empirical evidence suggests that high dispersion of analysts’ forecasts predicts low future

returns in the cross section of firms (Diether et al., 2002). In contrast to this negative cross-

sectional relation, our model predicts a positive relation between the aggregate dispersion of

forecasts and aggregate future returns. To quantify this relation, we start by defining several

explanatory variables. In our model, three state variables drive excess returns: disagreement,

the fundamental, and the likelihood, η. In the empirical literature, disagreement is usually

proxied by the dispersion of analyst forecast (Diether et al., 2002), i.e., the absolute value

of disagreement, |g|. We accordingly define monthly dispersion G, the monthly fundamental

17Daniel and Moskowitz (2013) and Barroso and Santa-Clara (2015) document a similar phenomenon in
the cross-section of stocks.
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F , and the monthly change of measure E as

Gt =

∫ t

t−∆

|gu|du, Ft =

∫ t

t−∆

f̂Au du, Et =

∫ t

t−∆

ηudu. (25)

To measure the relation between excess returns and dispersion, we run the regression

ret+h∆ = α(h) + βG(h)Gt + βF (h)Ft + βE(h)Et + εt+h∆, (26)

in which we let excess returns be the dependent variable and lagged dispersion, fundamental

and change of measure be the explanatory variables at different lags h. While we control

for the effect of the fundamental and the change of measure in (26), we focus our discussion

on the coefficient βG(h), which precisely quantifies the relation between excess returns and

dispersion at different lags h. Since this model-implied coefficient does not have an explicit

solution, we compute it through simulations. We plot the t−statistics of this coefficient in

Figure 7 for different lags ranging from 0 month to 1 year. The left panel controls for the

fundamental only, while the right panel controls for both the fundamental and the change

of measure. For robustness, we also report the value of the coefficient βG(h) in Appendix

A.9.5.

As explained in Section 4.1, dispersion is negatively related to contemporaneous excess

returns (the lower-lags bars in each panel in Figure 7). It is, however, positively related to

future excess returns (the higher-lags bars). To see this, suppose that dispersion is high to-

day. Dispersion then decreases in the future because it is counter-cyclical.18 Since dispersion

and excess returns are contemporaneously negatively related, future excess returns are high,

creating a positive relation between dispersion and future excess returns. This observation

further implies that, in our model, contemporaneous excess returns are pro-cyclical, while

future excess returns are countercyclical. Finally, comparing the left and right panels of

Figure 7 shows that controlling for the change of measure has little impact: in both cases,

dispersion positively predicts future excess return at lags larger than three months, although

statistical significance is stronger when controlling for the fundamental only. Hence, control-

18To confirm that dispersion is counter-cyclical in our model, we regress dispersion G on the fundamental
F using 1,000 simulations over a 100-year horizon. We find that the fundamental and dispersion are, indeed,
negatively related with a regression coefficient of −1.0051. The R2 of the regression is 0.1832 and, using
Newey and West (1987) standard errors, the regression coefficient is significant at the 1% level.
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Figure 7: Excess Returns vs. Dispersion.

This figure plots the t-statistics of the response of excess returns to dispersion βG(h) for lags
h ranging from 0 month to 1 year. The left panel controls for the fundamental only (i.e.
βE(h) = 0), whereas the right panel controls for both the fundamental and the change of
measure. Standard errors are adjusted using Newey and West (1987) procedure. The values
reported above are obtained from 1,000 simulations of the economy over a 100-year horizon.

ling for the change of measure only alters the results quantitatively but not qualitatively, an

observation on which we rely to guide our empirical analysis in Section 5.2.

5.1.2 Time Series Momentum

In Section 4.3, we showed that short-term time series momentum increases with dispersion.

We consider two approaches to measure this effect. In a first approach, we capture periods of

high dispersion with a dummy variable, YG,t(p), that takes value 1 when monthly dispersion,

G, is larger than its p−th percentile. We then run the following regression

ret+∆ = αG(p) + β1,G(p)ret + β2,G(p)retYG,t(p) + εt+∆. (27)

The coefficient β2,G(p) measures time series momentum in excess of that present in periods of

low dispersion. In an alternative approach, we compute time series momentum at a 1-month

lag, βM(1)j, by running the following regression over 36−month rolling windows:

ret+∆ = αM(1)j + βM(1)jr
e
t + εt+∆, t ∈ (j∆, j∆ + 36∆),
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Figure 8: Excess 1-Month Time Series Momentum in High Dispersion Periods.

This figure plots the excess 1-month time series momentum β2,G(p) and its t-statistics when
dispersion is larger than its p−th percentile. Standard errors are adjusted using Newey and
West (1987) procedure. The values reported above are obtained from 1,000 simulations of
the economy over a 100-year horizon.

where j = 0, . . . , N − 1 is the index of each 36-month rolling window and N is the total

number of windows. We then regress the t-statistics of βM(1)j on the aggregate dispersion,

AGj =
∑j∆+36∆

t=j∆ Gt, computed over each 36-month window:

βM(1) t-statj = α + βAGj + εj. (28)

The coefficient β measures the sensitivity of time series momentum (at a 1-month lag) to a

change in aggregate dispersion.

We compute the model-implied statistics under the two approaches through simulations.

Figure 8 plots the statistics, β2,G(p), of the first approach as a function of the p−th percentile

considered. Consistent with our qualitative analysis, additional disagreement implies addi-

tional time series momentum at a 1-month lag. Moreover, this relation is most significant for

the 20−th percentile of dispersion. Similarly, the model-implied statistics, β = 22.8481, of

the second approach is significant at the 5% confidence level, which shows that momentum

at a 1-month lag increases with dispersion.19

Finally, our model predicts strongest momentum in bad times at short horizons, a result

19We describe the statistics β2,G and β for momentum at a 1-month lag only. A positive relation between
time series momentum and dispersion also holds at a 2-, 3-, and 4-month lag. The coefficient β is computed
using 1,000 simulations over a 100-year horizon. The R2 of the regression is 0.0345 and, using Newey and
West (1987) standard errors, the slope coefficient is significant at the 5% level.
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Figure 9: Excess Time Series Momentum in Recessions.

This figure plots the excess time series momentum coefficient β2,F (h) and its t-statistics for
lags h ranging from 1 month to 1 year. Standard errors are adjusted using Newey and West
(1987) procedure. The values reported above are obtained from 1,000 simulations of the
economy over a 100-year horizon.

we quantify as follows. We first identify bad times in our model in a way that can be mapped

into our empirical analysis (Section 5.2) in which we use NBER recession dates. Since NBER

recessions have historically accounted for 30% of the business cycle, we capture recessions

with a dummy variable YF that takes value 1 if the monthly fundamental, F , is below its

30−th percentile.20 We then run the following regression:

ret+h∆ = αF (h) + β1,F (h)ret + β2,F (h)retYF,t + εt+h∆. (29)

The coefficient β2,F (h) measures time-series momentum in excess of that present in ex-

pansions at a h−months lags. We plot this coefficient in Figure 9 as a function the lag

considered. Consistent with our qualitative analysis, time series momentum is significantly

larger in recessions than in expansions (up to the 5-month lag).

5.2 Empirical Evidence

We now mirror the quantitative analysis of Section 5.1 by constructing empirical counterparts

to the dispersion, G, the fundamental, F , and the change of measure, E, defined in (25). As

20Note that our results are robust to any other threshold lying between the 10−th and the 50−th percentile.
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is customary in the literature, we proxy for the dispersion and the fundamental using data on

analyst forecast of firms’ earnings per share. Unfortunately, a model-free proxy for the change

of measure is unavailable. Our model, however, indicates that this variable has no qualitative

impact on the timing of predictability—dispersion positively predicts future excess returns,

whether or not we control for the change of measure in the predictive regression (Section

5.1.1). Moreover, the two other predictions of the model relate exclusively to time series

momentum. Since we showed in Section 4.2 that time series momentum is a consequence of

disagreement, as opposed to the change of measure, the unavailability of a model-free proxy

for the change of measure does not affect our empirical analysis altogether.

To construct an empirical proxy for dispersion, we follow Diether et al. (2002). We

first obtain monthly data on analyst forecast from I/B/E/S for the time period ranging

from February 1976 to November 2014. Denoting by f i,j the forecast of analyst j regarding

firm i’s one fiscal year earnings per share, we define the dispersion, Di, of analyst forecasts

regarding firm i’s earnings as

Di
t =

std
j

(f i,jt )

|mean
j

(f i,jt )|
,

where mean
j

(.) and std
j

(.) denote the mean and the standard deviation of forecasts computed

across analysts, respectively. We then compute the aggregate dispersion, D, across firms as

Dt =
1

Nt

Nt∑
i=1

Di
t,

where Nt is the number of firms in the S&P 500 that have at least two analyst forecasts and

a mean forecast different from zero at time t.21 Finally, regressing aggregate dispersion, Dt,

on time t shows that dispersion has a strong linear downward trend (see left panel of Table

3). To obtain a de-trended proxy for dispersion, Disp, we use the residuals of this regression.

In Section 3, we estimated the two sets of beliefs, f̂A and f̂B, using monthly dividends

on the S&P 500. These calibrated beliefs in turn provide a model-implied time series of

21Over the time period 02/1976 to 11/2014, a mean of 490 firms meet these two conditions each month.
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Dep. Var. Dt

Const. 0.2122∗∗∗

(0.0135)
Time t −0.0033∗∗∗

(0.0005)
Adj. R2 0.1470
Obs. 466

Dep. Var. GMFt
Const. −0.0300∗∗∗

(0.0074)
Y 12
t 0.1241∗

(0.0643)
Adj. R2 0.0310
Obs. 466

Table 3: Linear Trend in Dispersion and 12-Month Seasonality in Fundamental.

The left and right panels report the outputs obtained by regressing dispersion Dt on time t
and the fundamental GMF on the 12-month seasonality dummy variable Y 12, respectively.
Standard errors are reported in brackets and statistical significance at the 10%, 5%, and 1%
levels is labeled with * , **, and ***, respectively. Standard errors are adjusted using Newey
and West (1987) procedure. Data are at the monthly frequency from 02/1976 to 11/2014.

dispersion, DispMI :

DispMI =
∣∣∣f̂A − f̂B∣∣∣ .

If the two filtering processes, f̂A and f̂B, offer a reasonable approximation of agents’ dis-

agreement, then the model-implied dispersion, DispMI , should be correlated with the actual

dispersion among forecasters, Disp. To investigate this matter, we regress the actual disper-

sion of forecasts, Disp, on the model-implied dispersion, DispMI . The right panel of Table

4 shows that there is a remarkably strong positive relation between the two, thus lending

support to our assumption that agents use heterogeneous forecasting models. Moreover, con-

ditioning on NBER recessions with a dummy variable, Rec, we find that the actual dispersion

is higher in recessions than in expansions (left panel of Table 4). The actual dispersion is

therefore counter-cyclical as our model predicts.

Finally, we build a proxy for the fundamental using the aggregate mean forecast, MF =
1
Nt

∑Nt
i=1 mean

j
(f i,jt ), from which we compute its growth rate, GMF , as

GMFt =
MFt −MFt−∆

MFt−∆

,

where ∆ = 1/12 = 1 month. We choose not to work with the log growth rate because

the aggregate mean forecast is sometimes negative. We also remove three outliers from the

time series of growth rates, despite their minor influence on the results. We finally eliminate
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Dep. Var. Dispt
Const. −0.0070

(0.0043)
Rect 0.0534∗∗∗

(0.0137)
Adj. R2 0.0383
Obs. 466

Dep. Var. Dispt
Const. −0.0320∗∗∗

(0.0081)
DispMI

t 9.9362∗∗∗

(2.3770)
Adj. R2 0.0597
Obs. 454

Table 4: Dispersion in Recessions and Actual vs. Model-Implied Dispersion.

The left panel reports the outputs obtained by regressing dispersion Disp on a dummy
variable Rec that equals 1 during NBER recessions. The right panel reports the outputs
obtained by regressing dispersion Disp on the model-implied dispersion DispMI estimated
in Section 3. Standard errors are reported in brackets and statistical significance at the 10%,
5%, and 1% levels is labeled with * , **, and ***, respectively. Standard errors are adjusted
using Newey and West (1987) procedure. The left and right panels consider monthly data
from 02/1976 to 11/2014 and from 02/1976 to 11/2013, respectively.

seasonalities from the resulting time series of growth rates by running the following regression

GMFt = α + βY 12
t + Fundt,

where Y 12 is a 12-month seasonality dummy variable (see right panel of Table 3). We use

the residual, Fund, of this regression as a proxy for the fundamental.

5.2.1 Dispersion and Future Excess Returns

We start by testing our model’s first prediction that future excess returns are positively

related to current dispersion. To do so, we run the empirical equivalent to the regression

in Equation (26). Specifically, we measure the relation, βG(h), between excess returns and

dispersion at different lags h by running the regression in (27) in which we substitute the

fundamental, F , and the dispersion, G, by their empirical proxy, Fund and Disp, respec-

tively, and take excess returns, re, to be the monthly excess return on the S&P 500. We

report our results in Figure 10 for different lags ranging from 1 month to 1 year.

Except for the 1-month lag, comparing Figures 7 and 10 shows that the model-implied

pattern and the empirical pattern are in line with each other, particularly so at the 2-month

horizon. Hence, consistent with the model’s prediction, dispersion positively predicts future

excess returns. Our finding, however, contrasts with the negative relation between dispersion
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Figure 10: Future Excess Returns vs. Dispersion.

This figure plots the response of excess returns to dispersion βG(h) and its t-statistics for
lags h ranging from 1 month to 1 year. Standard errors are adjusted using Newey and West
(1987) procedure. Monthly data range from 02/1976 to 11/2014.

and future returns, which is observed in the cross-section of firms (Diether et al., 2002). A

possible explanation is that short-sale constraints become relevant in the cross-section of

firms, as they may create a negative relation between dispersion and returns (Miller, 1977).

Confirming this conjecture, Anderson, Ghysels, and Juergens (2005), Boehme, Danielsen,

Kumar, and Sorescu (2009), and Carlin et al. (2014) find a positive cross-sectional relation

in markets in which short-sale constraints are absent.

5.2.2 Dispersion and Time Series Momentum

We now test our model’s second prediction that short-term time series momentum increases

with dispersion. To that purpose, we use the two measures defined in Section 5.1.2. Specif-

ically, we first measure excess 1-month time series momentum in high dispersion periods,

β2,G(p), by running the regression in (27) in which we substitute dispersion G, by its empiri-

cal proxy, Disp. Second, we compute the sensitivity, β, of 1-month time series momentum to

a change in aggregate dispersion: we estimate time series momentum over 36-month rolling

windows through (28), record its t−statistics, and regress these t−statistics on the mean

monthly dispersion, MG, which replaces our theoretical measure of aggregate dispersion,

AG, in (28). We plot the coefficient β2,G(p) and its t-statistics for percentiles ranging from

10 to 50 in Figure 11 and report in Figure 12 the regression outputs for the coefficient β.

Figures 11 and 12 indicate the presence of time series momentum in excess of that present
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Figure 11: Excess 1-Month Time Series Momentum in High Dispersion Periods.

This figure plots the excess 1-month time series momentum β2,G(p) and its t-statistics when
dispersion is larger than its p−th percentile. Standard errors are adjusted using Newey and
West (1987) procedure. Monthly data range from 02/1976 to 11/2014.

in periods of low dispersion, lending support to our model’s second prediction. Specifically,

both measures, β2,G(p) and β, have values that are consistent with their theoretical counter-

parts (discussed in Section 5.1.2). First, comparing Figures 8 and 11, we observe that, both

in the model and in the data, the relation between disagreement and momentum is partic-

ularly strong when the dispersion threshold is the 20−th percentile and weakens when the

threshold increases from the 20−th to the 50−th percentile. Second, Figure 12 shows that

1-month time series momentum increases with dispersion. The empirical coefficient β is, as

its theoretical counterpart (see Section 5.1.2), significant at the 5% confidence level. That is,

1-month time series momentum and dispersion are both counter-cyclical, as predicted by the

model. Furthermore, the data also lend support to the prediction that there is short-term

time series reversal in low dispersion periods (see Appendix A.9.6).

5.2.3 Time Series Momentum over the Business Cycle

We finally test our model’s third prediction that time series momentum at short horizons

is strongest in recessions. To cover sufficiently many business cycle turning points, we ex-

tend the sample period and focus on monthly S&P 500 excess returns, re, from January

1871 to November 2013, which we obtain from Robert Shiller’s website. Looking back to

the 19th century allows us to account for a large number of recessions—NBER reports 29

recessions since the beginning of our sample. We then measure excess time series momentum
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Figure 12: 1-Month Time Series Momentum vs. Dispersion.

The table reports the outputs of the following regression: t-statistics of 1-month time series
momentum coefficient computed over 36-month rolling windows on the mean dispersion
computed over the same 36-month rolling windows. The figure plots the data and the linear
fit. Standard errors are reported in brackets and statistical significance at the 10%, 5%, and
1% levels is labeled with * , **, and ***, respectively. Standard errors are adjusted using
Newey and West (1987) procedure. Monthly data range from 02/1976 to 11/2014.

in recessions, β2(h), by running the empirical equivalent to the regression in (29):

ret+h∆ = α + β1(h)ret + β2(h)Ytr
e
t + εt+h∆, (30)

where Yt is a dummy variable that takes value 1 if t belongs to an NBER recession. The

coefficient β1(h) in Equation (30) captures the time series momentum effect of Moskowitz

et al. (2012) at a h−month lag. The second coefficient β2(h), absent in Moskowitz et al.

(2012), measures time series momentum in excess of that present in expansions.

Figure 13 reports the coefficient β2(h) and its t-statistics for lags h ranging from 1 month

to 1 year. Our model predicts that time series momentum is significantly stronger in reces-

sions up to the 4-month lag (see Figure 9). Figure 13 supports this prediction at a 1-month

lag, but indicates that excess time series momentum in recessions vanishes over subsequent

lags. Our finding that time series momentum in the short term is stronger in recessions

contrasts with evidence reported in the cross-section of returns. In particular, Chordia and

Shivakumar (2002) and Cooper, Gutierrez, and Hameed (2004) find that cross-sectional mo-

mentum is weaker in down-markets than in up-markets. While Moskowitz et al. (2012) show

that time series and cross-sectional momentum are strongly related, our result suggests that
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Figure 13: Excess Time Series Momentum in Recessions.

This figure plots the excess time series momentum in recessions β2(h) and its t-statistics for
lags h ranging from 1 month to 1 year. Standard errors are adjusted using Newey and West
(1987) procedure. Monthly data range from 01/1871 to 11/2013.

their relation varies over the business cycle.

6 Conclusion

This paper suggests at least two interesting avenues for future research. First, our analysis

describes how a single stock—an index—reacts to news shocks, but individual stocks com-

posing the index may react differently. In particular, the performance of one stock relative to

another may vary over the business cycle. Some may be “losers”, others may be “winners”,

and this relation may persist or revert depending on economic conditions. Extending our

framework to an economy with two trees would allow us to study this cross-sectional relation.

Second, in our framework, investors estimate heterogeneous models, both of which measures

a different aspect of the business cycle. In a representative-agent economy, we would like

to study how the agent picks dynamically one model over the other depending on economic

conditions. We believe that such endogenous “paradigm shifts” can explain several empirical

facts regarding the dynamics of stock return volatility.
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A Internet Appendix

A.1 Proof of Proposition 1

We follow the notations in Lipster and Shiryaev (2001a) and write the observable process as

dδt
δt

=
(
A0 +A1f

A
t

)
dt+A1dW f

t +A2dWA
t

and the unobservable process as

dfAt =
(
a0 + a1f

A
t

)
dt+ b1dW f

t + b2dWA
t .

Using the SDEs in (1) and (2), we write A ◦ A = σδf , b ◦ b = σ2
f and b ◦ A = 0. Applying Theorem

12.7 in Lipster and Shiryaev (2001a), the dynamics of the filter satisfy

df̂At =
(
a0 + a1f̂

A
t

)
dt+

(
A ◦A+ γA>1

)
(A ◦A)−1

(
dδt
δt
−
(
A0 +A1f̂

A
t

)
dt

)
,

where the steady-state posterior variance γ solves the algebraic equation

a1γ + γa>1 + b ◦ b−
(
b ◦A+ γA>1

)
(A ◦A)−1

(
b ◦A+ γA>1

)>
= 0.

Substituting the coefficients yields Equation (4), the steady-state posterior variance γ, and

dŴA
t =

1

σδ

(
dδt
δt
− f̂At dt

)
.

�

A.2 Proof of Proposition 2

We want to demonstrate the equivalence of the probability measures P̂A and P̂B. To do so, we
start with the following definition.

Definition 2. The probability measures P̂A and P̂B are equivalent if and only if they are absolutely
continuous with respect to each other under Ft ∀t ∈ R+.

From Girsanov Theorem (Theorem 5.1, Karatzas and Shreve (1988)), the probability measures
P̂A and P̂B are absolutely continuous with respect to each other if and only if the local martingale in

(6) is a strictly positive martingale, i.e., EP̂A [ηt] = 1 for all t ∈ R+. Hence, to prove the equivalence
of P̂A and P̂B, we must show that (6) is a martingale. To do so, we write the dynamics of agents’
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disagreement under PA as

dgt =

[
κ
(
f̄ − f̂At

)
− (λ+ ψ)

(
f∞ + gt − f̂At

)
− gt
σ2
δ

(
f̂At − gt − f l

)(
fh + gt − f̂At

)]
dt

+
γ −

(
f̂At − gt − f l

)(
fh + gt − f̂At

)
σδ

dŴA
t . (31)

and use the following result, which we formulate in Theorem 1.

Theorem 1. The process η defined in (6) is a true martingale (as opposed to a local martingale)
if and only if the process g defined in (31) has a unique nonexplosive strong solution under P̂A and
P̂B.

Proof. The proof follows as a special case of Theorem A.1 in Heston, Loewenstein, and Willard
(2007). See also Exercise 2.10 in Revuz and Yor (1999) and Theorem 7.19 in Lipster and Shiryaev
(2001b) for related results. �

We now show that the stochastic differential equation in (31) has a unique nonexplosive strong
solution under P̂A and P̂B. Rewrite the process gt in (31) as

dgt =
(
µ(f̂Bt )− λ(f̂Bt )gt

)
dt+ σ(f̂Bt )dŴA

t (32)

under P̂A and as

dgt =

(
µ(f̂Bt )−

(
κ+

γ

σ2
δ

)
gt

)
dt+ σ(f̂Bt )dŴB

t (33)

under P̂B, where the functions

µ : (f l, fh)→
(
κ(f̄ − fh)− (λ+ ψ)(f∞ − f l), κ(f̄ − f l)− (λ+ ψ)(f∞ − fh)

)
σ : (f l, fh)→

(
1

σδ
(γ − 1

4
(fh − f l)2),

γ

σδ

)
λ : (f l, fh)→

(
κ, κ+

1

4σ2
δ

(fh − f l)2

)
are defined as

µ(x) := κ(f̄ − x)− (λ+ ψ)(f∞ − x) (34)

σ(x) :=
1

σδ
(γ − (x− f l)(fh − x))

λ(x) := κ+
1

σ2
δ

(x− f l)(fh − x).

We then have the following result, which we highlight in Lemma 1.
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Lemma 1. The processes in (32) and (33) have a unique strong solution.

Proof. We first prove the result under P̂A and then show that the result under P̂B follows as a
special case. To prove strong existence, we construct a sequence of successive approximations to gt
in (32) by setting

g
(k+1)
t := g

(0)
t +

∫ t

0

(
µ(f̂ (k)

s )− λ(f̂ (k)
s )g(k)

s

)
ds+

∫ t

0
σ(f̂ (k)

s )dŴA
s (35)

for k ≥ 0, where f̂ (k) denotes some approximation of f̂B. From (35), we can write g
(k+1)
t − g(k)

t =
Bt +Mt where

Bt :=

∫ t

0

(
µ(f̂ (k)

s )− µ(f̂ (k−1)
s )− λ(f̂ (k)

s )g(k)
s + λ(f̂ (k−1)

s )g(k−1)
s

)
ds

and

Mt :=

∫ t

0
(σ(f̂ (k)

s )− σ(f̂ (k−1)
s ))dŴA

s .

Now observe that the functions in (34) are locally Lipschitz continuous. In particular, for all
x, y ∈ (f l, fh), we have

|σ(x)− σ(y)| = 1

σδ
|x− y||fh + f l − (x+ y)| ≤ 1

σδ
max

{
|fh − f l|, |f l − fh|

}
|x− y| (36)

and

|µ(x)− µ(y)| = |λ+ ψ − κ||x− y| ≤ (λ+ ψ + κ)|x− y|.

Lipschitz continuity for λ(·) directly follows from (36). Furthermore, λ(·) is bounded. We can

therefore let f
(k)
t ≡ f̂Bt for all k ≥ 0 and write accordingly

g
(k+1)
t − g(k)

t = −
∫ t

0
λ(f̂Bs )

(
g(k)
s − g(k−1)

s

)
ds. (37)

Taking the absolute value of both sides of (37) and observing that λ(x) > 0 for all x ∈ (f l, fh), we
have ∣∣∣g(k+1)

t − g(k)
t

∣∣∣ ≤ ∫ t

0
λ(f̂Bs )

∣∣∣g(k)
s − g(k−1)

s

∣∣∣ds ≤ λ ∫ t

0

∣∣∣g(k)
s − g(k−1)

s

∣∣∣ ds (38)

where

λ := sup
x∈(f l,fh)

λ(x) = λ

(
fh + f l

2

)
.
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Iterating over (38), we further get∣∣∣g(k+1)
t − g(k)

t

∣∣∣ ≤ ∣∣∣g(1)
t − g

(0)
t

∣∣∣ (λt)k

k!
.

Strong existence then directly follows from the last part of the proof of Theorem 2.9, Karatzas and
Shreve (1988). The result under P̂B follows as a special case by setting λ(x) ≡ κ+ γ

σ2
δ
.

To prove uniqueness, we adapt the proof of Yamada and Watanabe (1971). Suppose that there
are two strong solutions g1 and g2 to (32) with g1

0 = g2
0, P̂A−a.s. It is then sufficient to show that

g1 and g2 are indistinguishable. Using (32), we can write

d(g1
t − g2

t ) = λ(f̂Bt )(g1
t − g2

t )dt.

Integrating and taking the absolute value, we obtain

|g1
t − g2

t | ≤
∫ t

0
λ(f̂Bs )|g1

s − g2
s |ds ≤ λ

∫ t

0
|g1
s − g2

s |ds ≤ 0

where the last inequality follows from Gronwall inequality (Problem 2.7, Karatzas and Shreve
(1988)). Similarly, strong uniqueness under P̂B follows as a special case when λ(x) ≡ κ+ γ

σ2
δ
. �

It now remains to show that the disagreement process does not explode both P̂A− and P̂B−almost
surely, as we do in Lemma 2. Our result is actually stronger: we bound the cumulative distribution
of g by a scaled Gaussian cumulative distribution function, which guarantees uniform integrability
of g.

Lemma 2. At any time t ∈ R+, the process gt defined in (31) is finite P̂A− and P̂B−almost surely,
i.e.,

lim
c→∞

P̂A(|gt| ≥ c) = lim
c→∞

P̂B(|gt| ≥ c) = 0, ∀t ∈ R+.

Proof. We prove the result under P̂A. The result under P̂B follows as a special case when λ(x) ≡
κ+ γ

σ2
δ
. Applying Ito’s lemma, let At := e

∫ t
0 λ(f̂Bs )dsgt satisfy

dAt = µ(f̂Bt )e
∫ t
0 λ(f̂Bs )dsdt+ e

∫ t
0 λ(f̂Bs )dsσ(f̂Bt )dŴA

t , A0 = g0 (39)

and let Ai, i = 1, 2 have dynamics

dAit = (−1)imA
t dt+ e

∫ t
0 λ(f̂Bs )dsσ(f̂Bt )dŴA

t , (−1)iAi0 ≥ (−1)iA0 (40)

under P̂A. Combining (39) and (40), we then obtain

Ait −At = Ai0 −A0 +

∫ t

0

(
(−1)imA

s − µ(f̂Bs )e
∫ s
0 λ(f̂Bu )du

)
ds, i =, 1, 2. (41)
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Now set

mA
t := sup

x,y∈(f l,fh)

e
∫ t
0 λ(ys)ds|µ(x)| = eλt sup

x∈(f l,fh)

|µ(x)| = exp
(
λt
)

max
{
|µ(f l)|, |µ(fh)|

}
and observe that

(−1)ie
∫ t
0 λ(f̂Bu )duµ(f̂Bt ) ≤ e

∫ t
0 λ(f̂Bu )du|µ(f̂Bt )| ≤ mA

t , i = 1, 2 (42)

for all t ∈ R+. Inequalities in (42) and the expressions in (41) together imply that

A1
t ≤ At ≤ A2

t , P̂A − a.s. (43)

for all t ∈ R+. Furthermore, rewriting g as

gt = e−
∫ t
0 λ(f̂Bu )duAt = e−

∫ t
0 λ(f̂Bu )du(A+

t −A
−
t )

it then follows that

|gt| = e−
∫ t
0 λ(f̂Bs )ds(A+

t +A−t ) ≤ A+
t +A−t , P̂A − a.s. (44)

where the second inequality follows from that e−
∫ t
0 λ(f̂Bs )ds ∈ (0, 1) for all t ∈ R+, since

λ(x) > 0, ∀x ∈ (f l, fh).

Combining (43) and (44), we obtain

|gt| ≤
∑
i=1,2

((−1)iAit)
+ ≤ max{(−A1

t )
+, (A2

t )
+}, P̂A − a.s. (45)

Using (45), we can write that, for any positive constant c ≥ 0,

1|gt|≥c ≤
∑
i=1,2

1((−1)iAit)
+≥c ≡

∑
i=1,2

1(−1)iAit≥c (46)

where the last equality follows from that 1X+≥c = 1X≥c for any c positive. Taking expectations of

(46) under P̂A, we get

P̂A(|gt| ≥ c) ≤
∑
i=1,2

P̂A
(
(−1)iAit ≥ c

)
, ∀t ∈ R+. (47)

Finally, adapting the proof of Theorem 1.4 in Hajek (1985), let Âi, i = 1, 2 have dynamics

dÂit = (−1)imA
t dt+ σAt dŴA

t , (−1)iÂi0 ≥ (−1)iAi0 (48)
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under P̂A and set

σAt := sup
x,y∈(f l,fh)

e
∫ t
0 λ(ys)ds|σ(x)| ≡ exp

(
λt
) 1

σδ
max

{
γ,

∣∣∣∣γ − 1

4
(fh − f l)2

∣∣∣∣} .
Furthermore, assume without loss of generality that there exists a Brownian motion Ŵ on the same
probability space as ŴA, which is independent of (A1, A2, f̂B, ŴA). Let ai,j , i, j = 1, 2 be defined
by

ai,jt = Âi0 + (−1)i
∫ t

0
mA
s ds

+

[∫ t

0
e
∫ s
0 λ(f̂Bu )duσ(f̂Bs )dŴA

s + (−1)j
∫ t

0

(
(σAs )2 − e

∫ s
0 λ(f̂Bu )duσ(f̂Bs )2

) 1
2

dŴs

]
.

First, observe that for each j = 1, 2, the process in the square bracket is a continuous martingale
with quadratic variation equal to

∫ t
0 (σAs )2ds. As a result, each ai,j , j = 1, 2 has the same distribution

as Âi, i.e.,

ai,j ∼ Âi, i, j = 1, 2. (49)

Second, define the process āit := 1
2

∑
j=1,2 a

i,j
t , i = 1, 2, which, applying Ito’s lemma, satisfies

dāit = (−1)imA
t dt+ e

∫ t
0 λ(f̂Bs )dsσ(f̂Bt )dŴA

t . (50)

Combining (40) and (50), we obtain from the initial conditions that

(−1)iāit ≥ (−1)iAit, P̂A − a.s.

for i = 1, 2. Since (−1)iāit ≤ max{(−1)iai,1t , (−1)iai,2t }, i = 1, 2, we further have that

1(−1)iAit≥c ≤ 1
(−1)iai,1t ≥c

+ 1
(−1)iai,2t ≥c

.

Taking expectations under P̂A and using (49), we obtain that, for any c ∈ R, the processes Ai and
Âi, i = 1, 2 satisfy

PA((−1)iAit ≥ c) ≤ 2PA((−1)iÂit ≥ c), ∀t ∈ R+. (51)

Combining the inequalities in (47) and (51), we obtain that

P̂A(|gt| ≥ c) ≤ 2
∑
i=1,2

P̂A
(

(−1)iÂit ≥ c
)
, ∀t ∈ R+. (52)

Observing that each Âi, i = 1, 2 in (48) is a Gaussian process, the probabilities on the right-hand
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side of (52) are explicitly given by

PA
(

(−1)iÂit ≥ c
)

= Φ

(−1)iÂi0 +
∫ t

0 m
A
s ds− c√∫ t

0 (σAs )2ds

 . (53)

Taking limits on both sides of (52) and using (53) yields

lim
c→∞

PA(|gt| ≥ c) ≤ 2 lim
c→∞

∑
i=1,2

Φ

(−1)iÂi0 +
∫ t

0 m
A
s ds− c√∫ t

0 (σAs )2ds

 = 0, ∀t ∈ R+

as desired. �

We have shown that the process η in (6) is a martingale and therefore EP̂A [ηt] = 1 for all
t ∈ R+. As a result, P̂A is absolutely continuous with respect to P̂B under Ft ∀t ∈ R+ and the
claim follows from Girsanov Theorem (Theorem 5.1, Karatzas and Shreve (1988)).

�

A.3 Maximization Problems

We write Agent A’s problem as follows

max
cA

EPA
[∫ ∞

0
e−ρt

c1−α
At

1− α
dt

]
+ φA

(
XA,0 − EPA

[∫ ∞
0

ξtcAtdt

])
,

where φA denotes the Lagrange multiplier of Agent A’s static budget constraint and ξ is the state-
price density perceived by Agent A. Agent B solves an analogous problem but under her own
probability measure PB. Rewriting Agent B’s problem under Agent A’s probability measure PA
yields

max
cB

EPA
[∫ ∞

0
ηte
−ρt c

1−α
Bt

1− α
dt

]
+ φB

(
XB,0 − EPA

[∫ ∞
0

ξtcBtdt

])
.

The first-order conditions lead to the following optimal consumption plans

cAt =
(
φAe

ρtξt
)− 1

α cBt =

(
φBe

ρtξt
ηt

)− 1
α

. (54)

Clearing the market yields the following characterization of the state-price density ξ:

ξt = e−ρtδ−αt

[(
ηt
φB

) 1
α

+

(
1

φA

) 1
α

]α
. (55)
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Substituting Equation (55) into Equation (54) gives the consumption share of Agent A, ω(η), which
satisfies:

ω (ηt) =

(
1
φA

) 1
α

(
ηt
φB

) 1
α

+
(

1
φA

) 1
α

.

The consumption share of Agent A is a function of the likelihood η. In particular, an increase in
η raises the likelihood of Agent B’s model relative to Agent A’s model. The consumption share of
Agent A is therefore decreasing in η. That is, the more likely Agent B’s model becomes, the less
Agent A can consume. This result applies symmetrically to the consumption share, 1 − ω(η), of
Agent B.

The dynamics of the state-price density ξ satisfy

dξt
ξt

= −rft dt− θtdŴA
t .

Therefore, applying Itô’s lemma to the state-price density defined in (55) determines the risk-free
rate rf and the market price of risk θ provided in Proposition 3.

�

A.4 Proof of Proposition 4

Following Dumas et al. (2009), we assume that the coefficient of relative risk aversion α is an integer.
This assumption allows us to obtain the following convenient expression for the equilibrium stock
price:22

St
δt

= EPA
t

[∫ ∞
t

ξuδu
ξtδt

du

]
= ω (ηt)

α
α∑
j=0

(
α
j

)(
1− ω (ηt)

ω (ηt)

)j
EPA
t

[∫ ∞
t

e−ρ(u−t)
(
ηu
ηt

) j
α
(
δu
δt

)1−α
du

]
. (56)

We start by computing the first and the last term of the sum in (56). These terms correspond to
the prices of a Lucas (1978) economy in which the representative agent assumes that fundamental
follows an Ornstein-Uhlenbeck process and a 2-state Markov chain, respectively. These prices have
(semi) closed-form solutions, which we present in Proposition 8.

Proposition 8. Suppose the economy is populated by a single agent.

1. If the agent’s filter follows the Ornstein-Uhlenbeck process described in Equation (4), the

22We refer the reader to Dumas et al. (2009) for the details of the derivation.
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equilibrium price-dividend ratio satisfies

St
δt

∣∣∣∣
O.U.

=

∫ ∞
0

e−ρτ+α(τ)+β2(τ)f̂At dτ,

where the functions α(τ) and β2(τ) are the solutions to a set of Ricatti equations.

2. If the agent’s filter follows the filtered 2-state Markov chain process described in Equation
(5), the equilibrium price-dividend ratio satisfies

St
δt

∣∣∣∣
M.C.

= πtH1 + (1− πt)H2 =
f̂Bt − f l

fh − f l
H1 +

(
1− f̂Bt − f l

fh − f l

)
H2

=
f̂At − gt − f l

fh − f l
H1 +

(
1− f̂At − gt − f l

fh − f l

)
H2,

where

H =
(
H1 H2

)>
= A−112

A = −Ω− (1− α)

(
fh 0
0 f l

)
+ (ρ+

1

2
α(1− α)σ2

δ )Id2.

Id2 is a 2-by-2 identity matrix and 12 is a 2-dimensional vector of ones.

Proof. aaa

1. Following Duffie, Pan, and Singleton (2000), the functions α(τ) and β(τ) ≡ (β1 (τ) , β2 (τ))
solve the following system of Ricatti equations

β′ (τ) = K>1 β (τ) +
1

2
β (τ)>H1β (τ)

α′ (τ) = K>0 β (τ) +
1

2
β (τ)>H0β (τ)

with boundary conditions β (0) = (1− α, 0) and α (0) = 0. The H and K matrices satisfy

K0 =

(
−1

2σ
2
δ

κf̄

)
K1 =

(
0 1
0 −κ

)
H0 =

(
σ2
δ γ

γ
(
γ
σδ

)2

)
H1 = 02 ⊗ 02.
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The solutions to this system are

β1 (τ) =1− α

β2 (τ) =− (α− 1)e−κτ (eκτ − 1)

κ

α (τ) =
(α− 1)2γ2e−2κτ

(
e2κτ (2κτ − 3) + 4eκτ − 1

)
4κ3σ2

δ

−
(α− 1)e−2κτ

(
4κσ2

δe
κτ (eκτ (κτ − 1) + 1)

(
κf̄ − αγ + γ

)
+ 2ακ3τσ4

δe
2κτ
)

4κ3σ2
δ

.

�

2. See Veronesi (2000). �

�

We now rewrite the price in (56) as

St
δt

= ω(ηt)
αSt
δt

∣∣∣∣
O.U.

+ ω (ηt)
α
α−1∑
j=1

(
α
j

)(
1− ω (ηt)

ω (ηt)

)j
F j
(
f̂At , gt

)
+ (1− ω(ηt))

αSt
δt

∣∣∣∣
M.C.

.

(57)

The last step consists in computing the intermediate terms F j in (57), which relate to heterogeneous
beliefs. Each term solves a differential equation, which we present in Proposition 9.

Proposition 9. The function F j, defined as

F j
(
f̂At , gt

)
≡ EPA

t

[∫ ∞
t

e−ρ(u−t)
(
ηu
ηt

) j
α
(
δu
δt

)1−α
du

]
, (58)

solves the following partial differential equation

L̃ f̂A,gF j +XjF j + 1 = 0, (59)

where L̃ denotes the infinitesimal generator of
(
f̂A, g

)
under the probability measure P̃A.

Proof. aaa
We introduce two sequential changes of probability measure, one from PA to a probability measure
P according to

dP
dPA

∣∣∣∣
Ft

≡ e−
1
2

∫ t
0

(
j
α
gs
σδ

)2
ds−

∫ t
0
j
α
gs
σδ

dŴA
s

10



and one from P to a probability measure P̃ according to

dP̃
dP

∣∣∣∣∣
Ft

≡ e−
1
2

∫ t
0 (1−α)2σ2

δds+
∫ t
0 (1−α)σδdW (s),

where, by Girsanov’s Theorem, W is a P−Brownian motion satisfying

W t = ŴA
t +

∫ t

0

j

α

gs
σδ

ds, (60)

and W̃ is a P̃−Brownian motion satisfying

W̃t = W t −
∫ t

0
(1− α)σδdt. (61)

Implementing sequentially the changes of probability measures in Equations (60) and (61) allows
us to rewrite the interior expectation in (58) as

F j
(
f̂t, gt

)
= EP̃

[∫ ∞
t

e
∫ u
t X

j
sdsdu

∣∣∣∣Ft

]
, (62)

where

Xj
t = −

(
ρ+

1

2
(1− α)ασ2

δ

)
+

1

2

j

α

(
j

α
− 1

)
g2
t

σ2
δ

− (1− α)
j

α
gt + (1− α) f̂At .

To obtain the partial differential equation that the function F j has to satisfy, we use the fact
that Equation (62) can be rewritten as follows

F j
(
f̂t, gt

)
= e−

∫ t
0 X

j
sdsEP̃

[∫ ∞
t

e
∫ u
0 Xj

sdsdu

∣∣∣∣Ft

]
= e−

∫ t
0 X

j
sds

(
−
∫ t

0
e
∫ u
0 Xj

sdsdu+ EP̃
[∫ ∞

0
e
∫ u
0 Xj

sdsdu

∣∣∣∣Ft

])
≡ e−

∫ t
0 X

j
sds

(
−
∫ t

0
e
∫ u
0 Xj

sdsdu+ M̃t

)
,

where M̃ is a P̃−Martingale. An application of Itô’s lemma along with the Martingale Represen-
tation Theorem then gives the partial differential equation in (59).23 �
�

We numerically solve Equation (59) for each term j through Chebyshev collocation. In partic-

23As proved in David (2008), the boundary conditions are absorbing in both the f̂A− and the g−dimension.

11



ular, we approximate the functions F j(f̂A, g) for j = 1, . . . , α− 1 as follows:

P j
(
f̂A, g

)
=

n∑
i=0

m∑
k=0

aji,kTi

(
f̂A
)
Tk (g) ≈ F j(f̂A, g),

where Ti is the Chebyshev polynomial of order i. Following Judd (1998), we mesh the roots of the
Chebyshev polynomial of order n with those of the Chebyshev polynomial of order m to obtain
the interpolation nodes. We then substitute P j(f̂A, g) and its derivatives in Equation (59), and we
evaluate this expression at the interpolation nodes. Since all the boundary conditions are absorbing,
this approach directly produces a system of (n + 1) × (m + 1) equations with (n + 1) × (m + 1)
unknowns that we solve numerically. �

A.5 Derivation of the Parameter Values Provided in Table 1

Agents first estimate a discretized version of their model and then map the parameters they esti-
mated into their continuous-time model. In particular, Agent A estimates the following discrete-
time model

log

(
δt+1

δt

)
= fAt +

√
vδε1,t+1 (63)

fAt+1 = mfA + af
A
fAt +

√
vfAε2,t+1, (64)

while Agent B estimates the following discrete-time model

log

(
δt+1

δt

)
= fBt +

√
vδε3,t+1 (65)

fBt ∈ {sh, sl} with transition matrix P =

(
phh 1− phh

1− pll pll

)
.

ε1, ε2, and ε3 are normally distributed with zero-mean and unit-variance, and ε1 and ε2 are inde-
pendent. The transition matrix P contains the probabilities of staying in the high and the low
state over the following month. We estimate the discrete-time models in Equations (63) and (65)
by Maximum Likelihood. We report the estimated parameters, their standard errors, and their
statistical significance in Table 5.

We then map the parameters of Table 5 into the associated continuous-time models. Straightfor-
ward applications of Itô’s lemma show that the dividend stream, δ, and the fundamental perceived

12



Parameter Symbol Estimate
Variance Dividend Growth vδ 4.23× 10−5∗∗∗

(1.48 × 10−6)

Persistence Growth Rate fA af
A

0.9842∗∗∗

(0.0022)

Mean Growth Rate fA mfA 9.96× 10−4∗∗∗

(9.39 × 10−5)

Variance Growth Rate fA vf
A

2.53× 10−6∗∗∗

(2.12 × 10−7)

High State of fB sh 0.0066∗∗∗

(2.7 × 10−4)

Low State of fB sl −0.0059∗∗∗

(3.17 × 10−4)

Prob. of Staying
in High State phh 0.9755∗∗∗

(0.0912)

Prob. of Staying
in Low State pll 0.9680∗∗∗

(0.0940)

Table 5: Output of the Maximum-Likelihood Estimation.

Parameter values resulting from a discrete-time Bayesian-Learning Maximum-Likelihood
estimation. The estimation is performed on monthly S&P500 dividend data from 01/1871
to 11/2013. Standard errors are reported in brackets and statistical significance at the 10%,
5%, and 1% levels is labeled with ∗, ∗∗, and ∗∗∗, respectively.

by Agent A, fA, satisfy

log

(
δt+∆

δt

)
=

∫ t+∆

t

(
fAu −

1

2
σ2
δ

)
du+ σδ

(
WA
t+∆ −WA

t

)
=

∫ t+∆

t

(
fBu −

1

2
σ2
δ

)
du+ σδ

(
WB
t+∆ −WB

t

)
≈
(
fAt −

1

2
σ2
δ

)
∆ + σδ

(
WA
t+∆ −WA

t

)
(66)

≈
(
fBt −

1

2
σ2
δ

)
∆ + σδ

(
WB
t+∆ −WB

t

)
(67)

fAt+∆ = e−κ∆fAt + f̄
(
1− e−κ∆

)
+ σf

∫ t+∆

t
e−κ(t+∆−u)dW f

u . (68)
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The relationship between the transition matrix P and the generator matrix Λ is written as follows

P =

(
phh 1− phh

1− pll pll

)
(69)

=

(
ψ

λ+ψ + λ
λ+ψe

−(λ+ψ)∆ λ
λ+ψ −

λ
λ+ψe

−(λ+ψ)∆

ψ
λ+ψ −

ψ
λ+ψe

−(λ+ψ)∆ λ
λ+ψ + ψ

λ+ψe
−(λ+ψ)∆

)
.

We perform the Maximum-Likelihood estimation on monthly data and accordingly set ∆ = 1/12 =
1 month.

Matching Equation (63) to Equation (66) and Equation (64) to Equation (68) yields the fol-
lowing system of equation for κ, f̄ , σδ, and σf

af
A

= e−κ∆ (70)

mfA = f̄
(
1− e−κ∆

)
− 1

2
σ2
δ∆

vδ = σ2
δ∆

vf
A

=
σ2
f

2κ

(
1− e−2κ∆

)
,

where the last equation relates the variance of the Ornstein-Uhlenbeck process to its empirical
counterpart. Matching Equation (65) to Equation (67) yields the following system of equations for
f l and fh

sh =

(
fh − 1

2
σ2
δ

)
∆ (71)

sl =

(
f l − 1

2
σ2
δ

)
∆.

Solving the system comprised of Equations (69), (70), and (71) yields the parameters presented in
Table 1.

�

A.6 Approximation of the Filter’s Adjustment Speed

In this appendix, we derive an approximation for the adjustment speed of agents’ filter, as defined
in Definition 1. Define the vector Xt := (f̂At , f̂

B
t )> with dynamics

dXt = µ(Xt)dt+ σ(Xt)dŴ
A
t
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under P̂A where

µ(X) :=

(
κf

(λ+ ψ)f∞

)
+

(
−κ 0

−f lfh

σ2
δ
−(λ+ ψ − f lfh

σ2
δ

)

)
Xt + φ(Xt) (72)

and

σ(X) :=

(
γ
σδ

1
σδ

(f̂Bt − f l)(fh − f̂Bt )

)
.

Observe that the change of measure from P̂B to P̂A introduces a nonlinear component

φ(X) =

(
0

1
σ2
δ
((fh + f l)f̂Bt − (f̂Bt )2)(f̂At − f̂Bt )

)

in the otherwise affine drift in (72). We perform now a first-order Taylor expansion of µ(·) around
the initial point X0

µ̃(Xt) = µ(X0) + ∇Xµ(X)|X0
(X −X0) = Λ + Ω(Xt −X0) (73)

where Λ =
(
κf (λ+ ψ)f∞

)>
and

Ω =

(
−κ 0

(fh−x0)(x0−f l)
σ2
δ

− (fh−x0)(x0−f l)
σ2
δ

− (λ+ ψ)

)
.

Denote by X̃t the process associated with the linearized drift in (73). Observe that its drift is
strictly affine and that its conditional expectation therefore satisfies

EA0 [X̃t] = −Ω−1Λ + exp(Ωt)(X0 + Ω−1Λ). (74)

Furthermore, for t small enough, the expression in (74) is approximately given by

d

dt
EA0 [X̃t]

∣∣∣∣
t=ε

≈ Ω(I + Ωε)(X0 + Ω−1Λ). (75)

Finally, observe that our calibration implies that f l ≈ −f l, f∞ ≈ 0 and that, for ε small, only
terms of order o( 1

σ2
δ
)ε dominate. Therefore, under our calibration, (75) is approximately given by

the following simpler expression

d

dt
EA0 [X̃t]

∣∣∣∣
t=ε

≈
(

κ(f − x0)
(λ+ ψ)(f∞ − x0)

)
+

(
0

(f l−x0)(x0+f l)(fκ+x0(λ+ψ−κ))
σ2
δ

)
ε,

which we provide in Proposition 5.
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Figure 14: Agent B’s Adjustment Speed under PA.

This figure plots the second-order approximation of Agent B’s adjustment speed under PA
as a function of the state of the economy. The dashed areas represent the states in which
Agent B’s expectations are attracted towards fm, while the central area represents the states
in which Agent B’s expectations are repelled outward fm.

We now augment the vector Xt with the quadratic term (f̂B)2 and accordingly defining a new
vector Yt := (f̂At , f̂

B
t , (f̂

B
t )2)>. An application of Ito’s lemma shows that the drift of this process

satisfies

µ(Y ) :=

 κf
(λ+ ψ)f∞

(fh)2(f l)2

σ2
δ

+


−κ 0 0

−f lfh

σ2
δ

−(λ+ ψ)− f lfh

σ2
δ

−fh+f l

σ2
δ

0 −2f
hf l(fh+f l)

σ2
δ

+ 2f∞(λ+ ψ) (fh)2+6fhf l+(f l)2

σ2
δ

− 2(λ+ ψ)

Yt

+ o((f̂At )2, (f̂Bt )3)

Now performing the first-order Taylor expansion of (73) around the initial point Y0, the vector Λ
becomes

Λ =


fκ

f∞(λ+ ψ)− (f l+fh−2x0)x20
σ2
δ

2fhx20f
l+(fh)2(f l)3+9x40−6(f l+fh)x30

σ2
δ
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and, using that f∞ ≈ 0, the matrix Ω becomes

Ω =
−κ 0 0

(fh−x0)(x0−f l)
σ2
δ

fhf l−(λ+ψ)σ2
δ+(f l+fh−3x0)x0
σ2
δ

−f l+fh−2x0
σ2
δ

2(fh−x0)x0(x0−f l)
σ2
δ

−2(fh(f l+fh)f l+fhx0f l+9x30−6(f l+fh)x20)
σ2
δ

6fhf l+f2l+(fh)2+12x20−2(λ+ψ)σ2
δ−10(f l+fh)x0

σ2
δ

 .

Furthermore, using the definition of adjustment speed of Definition (1) and considering that
our calibration implies that f l ≈ −f l and that, for ε small, only terms of order o( 1

σ2
δ
)ε

dominate, we can finally write

d

dt
EA

0 [X̃t]

∣∣∣∣
t=ε

≈
(

κ(f − x0)
(λ+ ψ)(f∞ − x0)

)
+

(
0

(f l−x0)(f l+x0)(2x0(f l)2+fκσ2
δ+x0σ2

δ (−κ+λ+ψ)−2x30)
σ4
δ

)
ε,

(76)

which yields the expressions in Proposition 6.
The nonlinearity of the change of measure introduces an additional term in the approxi-

mate expression for Agent B’s speed of learning in Equation (76). This term changes changes
sign in the neighborhood of f l, fm and fh in a way that makes Agent B’s expectations cen-
trifugal outward fm under PA, as illustrated in Figure 14.

A.7 Conditional Distribution of the Filter

In this appendix, we compute the distribution of disagreement in our model and that implied
by the model specification in David (2008).

We first compute the conditional distribution of Agent B’s filter under PA, PA(f̂Bt |f̂At =

y, f̂B0 = x0), by solving the Fokker-Planck equation

∂

∂t
p(x, y, t) = − ∂

∂x

(
p(x, y, t)

(
(λ+ ψ)(f∞ − x) +

1

σ2
δ

(fh − x)(x− f l)(y − x)

))
+

1

2

∂2

∂x2

(
p(x, y, t)

1

σ2
δ

(fh − x)2(x− f l)2

)
with boundary conditions limx↗fh p(x, y, t;x0) = limx↘f l p(x, y, t;x0) = 0 and initial con-

dition p(x, y, 0;x0) = δ̂x=x0 , where δ̂ is the Dirac delta function. Then, observing that the
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marginal distribution of Agent A’s filter, PA(f̂At |f̂A0 = x0) is explicitly given by

h(y, t) =

exp

(
−1

2

(
γ2

2κσ2
δ

(1− exp(−2κt))
)−1 (

y −
(
x0 exp(−κt) + f(1− exp(−κt))

)))
√

2π γ2

2κσ2
δ

(1− exp(−2κt))
,

we obtain the marginal density of disagreement, g, as

f(z, t) =

∫ fh

f l
p(x, x+ z, t)h(x+ z)dx.

Second, we compute the distribution of disagreement in the framework of David (2008). In

this case, f̂A follows a filtered Markov chain and we further need to obtain its marginal
distribution by solving the Fokker-Planck equation

∂

∂t
h(y, t) = − ∂

∂y

(
h(y, t)κ(f − y)

)
+

1

2

∂2

∂y2

(
p(y, t)

1

σ2
δ

(fh − y)2(y − f l)2

)
with boundary conditions limy↗fh p(y, t) = limy↘f l p(y, t) = 0 and initial condition p(y, 0) =

δ̂y=y0 . We then obtain the marginal density of g as

f(z, t) =

∫ (fh+z)∧fh

(f l+z)∨f l
h(y, t)p(y − z, y, t)dy.

A.8 Proof of Proposition 7

Following the methodology in Dumas et al. (2009), Agent A’s wealth, V , satisfies

Vt = δtω (ηt)
α
α−1∑
j=0

(
α− 1
j

)(
1− ω (ηt)

ω (ηt)

)j
EPA
t

[∫ ∞
t

e−ρ(u−t)
(
ηu
ηt

) j
α
(
δu
δt

)1−α

du

]
(α=2)

= δtω (ηt)
2 St
δt

∣∣∣∣
O.U.

+ δtω (ηt) (1− ω (ηt))F
(
f̂At , gt

)
. (77)

To derive the myopic and hedging components of Agent A’s strategy, Q, observe Agent A’s
wealth, V , satisfies the dynamics

dVt = rft Vtdt+
(
µt − rft

)
QtStdt− cAtdt+ σtQtStdŴ

A
t , (78)
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where rf is the risk-free rate defined in Equation (8), µ−rf is the risk premium on the stock,
Q is the number of shares held by Agent A, and σ is the diffusion of stock returns. Applying
Ito’s lemma to Agent A’s discounted wealth using (77), we obtain the following martingale

d

(
ξtVt +

∫ t

0

ξscAsds

)
= φtdŴ

A
t

= EPA
t

(∫ ∞
t

Dt (ξscAs) ds

)
dŴA

t

= (ξtσtQtSt − Vtθtξt) dŴA
t ,

where the first and second equalities follow from the Martingale Representation Theorem
and the Clark-Ocone Theorem, respectively. Matching the diffusion terms in (78) and the
expression above, the number of shares Q satisfies

Qt =
µt − rft
σ2
t

Vt
St

+
1

ξtσtSt
EPA
t

(∫ ∞
t

Dt (ξscAs) ds

)
. (79)

Finally, using the fact that

ξscAs = (φAe
ρs)−1/α ξ

α−1
α

s and thus

Dt (ξscAs) =
α− 1

α
Dt(ξs)cAs,

we can rewrite Equation (79) as follows

Qt =
µt − rft
σ2
t

Vt
St

+
α− 1

ασtSt
EPA
t

(∫ ∞
t

ξscAs
ξt

Dtξs
ξs

ds

)
=
µt − rft
σ2
t

Vt
St

+
α− 1

ασtSt
EPA
t

(∫ ∞
t

ξscAs
ξt

(
Dtξs
ξs
− Dtξt

ξt
+
Dtξt
ξt

)
ds

)
=
µt − rft
σ2
t

Vt
St

+
α− 1

ασtSt
EPA
t

(∫ ∞
t

ξscAs
ξt

(
Dtξs
ξs
− Dtξt

ξt

)
ds

)
− (α− 1)θtVt

ασtSt

=
µt − rft
ασ2

t

Vt
St

+
α− 1

ασtSt
EPA
t

(∫ ∞
t

ξscAs
ξt

(
Dtξs
ξs
− Dtξt

ξt

)
ds

)
≡Mt +Ht.

The expression for the state-price density in (18) is derived in Appendix A.3.
To obtain an explicit expression for the average reaction of the state-price density to a
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Brownian shock today

EPA
t (R(t, s)) := EPA

t

(
Dtξs
ξt

)
, (80)

as given in (20), we decompose the Malliavin derivative of the stochastic discount factor as

Dtξs = −αξs
δs
Dtδs +

ξs(1− ω(ηs))

ηs
Dtηs (81)

with

Dtδs = δs

(
σδ +

∫ s

t

Dtf̂Av dv

)
(82)

Dtηs = −ηs
σδ

(
gt +

∫ s

t

DtgvdŴA
v +

1

σδ

∫ s

t

gvDtgvdv
)

(83)

Dtf̂As =
γ

σδ
e−κ(s−t) (84)

and where

dDtgv = ∇µg(f̂Av , gv)>
( γ

σδ
e−κ(v−t)

Dtgv

)
dv +∇σg(f̂Av , gv)>

( γ
σδ
e−κ(v−t)

Dtgv

)
dŴA

v ,

with initial condition Dtgt = σg(f̂
A
t , gt). The coefficients µg and σg represent the drift and the

diffusion of disagreement in (31), respectively, and the operator ∇ stands for the gradient.
Substituting Eq. (84) in Eq. (82) yields

Dtδs
δs

= σδ +
γ

κσδ

(
1− e−κ(s−t)) ,

while substituting Eqs. (82), (83), and (84) in Eq. (81) yields

Dtξs
ξs

= −α
(
σδ +

γ

κσδ

(
1− e−κ(s−t)))− 1− ω(ηs)

σδ

(
gt +

∫ s

t

DtgvdŴA
v +

1

σδ

∫ s

t

gvDtgvdv
)
.

Taking conditional expectations at time t and setting gt = 0 implies that (80) satisfies

EPA
t (R(t, s)) = −α

(
σδ +

γ

κσδ

(
1− e−κ(s−t)))− 1

σ2
δ

EPA
t

(
(1− ω(ηs))

∫ s

t

gvDtgvdv
)
.

�
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Figure 15: Stock Return Diffusion vs. Disagreement.

The left panel depicts the stock return diffusion against disagreement for different values
of the fundamental. The right panel depicts the third diffusion component,

−Sηgη
σδS

, against
disagreement for different values of the change fundamental. Note that δ = η = 1. The
values for the fundamental satisfy: f̂Amin = f̄ − 2 γ

σδ
√

2κ
and f̂Amax = f̄ + 2 γ

σδ
√

2κ
. The range

for the disagreement is the 90% confidence interval obtained from 1,000 simulations of the
economy over a 100-year horizon.

A.9 Additional Figures

A.9.1 Robustness of the relation between the diffusion and disagreement to the
fundamental (Section 4.1)

The left panel of Figure 15 depicts the relation between the stock return diffusion and
disagreement for different values of the fundamental. The right panel depicts the main
driving component, − ηg

σδS
∂
∂η
S, of the diffusion. Figure 15 shows that the conclusions of

Section 4.1 are robust when varying the fundamental. In particular, the term, − ηg
σδS

∂
∂η
S,

remains the main driver of the diffusion of stock returns and the diffusion is negatively
related to disagreement, irrespective of the value of the fundamental.

A.9.2 Robustness of the main result to knife-edge cases (Section 4.2)

The dynamics of disagreement are consistent, irrespective of the starting point within each
region defined in Table 2, except in two knife-edge cases around f̄ and in a close neighborhood
of the recession state f l. To see this, notice that we show in Section 3.2.2 that Agent B’s
expectations are centrifugal outward fm. Agent B’s expectations, however, cannot be strictly
centrifugal over the entire domain [f l, fh], as they would exit the domain otherwise. Hence,
in the neighborhood of the recession state, f l, and the expansion state, fh, Agent B’s
expectations become centripetal to reflect the process inside the domain, as we illustrate in
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Figure 14 (Appendix A.6). Figure 14 provides the numerical values of the points at which
Agent B’s expectations become centripetal. The main consequence of these two centripetal
areas is that opinions stop polarizing in bad times when Agent B’s expectations are between
−0.056 and f l = −0.0711, while agents expectations polarize in good times when Agent B’s
expectations are between f̄ = 0.063 and 0.067.

To show that our main result is robust within these two intervals, we repeat the analysis
of Section 4.2 and plot in Figure 16 the response of future state-price densities in the two
knife-edge cases. Comparing the response that prevails in good times (the blue dash-dotted
line in the left panel of Figure 5) to the response that prevails in the knife-edge case whereby
opinions polarize in good times (the blue dash-dotted line in Figure 16), we observe that in
both cases returns adjust immediately to the news (the two responses have the same sign
and the same shape). Similarly, comparing the response that prevails in bad times (the black
dashed line in the left panel of Figure 5) to the response that prevails in the knife-edge case
whereby opinions stop polarizing in bad times (the black dashed line in the left panel of
Figure 16), we observe that in both cases returns under-react and then revert.

The reason our results are insensitive to these two knife-edge cases is as follows. While
Agent A postulates constant uncertainty throughout the business cycle, Agent B’s reassesses
uncertainty in a way that greatly varies over the business cycle, as the confidence interval
depicted in Figure 1 demonstrates. Specifically, the left panel shows that the variance of
Agent B’s filter is small in good times. As a result, while opinions polarize in good times
in the first knife-edge case, the polarization of beliefs is so small that it does not generate a
spike in disagreement. The right panel of Figure 1, instead, shows that the variance of Agent
B’s filter increases tremendously in bad times. As a result, while opinions stop polarizing in
bad times in the second knife-edge case, the variance of Agent B’s filter is so large that her
expectations almost instantly exit the knife-edge region. Hence, the shape of the impulse
response remains unaffected in both cases.

A.9.3 Coefficient values of time series momentum (Section 4.3)

Figure 17 depicts the time series momentum coefficient ρ(h) for lags h ranging from 1 month
to 3 years. Each panel corresponds to a different state of the economy. The t-statistics are
provided in Section 4.3.

A.9.4 Unconditional time series momentum pattern

Our analysis of time series momentum in Section 4.3 is conditional on the state of the econ-
omy (good, normal and bad times, respectively). Since excess returns are negatively serially
correlated at short horizons in good times, the unconditional pattern of serial correlation
could be potentially inconsistent with Moskowitz et al. (2012). The left panel of Figure 18
above, which plots the unconditional pattern of time series momentum in our model (com-
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Figure 16: Impulse Response of Excess Returns to a News Shock in the two
Knife-Edge Cases.

The top knife-edge region is such that f̂A = f̂B = 6.5%, whereas the bottom knife-edge
region is such that f̂A = f̂B = −6.4%.
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Figure 17: Time Series Momentum of Excess Returns.

This figure plots the time series momentum coefficient ρ(h) for lags h ranging from 1 month
to 3 years. Each panel corresponds to a different state of the economy. Standard errors are
adjusted using Newey and West (1987) procedure. The values reported above are obtained
from 10,000 simulations of the economy over a 20-year horizon.
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Figure 18: Unconditional Time Series Momentum of Excess Returns.

This figure plots the t-statistics of the coefficient ρ(h) for lags h ranging from 1 month to
3 years. Standard errors are adjusted using Newey and West (1987) procedure. The values
reported above are obtained from 1,000 simulations of the economy over a 100-year horizon.

puted over a 100-year horizon), shows, however, that this is not the case. Specifically, it
shows that there is time series momentum up to an 18-month horizon followed by long-term
reversal for larger horizons, consistent with the empirical findings of Moskowitz et al. (2012).

A.9.5 Coefficient values of βG (Section 5.1.1)

Figure 19 depicts the response of excess returns to dispersion βG(h) for lags h ranging from
0 month to 1 year. The left panel controls for the fundamental only, whereas the right panel
controls for both the fundamental and the change of measure. The t-statistics are provided
in Section 5.1.1.

A.9.6 Empirical pattern of time series momentum in periods of low dispersion
(Section 5.2.2)

To verify that we observe, as predicted by the model, short-term time series reversal in low
dispersion periods, we run the following regression:

ret+∆ = α(p) + β1(p)ret + β2(p)retYt(p) + εt+∆,

where ∆ = 1/12 = 1 month, re denotes the monthly excess returns on the S&P 500 and Yt(p)
is a dummy variable that takes value 1 when the monthly dispersion, Disp, defined in Section
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Figure 19: Excess Returns vs. Dispersion.

This figure plots the response of excess returns to dispersion βG(h) for lags h ranging from 0
month to 1 year. The left panel controls for the fundamental only (i.e. βE(h) = 0), whereas
the right panel controls for both the fundamental and the change of measure. Standard
errors are adjusted using Newey and West (1987) procedure. The values reported above are
obtained from 1,000 simulations of the economy over a 100-year horizon.

5.2, is smaller than its p−th percentile. The coefficient β1(p) measures 1-month time series
momentum, while the coefficient β2(p) measures additional time series momentum present
in low dispersion period; accordingly, the sum β1(p) + β2(p) measures 1-month time series
momentum in low dispersion periods. Figure 20 below shows that the data lend support to
the prediction of the model: we observe significant 1-month reversal during low dispersion
periods.

A.9.7 Additional Prediction: U-shaped relation between excess returns and
time series momentum

In our model, excess returns only become extreme in bad times, when time series momentum
is strongest. As a result, our model delivers strongest time series momentum in extreme
markets, consistent with Moskowitz et al. (2012). More generally, the U-shaped relation
between excess returns and momentum in Moskowitz et al. (2012) is not related to the
sign of market returns, but rather to the volatility of market returns: the authors regress
the returns on time series momentum against market returns and squared market returns
and show that, while the relation between time series momentum and market returns is
not significant, the relation between time series momentum and squared market returns is
significantly positive. Hence, time series momentum is particularly strong during turbulent
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Figure 20: Time Series Momentum of Excess Returns in Low Disagreement
Periods.

This figure plots the t-statistics of 1-month time series momentum β1(p) + β2(p) when
dispersion is smaller than its p-th percentile. Standard errors are adjusted using Newey and
West (1987) procedure. Data are at monthly frequency from 02/1976 to 11/2014.

times (i.e. periods of high volatility).
To demonstrate that our model is consistent with this finding, we run the following

regression:

rTMt+∆ = α + β1σ̄t + β2σ̄
2
t + εt+∆,

where ∆ = 1/12 = 1 month, σ̄t =
∫ t
t−∆

σudu is the monthly diffusion of stock returns, and

rTMt+∆ = sign (ret ) r
e
t+∆ is the returns on time series momentum, as defined in Moskowitz et al.

(2012). If the sign of excess returns, and hence the sign of the diffusion, does not matter,
then the first coefficient, β1, should be insignificant. If its magnitude matters, however, the
second coefficient, β2, should be significantly positive. The t-statistics of the intercept, linear
coefficient, β1, and quadratic coefficient, β2, are 0.6693, −0.7672, and 1.7402, respectively.
Consistent with Moskowitz et al. (2012), only the quadratic coefficient is significant (at
the 10% confidence level). As a result, we obtain a U-shaped relation between time series
momentum and the diffusion of stock returns, as illustrated in Figure 21. It confirms the
intuition that the returns on time series momentum are high during extreme markets.
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Figure 21: Time Series Momentum Returns in Extreme Markets.

This figure plots the relation between time series momentum returns and the stock return
diffusion in our model. The relation is obtained from 1,000 simulations of the economy over
a 100-year horizon.

A.9.8 Persistence of time series momentum

To verify that we observe, as predicted by the model, persistent time series momentum in
both expansions and recessions, we run the following regression:

ret+h∆ = α(h) + β1(h)ret + β2(h)retYt + εt+h∆,

where ∆ = 1/12 = 1 month, re denotes the monthly excess returns on the S&P 500 and
Y is a dummy variable that takes value 1 in NBER recessions. The first coefficient, β1(h),
captures time series momentum in NBER expansions (what we refer to as normal and good
times in our model), which we plot in the right panel of Figure 22. Second, the sum of
the coefficients, β1(h) + β2(h), captures time series momentum in NBER recessions (what
we refer to as bad times in our model). Both panels show that there is on average time
series momentum up to the 12-month lag, followed by reversal on average over subsequent
horizons.
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Figure 22: Time Series Momentum in NBER Expansions and Recessions.

The left and right panels plot the t-statistics of the coefficient β1(h) + β2(h) and β1(h),
respectively, for lags h ranging from 1 month to 3 years. Standard errors are adjusted using
Newey and West (1987) procedure. Monthly data range from 01/1871 to 11/2013.
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