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ABSTRACT

This document provides 1) the proofs of the propositions, 2) the derivations

of the equations, 3) details on the calibration, and 4) theoretical and empir-

ical results that complement those found in the paper “Why Does Return

Predictability Concentrate in Bad Times?’

I. Proof of Proposition 1

We follow the notations in Lipster and Shiryaev (2001b) and write the

observable process as

d�t
�t

=
�
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+A
1

fA
t

�

dt+B
1

dW f
t +B

2

dWA
t

and the unobservable process as

dfA
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�

a
0
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1
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�

dt+ b
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t + b

2

dWA
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Using the SDEs in (1) and (2), we write b � b = b
1

b>
1

+ b
2

b>
2

= �2f , B �B =

B
1

B>
1

+ B
2

B>
2

= �2� , and b � B = b
1

B>
1

+ b
2

B>
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= 0. Applying Theorem
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12.7 in Lipster and Shiryaev (2001b), the dynamics of the filter satisfy

d bfA
t =

⇣

a
0

+ a
1

bfA
t

⌘

dt+
⇣

b �B + �tA
>
1

⌘

(B�B)�1

✓

d�t
�t

�
⇣

A
0

+A
1

bfA
t

⌘

dt

◆

,

where the steady-state posterior variance � solves the algebraic equation

a
1

� + �a>
1

+ b � b�
⇣

b �B + �A>
1

⌘

(B �B)�1

⇣

b �B + �A>
1

⌘>
= 0.

Substituting the coe�cients yields equation (4), the steady-state posterior

variance �, and

dcWA
t =

1

��

✓

d�t
�t

� bfA
t dt

◆

.

II. Proof of Proposition 2

We want to demonstrate the equivalence of the probability measures bPA

and bPB. To do so, we start with the following definition.

DEFINITION IA1: The probability measures bPA and bPB are equivalent if

and only if they are absolutely continuous with respect to each other under

Ft 8t 2 R
+

.

From Girsanov Theorem (Theorem 5.1, Karatzas and Shreve (1988)),

the probability measures bPA and bPB are absolutely continuous with respect

to each other if and only if the local martingale in (8) is a strictly positive

martingale, that is, E
bPA

[⌘t] = 1 for all t 2 R
+

. Hence, to prove the equiv-

alence of bPA and bPB, we must show that (8) is a martingale. To do so, we

2



write the dynamics of agents’ disagreement under PA as

dgt =




⇣

f̄ � bfA
t

⌘

� (�+  )
⇣

f1 + gt � bfA
t

⌘

� gt
�2�

⇣

bfA
t � gt � f l

⌘⇣

fh + gt � bfA
t

⌘

�

dt

+
� �

⇣

bfA
t � gt � f l

⌘⇣

fh + gt � bfA
t

⌘

��
dcWA

t (IA.1)

and use the following result, which we formulate in Theorem IA1.

THEOREM IA1: The process ⌘ defined in (8) is a true martingale (as op-

posed to a local martingale) if and only if the process g defined in (IA.1) has

a unique nonexplosive strong solution under bPA and bPB.

Proof : The proof follows as a special case of Theorem A.1 in Heston, Loewen-

stein, and Willard (2007). See also Exercise 2.10 in Revuz and Yor (1999)

and Theorem 7.19 in Lipster and Shiryaev (2001a) for related results. ⌅

We now show that the stochastic di↵erential equation in (IA.1) has a unique

nonexplosive strong solution under bPA and bPB. Rewrite the process gt in

(IA.1) as

dgt =
⇣

µ( bfB
t )� �( bfB

t )gt
⌘

dt+ �( bfB
t )dcWA

t (IA.2)

under bPA and as

dgt =

✓

µ( bfB
t )�

✓

+
�

�2�

◆

gt

◆

dt+ �( bfB
t )dcWB

t (IA.3)
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under bPB, where the functions

µ : (f l, fh) !
⇣

(f̄ � fh)� (�+  )(f1 � f l),(f̄ � f l)� (�+  )(f1 � fh)
⌘

� : (f l, fh) !
✓

1

��
(� � 1

4
(fh � f l)2),

�

��

◆

� : (f l, fh) !
✓

,+
1

4�2�
(fh � f l)2

◆

are defined as

µ(x) := (f̄ � x)� (�+  )(f1 � x) (IA.4)

�(x) :=
1

��
(� � (x� f l)(fh � x))

�(x) := +
1

�2�
(x� f l)(fh � x).

We then have the following result, which we highlight in Lemma IA1.

LEMMA IA1: The processes in (IA.2) and (IA.3) have a unique strong so-

lution.

Proof : We first prove the result under bPA and then show that the result

under bPB follows as a special case. To prove strong existence, we construct

a sequence of successive approximations to gt in (IA.2) by setting

g
(k+1)

t := g
(0)

t +

Z t

0

⇣

µ( bf (k)
s )� �( bf (k)

s )g(k)s

⌘

ds+

Z t

0

�( bf (k)
s )dcWA

s

(IA.5)

for k � 0, where bf (k) denotes some approximation of bfB. From (IA.5), we
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can write g
(k+1)

t � g
(k)
t = Bt +Mt, where

Bt :=

Z t

0

⇣

µ( bf (k)
s )� µ( bf (k�1)

s )� �( bf (k)
s )g(k)s + �( bf (k�1)

s )g(k�1)

s

⌘

ds

and

Mt :=

Z t

0

(�( bf (k)
s )� �( bf (k�1)

s ))dcWA
s .

Now observe that the functions in (IA.4) are locally Lipschitz continuous.

In particular, for all x, y 2 (f l, fh), we have

|�(x)� �(y)| = 1

��
|x� y||fh + f l � (x+ y)|  1

��
max

n

|fh � f l|, |f l � fh|
o

|x� y|

(IA.6)

and

|µ(x)� µ(y)| = |�+  � ||x� y|  (�+  + )|x� y|.

Lipschitz continuity for �(·) follows directly from (IA.6). Furthermore, �(·)

is bounded. We can therefore let f (k)
t ⌘ bfB

t for all k � 0 and write

g
(k+1)

t � g
(k)
t = �

Z t

0

�( bfB
s )
⇣

g(k)s � g(k�1)

s

⌘

ds. (IA.7)

Taking the absolute value of both sides of (IA.7) and observing that �(x) > 0
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for all x 2 (f l, fh), we have

�

�

�

g
(k+1)

t � g
(k)
t

�

�

�


Z t

0

�( bfB
s )
�

�

�

g(k)s � g(k�1)

s

�

�

�

ds  �

Z t

0

�

�

�

g(k)s � g(k�1)

s

�

�

�

ds,

(IA.8)

where

� := sup
x2(f l,fh

)

�(x) = �

✓

fh + f l

2

◆

.

Iterating over (IA.8), we further get

�

�

�

g
(k+1)

t � g
(k)
t

�

�

�


�

�

�

g
(1)

t � g
(0)

t

�

�

�

(�t)k

k!
.

Strong existence then follows directly from the last part of the proof of

Theorem 2.9, Karatzas and Shreve (1988). The result under bPB follows as

a special case by setting �(x) ⌘ + �
�2

�
.

To prove uniqueness, we adapt the proof of Yamada and Watanabe

(1971). Suppose that there are two strong solutions g1 and g2 to (IA.2)

with g1
0

= g2
0

, bPA�almost surely. It is then su�cient to show that g1 and g2

are indistinguishable. Using (IA.2), we can write

d(g1t � g2t ) = �( bfB
t )(g1t � g2t )dt.

Integrating and taking the absolute value, we obtain

|g1t � g2t | 
Z t

0

�( bfB
s )|g1s � g2s |ds  �

Z t

0

|g1s � g2s |ds  0,
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where the last inequality follows from the Gronwall inequality (Problem 2.7,

Karatzas and Shreve (1988)). Similarly, strong uniqueness under bPB follows

as a special case when �(x) ⌘ + �
�2

�
. ⌅

It now remains to show that the disagreement process does not explode

both bPA� and bPB�almost surely, as we do in Lemma IA2. Our result is

actually stronger: we bound the cumulative distribution of g by a scaled

Gaussian cumulative distribution function, which guarantees uniform inte-

grability of g.

LEMMA IA2: At any time t 2 R
+

, the process gt defined in (IA.1) is finite

bPA� and bPB�almost surely, that is,

lim
c!1

bPA(|gt| � c) = lim
c!1

bPB(|gt| � c) = 0, 8t 2 R
+

.

Proof : We prove the result under bPA. The result under bPB follows as a spe-

cial case when �(x) ⌘ + �
�2

�
. Applying Ito’s lemma, let At := e

R t
0

�( bfB
s )dsgt

satisfy

dAt = µ( bfB
t )e

R t
0

�( bfB
s )dsdt+ e

R t
0

�( bfB
s )ds�( bfB

t )dcWA
t , A

0

= g
0

, (IA.9)

and let Ai, i = 1, 2 have dynamics

dAi
t = (�1)imA

t dt+ e
R t
0

�( bfB
s )ds�( bfB

t )dcWA
t , (�1)iAi

0

� (�1)iA
0

,

(IA.10)
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under bPA. Combining (IA.9) and (IA.10), we obtain

Ai
t �At = Ai

0

�A
0

+

Z t

0

⇣

(�1)imA
s � µ( bfB

s )e
R s
0

�( bfB
u )du

⌘

ds, i =, 1, 2.

(IA.11)

Now set

mA
t := sup

x,y2(f l,fh
)

e
R t
0

�(ys)ds|µ(x)| = e�t sup
x2(f l,fh

)

|µ(x)| = exp
�

�t
�

max
n

|µ(f l)|, |µ(fh)|
o

and observe that

(�1)ie
R t
0

�( bfB
u )duµ( bfB

t )  e
R t
0

�( bfB
u )du|µ( bfB

t )|  mA
t , i = 1, 2, (IA.12)

for all t 2 R
+

. The inequalities in (IA.12) and the expressions in (IA.11)

together imply that

A1

t  At  A2

t ,
bPA � almost surely,. (IA.13)

for all t 2 R
+

. Furthermore, rewriting g as

gt = e�
R t
0

�( bfB
u )duAt = e�

R t
0

�( bfB
u )du(A+

t �A�
t ),
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it then follows that

|gt| = e�
R t
0

�( bfB
s )ds(A+

t +A�
t )  A+

t +A�
t ,

bPA � almost surely,

(IA.14)

where the second inequality follows from the fact that e�
R t
0

�( bfB
s )ds 2 (0, 1)

for all t 2 R
+

, since

�(x) > 0, 8x 2 (f l, fh).

Combining (IA.13) and (IA.14), we obtain

|gt| 
X

i=1,2

((�1)iAi
t)
+  max{(�A1

t )
+, (A2

t )
+}, bPA � almost surely.

(IA.15)

Using (IA.15), we can write that, for any positive constant c � 0,

1|gt|�c 
X

i=1,2

1
((�1)

iAi
t)

+�c ⌘
X

i=1,2

1
(�1)

iAi
t�c, (IA.16)

where the last equality follows from the fact that 1X+�c = 1X�c for any c

positive. Taking expectations of (IA.16) under bPA, we get

bPA(|gt| � c) 
X

i=1,2

bPA
�

(�1)iAi
t � c

�

, 8t 2 R
+

. (IA.17)

Finally, adapting the proof of Theorem 1.4 in Hajek (1985), let bAi, i = 1, 2,
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have dynamics

d bAi
t = (�1)imA

t dt+ �At dcW
A
t , (�1)i bAi

0

� (�1)iAi
0

, (IA.18)

under bPA and set

�At := sup
x,y2(f l,fh

)

e
R t
0

�(ys)ds|�(x)| ⌘ exp
�

�t
� 1

��
max

⇢

�,

�

�

�

�

� � 1

4
(fh � f l)2

�

�

�

�

�

.

Furthermore, assume without loss of generality that there exists a Brownian

motion cW on the same probability space as cWA, which is independent of

(A1, A2, bfB,cWA). Let ai,j , i, j = 1, 2, be defined by

ai,jt = bAi
0

+ (�1)i
Z t

0

mA
s ds

+



Z t

0

e
R s
0

�( bfB
u )du�( bfB

s )dcWA
s + (�1)j

Z t

0

⇣

(�As )
2 � e

R s
0

�( bfB
u )du�( bfB

s )2
⌘

1

2

dcWs

�

.

First, observe that for each j = 1, 2, the process in the square bracket is a

continuous martingale with quadratic variation equal to
R t
0

(�As )
2ds. As a

result, each ai,j , j = 1, 2, has the same distribution as bAi, that is,

ai,j ⇠ bAi, i, j = 1, 2. (IA.19)

Second, define the process āit :=
1

2

P

j=1,2 a
i,j
t , i = 1, 2, which, applying Ito’s
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lemma, satisfies

dāit = (�1)imA
t dt+ e

R t
0

�( bfB
s )ds�( bfB

t )dcWA
t . (IA.20)

Combining (IA.10) and (IA.20), we obtain from the initial conditions that

(�1)iāit � (�1)iAi
t,

bPA � almost surely,

for i = 1, 2. Since (�1)iāit  max{(�1)iai,1t , (�1)iai,2t }, i = 1, 2, we further

have that

1
(�1)

iAi
t�c  1

(�1)

iai,1t �c
+ 1

(�1)

iai,2t �c
.

Taking expectations under bPA and using (IA.19), we obtain that, for any

c 2 R, the processes Ai and bAi, i = 1, 2, satisfy

PA((�1)iAi
t � c)  2PA((�1)i bAi

t � c), 8t 2 R
+

. (IA.21)

Combining the inequalities in (IA.17) and (IA.21), we obtain

bPA(|gt| � c)  2
X

i=1,2

bPA
⇣

(�1)i bAi
t � c

⌘

, 8t 2 R
+

. (IA.22)

Observing that each bAi, i = 1, 2, in (IA.18) is a Gaussian process, the
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probabilities on the right-hand side of (IA.22) are given explicitly by

PA
⇣

(�1)i bAi
t � c

⌘

= �

0

@

(�1)i bAi
0

+
R t
0

mA
s ds� c

q

R t
0

(�As )
2ds

1

A . (IA.23)

Taking limits on both sides of (IA.22) and using (IA.23) yields

lim
c!1

PA(|gt| � c)  2 lim
c!1

X

i=1,2

�

0

@

(�1)i bAi
0

+
R t
0

mA
s ds� c

q

R t
0

(�As )
2ds

1

A = 0, 8t 2 R
+

,

as desired. ⌅

We have shown that the process ⌘ in (8) is a martingale and therefore

E
bPA

[⌘t] = 1 for all t 2 R
+

. As a result, bPA is absolutely continuous with

respect to bPB under Ft 8t 2 R
+

and the claim follows from Girsanov

Theorem (Theorem 5.1, Karatzas and Shreve (1988)).

III. Maximization Problems

We write Agent A’s problem as follows:

max
cA

EPA

"

Z 1

0

e�⇢t
c1�↵At

1� ↵
dt

#

+ �A

✓

XA,0 � EPA



Z 1

0

⇠tcAtdt

�◆

,

where �A denotes the Lagrange multiplier of Agent A’s static budget con-

straint and ⇠ is the state-price density perceived by Agent A. Agent B solves

an analogous problem but under her own probability measure PB. Rewriting

12



Agent B’s problem under Agent A’s probability measure PA yields

max
cB

EPA

"

Z 1

0

⌘te
�⇢t c

1�↵
Bt

1� ↵
dt

#

+ �B

✓

XB,0 � EPA



Z 1

0

⇠tcBtdt

�◆

.

The first-order conditions lead to the following optimal consumption plans

cAt =
�

�Ae
⇢t⇠t
�� 1

↵ cBt =

✓

�Be
⇢t⇠t
⌘t

◆� 1

↵

. (IA.24)

Clearing the market yields the following characterization of the state-price

density:

⇠t = e�⇢t��↵t

h

(1/�A)
1/↵ + (⌘t/�B)

1/↵
i↵

. (IA.25)

Substituting equation (IA.25) into equation (IA.24) gives the consumption

share of Agent A, !, which satisfies

!t =
(1/�A)

1/↵

(⌘t/�B)
1/↵ + (1/�A)

1/↵
.

The consumption share of Agent A is a function of the likelihood ⌘. In par-

ticular, an increase in ⌘ raises the likelihood of Agent B’s model relative to

Agent A’s model. The consumption share of Agent A is therefore decreasing

in ⌘. That is, the more likely Agent B’s model becomes, the less Agent A

can consume. This result applies symmetrically to the consumption share,
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1� !, of Agent B. The dynamics of the consumption share ! satisfy

d!t =
g2t

2↵2�2�

�

(↵� 1)(1� !t)!
2

t + (↵+ 1)(1� !t)
2!t

�

dt

+
gt
↵��

(1� !t)!tdcW
A
t .

The dynamics of the state-price density ⇠ satisfy

d⇠t
⇠t

= �rft dt� ✓tdcW
A
t .

Therefore, applying Itô’s lemma to the state-price density defined in (IA.25)

determines the risk-free rate rf and the market price of risk ✓ provided in

Proposition 3.

IV. Proof of Proposition 4

Following Dumas, Kurshev, and Uppal (2009), we assume that the co-

e�cient of relative risk aversion, ↵, is an integer. This assumption allows

us to obtain the following convenient expression for the equilibrium stock

price:1

St

�t
= EPA

t



Z 1

t

⇠u�u
⇠t�t

du

�

= !↵t

↵
X

j=0

0

B

@

↵

j

1

C

A

✓

1� !t

!t

◆j

EPA

t

"

Z 1

t
e�⇢(u�t)

✓

⌘u
⌘t

◆

j
↵
✓

�u
�t

◆

1�↵
du

#

.

(IA.26)

1We refer the reader to Dumas, Kurshev, and Uppal (2009) for details of the derivation.
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We start by computing the first and the last terms of the sum in (IA.26).

These terms correspond to the prices of a Lucas (1978) economy in which

the representative agent assumes that the fundamental follows an Ornstein-

Uhlenbeck process and a two-state Markov chain, respectively. These prices

have (semi) closed-form solutions, which we present in Proposition IA1.

PROPOSITION IA1: Suppose the economy is populated by a single agent.

1. If the agent’s filter follows the Ornstein-Uhlenbeck process described in

equation (4), the equilibrium price-dividend ratio satisfies

St

�t

�

�

�

�

O.U.

=

Z 1

0

e�⇢⌧+↵(⌧)+�2(⌧)
bfA
t d⌧,

where the functions ↵(⌧) and �
2

(⌧) are the solutions to a set of Ricatti

equations.

2. If the agent’s filter follows the filtered two-state Markov chain process

described in equation (6), the equilibrium price-dividend ratio satisfies

St

�t

�

�

�

�

M.C.

= ⇡tH1

+ (1� ⇡t)H2

=
bfB
t � f l

fh � f l
H

1

+

 

1�
bfB
t � f l

fh � f l

!

H
2

=
bfA
t � gt � f l

fh � f l
H

1

+

 

1�
bfA
t � gt � f l

fh � f l

!

H
2

,
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where

H =

✓

H
1

H
2

◆>
= A�11

2

A = �⌦� (1� ↵)

0

B

@

fh 0

0 f l

1

C

A

+ (⇢+
1

2
↵(1� ↵)�2� )Id2

.

Id
2

is a two-by-two identity matrix and 1
2

is a two-dimensional vector

of ones.

Proof : aaa

1. Following Du�e, Pan, and Singleton (2000), the functions ↵(⌧) and

�(⌧) ⌘ (�
1

(⌧) ,�
2

(⌧)) solve the system of Ricatti equations

�0 (⌧) = K>
1

� (⌧) +
1

2
� (⌧)>H

1

� (⌧)

↵0 (⌧) = K>
0

� (⌧) +
1

2
� (⌧)>H

0

� (⌧)

with boundary conditions � (0) = (1� ↵, 0) and ↵ (0) = 0. The H

and K matrices satisfy

K
0

=

0

B

@

�1

2

�2�

f̄

1

C

A

K
1

=

0

B

@

0 1

0 �

1

C

A

H
0

=

0

B

@

�2� �

�
⇣

�
��

⌘

2

1

C

A

H
1

= 0
2

⌦ 0
2

.
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The solutions to this system are

�
1

(⌧) =1� ↵

�
2

(⌧) =� (↵� 1)e�⌧ (e⌧ � 1)



↵ (⌧) =
(↵� 1)2�2e�2⌧

�

e2⌧ (2⌧ � 3) + 4e⌧ � 1
�

43�2�

�
(↵� 1)e�2⌧

�

4�2�e
⌧ (e⌧ (⌧ � 1) + 1)

�

f̄ � ↵� + �
�

+ 2↵3⌧�4�e
2⌧
�

43�2�
.

2. See Veronesi (2000).

⌅

We now rewrite the price in (IA.26) as

St

�t
= !↵t

St

�t

�

�

�

�

O.U.

+ !↵t

↵�1

X

j=1

0

B

@

↵

j

1

C

A

✓

1� !t

!t

◆j

F j
⇣

bfA
t , gt

⌘

+ (1� !t)
↵St

�t

�

�

�

�

M.C.

.

(IA.27)

The last step involves computing the intermediate terms F j in (IA.27), which

relate to heterogeneous beliefs. Each term solves a di↵erential equation,

which we present in Proposition IA2.

PROPOSITION IA2: The function F j, defined as

F j
⇣

bfA
t , gt

⌘

⌘ EPA

t

"

Z 1

t
e�⇢(u�t)

✓

⌘u
⌘t

◆

j
↵
✓

�u
�t

◆

1�↵
du

#

, (IA.28)
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solves the partial di↵erential equation

fL
bfA,gF j +XjF j + 1 = 0, (IA.29)

where fL denotes the infinitesimal generator of
⇣

bfA, g
⌘

under the probability

measure ePA.

Proof : aaa

We introduce two sequential changes of probability measure, one from PA

to a probability measure P according to

dP
dPA

�

�

�

�

Ft

⌘ e
� 1

2

R t
0

⇣
j
↵

gs
��

⌘
2

ds�
R t
0

j
↵

gs
��

d

cWA
s ,

and one from P to a probability measure eP according to

deP
dP

�

�

�

�

�

Ft

⌘ e�
1

2

R t
0

(1�↵)2�2

�ds+
R t
0

(1�↵)��dW (s),

where, by Girsanov’s Theorem, W is a P-Brownian motion satisfying

W t = cW
A
t +

Z t

0

j

↵

gs
��

ds, (IA.30)

and fW is a eP-Brownian motion satisfying

fWt = W t �
Z t

0

(1� ↵)��dt. (IA.31)

Implementing sequentially the changes of probability measures in equations

(IA.30) and (IA.31) allows us to rewrite the interior expectation in (IA.28)
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as

F j
⇣

bft, gt

⌘

= E eP


Z 1

t
e
R u
t Xj

sdsdu

�

�

�

�

Ft

�

, (IA.32)

where

Xj
t = �

✓

⇢+
1

2
(1� ↵)↵�2�

◆

+
1

2

j

↵

✓

j

↵
� 1

◆

g2t
�2�

� (1� ↵)
j

↵
gt + (1� ↵) bfA

t .

To obtain the partial di↵erential equation that the function F j has to

satisfy, we use the fact that equation (IA.32) can be rewritten as

F j
⇣

bft, gt

⌘

= e�
R t
0

Xj
sdsE eP



Z 1

t
e
R u
0

Xj
sdsdu

�

�

�

�

Ft

�

= e�
R t
0

Xj
sds

✓

�
Z t

0

e
R u
0

Xj
sdsdu+ E eP



Z 1

0

e
R u
0

Xj
sdsdu

�

�

�

�

Ft

�◆

⌘ e�
R t
0

Xj
sds

✓

�
Z t

0

e
R u
0

Xj
sdsdu+ fMt

◆

,

where fM is a eP-Martingale. An application of Itô’s lemma along with the

Martingale Representation Theorem then gives the partial di↵erential equa-

tion in (IA.29).2

⌅

We numerically solve equation (IA.29) for each term j through Cheby-

shev collocation. In particular, we approximate the functions F j( bfA, g) for

2As proved in David (2008), the boundary conditions are absorbing in both the b
f

A-
and the g-dimension.
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j = 1, . . . ,↵� 1 as follows:

P j
⇣

bfA, g
⌘

=
n
X

i=0

m
X

k=0

aji,kTi

⇣

bfA
⌘

Tk (g) ⇡ F j( bfA, g),

where Ti is the Chebyshev polynomial of order i. Following Judd (1998),

we mesh the roots of the Chebyshev polynomial of order n with those of the

Chebyshev polynomial of order m to obtain the interpolation nodes. We

then substitute P j( bfA, g) and its derivatives in equation (IA.29), and we

evaluate this expression at the interpolation nodes. Since all the boundary

conditions are absorbing, this approach directly produces a system of (n +

1) ⇥ (m + 1) equations with (n + 1) ⇥ (m + 1) unknowns that we solve

numerically.

In general, it is di�cult to prove uniqueness when risk aversion is greater

than one (see Proposition 3 in David (2008)). For our purpose, however, we

only need to establish uniqueness under the calibration of Section II.B. A

convenient way to do so is to use a “Negishi map” (see Dumas and Lyaso↵

(2012) for a detailed discussion). If the Negishi map is monotonic, then the

equilibrium is unique, otherwise not. Below we reproduce the Negishi map

that prevails under our calibration. Clearly, the Negishi map is monotoni-

cally increasing and the equilibrium under the calibration of Section II.B is

therefore unique.
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Figure IA.1. Negishi map. Negishi map of Agent A’s initial wealth as
a function of her initial consumption share under the calibration of Table I
and the assumption that bfA

0

= f̄ , g
0

= f̄ � (f l +  
�+ (f

h � f l)), and �
0

= 1.

V. Approximation of the Filter’s Adjustment

Speed

In this appendix, we derive an approximation for the adjustment speed

of agents’ filters, as defined in Definition 1. Assume that Assumptions 1 and

2 hold and define the vector Xt := ( bfA
t , bfB

t )> with dynamics

dXt = µ(Xt)dt+ �(Xt)dcW
A
t

under bPA, where

µ(X) :=

0

B

@

f

(�+  )f1

1

C

A

+

0

B

@

� 0

(f?
)

2

�2

�
�
⇣

�+  + (f?
)

2

�2

�

⌘

1

C

A

Xt + �(Xt)

(IA.33)
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and

�(X) :=

0

B

@

�
��

1

��
( bfB

t + f?)(f? � bfB
t )

1

C

A

.

Observe that the change of measure from bPB to bPA introduces a nonlinear

component

�(X) =

0

B

@

0

� 1

�2

�
( bfB

t )2( bfA
t � bfB

t )

1

C

A

in the otherwise a�ne drift in (IA.33). To take this nonlinearity into account,

we augment the vector Xt with the quadratic term ( bfB)2 and accordingly

define a new vector Yt := ( bfA
t , bfB

t , ( bfB
t )2)>. Application of Ito’s lemma

shows that the drift of this process satisfies

µ(Y ) :=

0

B

B

B

B

@

f

(�+  )f1

(f?
)

4

�2

�

1

C

C

C

C

A

+

0

B

B

B

B

@

� 0 0

(f?
)

2

�2

�
�(�+  ) + (f?

)

2

�2

�
0

0 2f?( � �) �4(f?
)

2

�2

�
� 2(�+  )

1

C

C

C

C

A

Yt

+ o( bfA
t
bfB
t , ( bfB

t )3).
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Performing a second-order Taylor expansion around the initial point X
0

, we

can write

µ(2)(Yt) = µ(Yt)|X
0

+ rXµ(Y )|X
0

(Xt �X
0

)

+
1

2
(Xt �X

0

)>rXXµ(Y )
�

�

�

X
0

(Xt �X
0

) ⌘ ⇤+ ⌦Yt,

(IA.34)

where the vector ⇤ satisfies

⇤ =

0

B

B

B

B

@

f

f?( � �) +
2x3

0

�2

�

�2(f?
)

2x2

0

�(f?
)

4

+9x4

0

�2

�

1

C

C

C

C

A

and the matrix ⌦ satisfies

⌦ =

0

B

B

B

B

@

� 0 0

(f?�x
0

)f1��(f
?
+x

0

)

�2

�
� (f?

)

2

+3x2

0

+�2

� (�+ )

�2

�

2x
0

�2

�

2(f?�x
0

)x
0

(f?
+x

0

)

�2

�

2(�9x3

0

+(f?
)

2x
0

+f1�2

� (�+ ))
�2

�
�2(2(f?

)

2�6x2

0

+�2

� (�+ ))
�2

�

1

C

C

C

C

A

.

Denote by X
(2)

t the vector associated with the resulting approximated drift

in (IA.34). By construction, its drift is a�ne in Y and its conditional ex-

pectation therefore satisfies

EA
0

h

X
(2)

t

i

= �⌦�1⇤+ exp(⌦t)(Y
0

+ ⌦�1⇤). (IA.35)
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Furthermore, for t small, the expression in (IA.35) is approximately given

by

d

dt
EA

0

h

X
(2)

t

i

�

�

�

�

t=✏

⇡ ⌦(I + ⌦✏)(Y
0

+ ⌦�1⇤).

Eliminating terms of order o(�4� ), we can finally write

d

dt
EA

0

h

X
(2)

t

i

�

�

�

�

t=✏

⇡

0

B

@

(f � x
0

)

(�+  )(f1 � x
0

)

1

C

A

+

0

B

@

0

v(x
0

)

��

⇣

2x
0

v(x
0

)

��
+ (f � x

0

)� (�+  )(f1 � x
0

)
⌘

1

C

A

✏.

(IA.36)

Reorganizing yields the expressions in Proposition 5.

The nonlinearity of the change of measure introduces a nonlinear term

2x
0

v(x
0

)

��
in the approximate expression for Agent B’s speed of learning in

equation (IA.36). This term changes sign in the neighborhood of f l, fm,

and fh in a way that makes Agent B’s expectations centrifugal outward fm

under PA, as illustrated in Figure IA.2.

VI. Derivation of the Parameter Values Provided

in Table I

Agents first estimate a discretized version of their model and then map

the parameters they estimated into their continuous-time model. In partic-
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Figure IA.2. Agent B’s adjustment speed under PA. This figure
plots the second-order approximation of Agent B’s adjustment speed under
PA as a function of the state of the economy. The dashed areas represent
the states in which Agent B’s expectations are attracted towards fm, while
the central area represents the states in which Agent B’s expectations are
repelled outward fm.

ular, Agent A estimates the discrete-time model

log

✓

�t+1

�t

◆

= fA
t +

p
v�✏

1,t+1

(IA.37)

fA
t+1

= mfA
+ af

A
fA
t +

p

vfA✏
2,t+1

, (IA.38)

while Agent B estimates the discrete-time model

log

✓

�t+1

�t

◆

= fB
t +

p
v�✏

3,t+1

(IA.39)

fB
t 2 {sh, sl} with transition matrix P =

0

B

@

phh 1� phh

1� pll pll

1

C

A

.
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Table IA.I

Output of the Maximum-Likelihood Estimation

Parameter values resulting from a discrete-time Bayesian learning Maximum
Likelihood estimation. The estimation is performed on monthly S&P 500
dividend data from 01/1871 to 11/2013. Standard errors are reported in
brackets and statistical significance at the 10%, 5%, and 1% levels is denoted
by ⇤, ⇤⇤, and ⇤⇤⇤, respectively.

Parameter Symbol Estimate

Variance Dividend Growth v� 4.23⇥ 10�5

⇤⇤⇤

(1.48 ⇥ 10

�6
)

Persistence Growth Rate fA af
A

0.9842⇤⇤⇤

(0.0022)

Mean Growth Rate fA mfA
9.96⇥ 10�4

⇤⇤⇤

(9.39 ⇥ 10

�5
)

Variance Growth Rate fA vf
A

2.53⇥ 10�6

⇤⇤⇤

(2.12 ⇥ 10

�7
)

High State of fB sh 0.0066⇤⇤⇤

(2.7 ⇥ 10

�4
)

Low State of fB sl �0.0059⇤⇤⇤

(3.17 ⇥ 10

�4
)

Prob. of Staying
in High State phh 0.9755⇤⇤⇤

(0.0912)

Prob. of Staying
in Low State pll 0.9680⇤⇤⇤

(0.0940)

✏
1

, ✏
2

, and ✏
3

are normally distributed with zero mean and unit variance, and

✏
1

and ✏
2

are independent. The transition matrix P contains the probabili-

ties of staying in the high state and the low state over the following month.

We estimate the discrete-time models in equations (IA.37) and (IA.39) by

Maximum Likelihood. We report the estimated parameters, their standard

errors, and their statistical significance in Table IA.I.

We next map the parameters of Table IA.I into the associated continuous-

time models. Straightforward applications of Itô’s lemma show that the
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dividend stream, �, and the fundamental perceived by Agent A, fA, satisfy

log

✓

�t+�

�t

◆

=

Z t+�

t

✓

fA
u � 1

2
�2�

◆

du+ ��
�

WA
t+�

�WA
t

�

=

Z t+�

t

✓

fB
u � 1

2
�2�

◆

du+ ��
�

WB
t+�

�WB
t

�

⇡
✓

fA
t � 1

2
�2�

◆

�+ ��
�

WA
t+�

�WA
t

�

(IA.40)

⇡
✓

fB
t � 1

2
�2�

◆

�+ ��
�

WB
t+�

�WB
t

�

(IA.41)

fA
t+�

= e��fA
t + f̄

�

1� e��
�

+ �f

Z t+�

t
e�(t+��u)dW f

u .

(IA.42)

The relationship between the transition matrix P and the generator matrix

⇤ is written as

P =

0

B

@

phh 1� phh

1� pll pll

1

C

A

=

0

B

@

 
�+ + �

�+ e
�(�+ )� �

�+ � �
�+ e

�(�+ )�

 
�+ �  

�+ e
�(�+ )� �

�+ +  
�+ e

�(�+ )�

1

C

A

. (IA.43)

We perform the Maximum Likelihood estimation on monthly data and ac-

cordingly set � = one month.

Matching equation (IA.37) to equation (IA.40) and equation (IA.38) to

equation (IA.42) yields the following system of equations for , f̄ , ��, and
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�f :

af
A
= e��

mfA
= f̄

�

1� e��
�

� 1

2
�2��

v� = �2��

vf
A
=
�2f
2

�

1� e�2�
�

, (IA.44)

where the last equation relates the variance of the Ornstein-Uhlenbeck pro-

cess to its empirical counterpart. Matching equation (IA.39) to equation

(IA.41) yields the following system of equations for f l and fh:

sh =

✓

fh � 1

2
�2�

◆

�

sl =

✓

f l � 1

2
�2�

◆

�. (IA.45)

Solving the system comprised of equations (IA.43), (IA.44), and (IA.45)

yields the parameters presented in Table I.
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VII. Proof of Proposition 6

Following the methodology in Dumas, Kurshev, and Uppal (2009), Agent

A’s wealth, V , satisfies

Vt = �t!
↵
t

↵�1

X

j=0

0

B

@

↵� 1

j

1

C

A

✓

1� !t

!t

◆j

EPA

t

"

Z 1

t
e�⇢(u�t)

✓

⌘u
⌘t

◆

j
↵
✓

�u
�t

◆

1�↵
du

#

(↵=2)

= �t!
2

t

St

�t

�

�

�

�

O.U.

+ �t!t (1� !t)F
⇣

bfA
t , gt

⌘

. (IA.46)

To derive the myopic and hedging components of Agent A’s strategy, Q,

note that Agent A’s wealth, V , satisfies the dynamics

dVt = rft Vtdt+
⇣

µt � rft

⌘

QtStdt� cAtdt+ �tQtStdcW
A
t , (IA.47)

where rf is the risk-free rate defined in equation (11), µ � rf is the risk

premium on the stock, Q is the number of shares held by Agent A, and � is

the di↵usion of stock returns. Applying Ito’s lemma to Agent A’s discounted

wealth using (IA.46), we obtain the martingale

d

✓

⇠tVt +

Z t

0

⇠scAsds

◆

= �tdcW
A
t

= EPA

t

✓

Z 1

t
Dt (⇠scAs) ds

◆

dcWA
t

= (⇠t�tQtSt � Vt✓t⇠t) dcW
A
t ,
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where the first and second equalities follow from the Martingale Represen-

tation Theorem and the Clark-Ocone Theorem, respectively. Matching the

di↵usion terms in (IA.47) and the expression above, the number of shares

Q satisfies

Qt =
µt � rft
�2t

Vt

St
+

1

⇠t�tSt
EPA

t

✓

Z 1

t
Dt (⇠scAs) ds

◆

. (IA.48)

Finally, using the fact that

⇠scAs = (�Ae
⇢s)�1/↵ ⇠

↵�1

↵
s and thus

Dt (⇠scAs) =
↵� 1

↵
Dt(⇠s)cAs,

we can rewrite equation (IA.48) as follows

Qt =
µt � rft
�2t

Vt

St
+
↵� 1

↵�tSt
EPA

t

✓

Z 1

t

⇠scAs

⇠t

Dt⇠s
⇠s
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◆
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↵� 1

↵�tSt
EPA

t

✓

Z 1

t

⇠scAs

⇠t

✓

Dt⇠s
⇠s

� Dt⇠t
⇠t

+
Dt⇠t
⇠t

◆

ds

◆

=
µt � rft
�2t

Vt

St
+
↵� 1

↵�tSt
EPA

t

✓

Z 1

t

⇠scAs

⇠t

✓

Dt⇠s
⇠s

� Dt⇠t
⇠t

◆

ds

◆

� (↵� 1)✓tVt

↵�tSt

=
µt � rft
↵�2t

Vt

St
+
↵� 1

↵�tSt
EPA

t

✓

Z 1

t

⇠scAs

⇠t

✓

Dt⇠s
⇠s

� Dt⇠t
⇠t

◆

ds

◆

⌘ Mt +Ht.

The expression for the state-price density in (19) is derived in Internet Ap-

pendix Section III.

To obtain an explicit expression for the average reaction of the state-price
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density to a Brownian shock today

EPA

t (R(t, s)) := EPA

t

✓

Dt⇠s
⇠s

◆

, (IA.49)

we decompose the Malliavin derivative of the stochastic discount factor as

Dt⇠s = �↵⇠s
�s

Dt�s +
⇠s(1� !(⌘s))

⌘s
Dt⌘s, (IA.50)

with

Dt�s = �s

✓

�� +

Z s

t
Dt
bfA
v dv

◆

(IA.51)

Dt⌘s = � ⌘s
��

✓

gt +

Z s

t
DtgvdcW

A
v +

1

��

Z s

t
gvDtgvdv

◆

(IA.52)

Dt
bfA
s =

�

��
e�(s�t) (IA.53)

and where

dDtgv = rµg( bf
A
v , gv)

>

0

B

@

�
��
e�(v�t)

Dtgv

1

C

A

dv +r�g( bfA
v , gv)

>

0

B

@

�
��
e�(v�t)

Dtgv

1

C

A

dcWA
v ,

with initial condition Dtgt = �g( bfA
t , gt). The coe�cients µg and �g repre-

sent the drift and the di↵usion of disagreement in (IA.1), respectively, and

the operator r stands for the gradient. Substituting equation (IA.53) into
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equation (IA.51) yields

Dt�s
�s

= �� +
�

��

⇣

1� e�(s�t)
⌘

,

while substituting equations (IA.51), (IA.52), and (IA.53) into equation

(IA.50) yields

Dt⇠s
⇠s

=� ↵

✓

�� +
�

��

⇣

1� e�(s�t)
⌘

◆

� 1� !s

��
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gt +

Z s

t
DtgvdcW

A
v +

1

��

Z s

t
gvDtgvdv

◆

.

Taking conditional expectations at time t and setting gt = 0 implies that

(IA.49) satisfies

EPA

t (R(t, s)) =� ↵

✓

�� +
�

��

⇣

1� e�(s�t)
⌘

◆

� 1

�2�
EPA

t

✓

(1� !s)

Z s

t
gvDtgvdv

◆

.
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VIII. Details on the Decomposition of the Stock

Return Di↵usion

We have
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where A
1

⇡ 0, A
2

< 0, and A
3

< 0 are constants and bg ⌘ (1 � !)g is the

“consumption-weighted” disagreement. The third “equality” holds because

with our calibration, 1) f l + fh ⇡ 0, and 2) the joint distribution of bfA,

g, and ! implies that both the partial derivatives scaled by the price and

1�!
��

✓

g2 +
⇣

bfA
⌘

2

+ � + f lfh

◆

have a small volatility. Combining 1) and 2)
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shows that the first term is almost constant, (1� !) bfAg is the main driver

of the variation in the second term, and !(1� !)g is the main driver of the

variation in the third term.

To confirm the accuracy of the approximation, we simulate the economy

1,000 times over a 100-year horizon and regress the di↵usion, �, on both

(1 � !) bfAg and !(1 � !)g. We obtain a median regression R2 of 86%,

lending support to our approximation.

IX. Model-Implied Time-Series Momentum vs.

Dispersion: Rolling Window Approach

(Section IV.B.2)

An alternative approach to that described in Section IV.B.2 involves

computing time-series momentum at a one-month lag, �M (1)j , and running

the following regression over 36-month rolling windows:

ret+�

= ↵M (1)j + �M (1)jr
e
t + ✏t+�

, t 2 (j�, j�+ 36�),

where j = 0, . . . , N � 1 is the index of each 36-month rolling window and N

is the total number of windows. We then regress the t-statistics of �M (1)j

on the aggregate dispersion, AGj =
Pj�+36�

t=j� Gt, computed over each 36-
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month window:3

�M (1) t-statj = ↵+ �AGj + ✏j . (IA.54)

The coe�cient � measures the sensitivity of time-series momentum (at a

one-month lag) to a change in aggregate dispersion. It is computed using

1,000 simulations over a 100-year horizon.

The coe�cient � = 6, 636 is significant at the 1% confidence level, which

shows that momentum at a one-month lag increases with dispersion in our

model.

X. Empirical Time-Series Momentum vs.

Dispersion: Rolling Window Approach

(Section IV.B.2)

To provide empirical evidence of the positive relation between dispersion

and time-series momentum, we run the empirical equivalent to the regression

in (IA.54). Specifically, we measure the empirical sensitivity of one-month

time-series momentum to a change in dispersion, �emp, by substituting the

weighted dispersion G and the excess return re by their empirical counter-

parts Gemp ⌘ Disp ⇥ (1 � omega)2 ⇥ omega and reemp, the monthly excess

returns on the S&P 500, respectively.4

3Note that the results are qualitatively similar if we substitute the weighted dispersion
Gt ⌘

R t

t��

g

2

u(1� !u)
2

!udu by the regular dispersion Gt ⌘
R t

t��

g

2

udu.
4Note that the results are qualitatively similar if we substitute the weighted dispersion

Gemp ⌘ Disp⇥ (1� omega)2 ⇥ omega by the regular dispersion Gemp ⌘ Disp.
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Consistent with the predictions of the model, the coe�cient �emp = 0.796

is positive and significant at the 5% confidence level (std. error = 0.324).

That is, one-month time-series momentum increases with dispersion.

XI. Additional Figures

A. Robustness of the Main Result to Knife-Edge Cases (Section II.C)

The dynamics of disagreement are consistent, irrespective of the starting

point within each region defined in Table II, except in two knife-edge cases

around f̄ and in a close neighborhood of the recession state f l. To see this,

notice that in Section II.A we show that Agent B’s expectations are cen-

trifugal outward fm. Agent B’s expectations, however, cannot be strictly

centrifugal over the entire domain [f l, fh], as they would exit the domain

otherwise. Hence, in the neighborhood of the recession state, f l, and the

expansion state, fh, Agent B’s expectations become centripetal to reflect

the process inside the domain, as we illustrate in Figure IA.2 (Internet Ap-

pendix Section V). Figure IA.2 provides the numerical values of the points

at which Agent B’s expectations become centripetal. The main consequence

of these two centripetal areas is that opinions stop polarizing in bad times

when Agent B’s expectations are between �0.056 and f l = �0.0711, while

agents expectations polarize in good times when Agent B’s expectations are

between f̄ = 0.063 and 0.067.

To show that our main result is robust within these two intervals, we

repeat the analysis of Section III.B and in Figure IA.3 plot the response

of future state-price densities in the two knife-edge cases. Comparing the
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response that prevails in good times (the dash-dotted line in the left panel

of Figure 7) to the response that prevails in the knife-edge case in which

opinions polarize in good times (the dash-dotted line in Figure IA.3), we

observe that in both cases returns adjust immediately to the news (the two

responses have the same sign and shape). Similarly, comparing the response

that prevails in bad times (the dashed line in the left panel of Figure 7)

to the response that prevails in the knife-edge case in which opinions stop

polarizing in bad times (the dashed line in the left panel of Figure IA.3), we

observe that in both cases returns underreact and then revert.

The reason our results are insensitive to these two knife-edge cases is as

follows. While Agent A postulates constant uncertainty throughout the busi-

ness cycle, Agent B reassesses uncertainty in a way that varies greatly over

the business cycle, as the confidence interval depicted in Figure 4 demon-

strates. Specifically, the left panel shows that the variance of Agent B’s

filter is small in good times. As a result, while opinions polarize in good

times in the first knife-edge case, the polarization of beliefs is so small that

it does not generate a spike in disagreement. The right panel of Figure 4

instead shows that the variance of Agent B’s filter increases tremendously

in bad times. As a result, while opinions stop polarizing in bad times in the

second knife-edge case, the variance of Agent B’s filter is so large that her

expectations almost instantly exit the knife-edge region. Hence, the shape

of the impulse response remains una↵ected in both cases.
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Figure IA.3. Model-implied impulse response of excess returns to
a news shock in the two knife-edge cases. The top knife-edge region
is such that bfA = bfB = 6.5%, whereas the bottom knife-edge region is such
that bfA = bfB = �6.4%.

B. Model-Implied Coe�cient Values of Time-Series Momentum (Sec-

tion III.C)

Figure IA.4 depicts the time-series momentum coe�cient ⇢(h) for lags h

ranging from one month to three years. Each panel corresponds to a di↵erent

state of the economy. The t-statistics are provided in Section III.C.

C. Model-Implied Unconditional Time-Series Momentum Pattern

Our analysis of time-series momentum in Section III.C is conditional

on the state of the economy (good, normal, and bad times). Since excess

returns are negatively serially correlated at short horizons in good times,

the unconditional pattern of serial correlation may be inconsistent with

Moskowitz, Ooi, and Pedersen (2012). However, the left panel of Figure

IA.5, which plots the unconditional pattern of time-series momentum in our
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Figure IA.4. Model-implied conditional time-series momentum.
This figure plots the time-series momentum coe�cient ⇢(h) for lags h rang-
ing from one month to three years. Each panel corresponds to a di↵erent
state of the economy. The values reported above are obtained from 10,000
simulations of the economy over a 20-year horizon.

0 10 20 30 40

0

2

4

Lag h (Months)

⇢
(h
)
t-
st
at

Figure IA.5. Model-implied unconditional time-series momentum.
This figure plots the t-statistics of the coe�cient ⇢(h) for lags h ranging from
one month to three years. Standard errors are adjusted using Newey and
West (1987). The values reported above are obtained from 1,000 simulations
of the economy over a 100-year horizon.

model (computed over a 100-year horizon), shows that this is not the case.

Specifically, it shows that there is time-series momentum up to an 18-month

horizon followed by long-term reversal for larger horizons, consistent with

the empirical findings of Moskowitz, Ooi, and Pedersen (2012).
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Figure IA.6. Empirical dispersion and model-implied dispersion.
This figure plots the (standardized) analysts’ forecast dispersion in the dash-
dotted line and the (standardized) model-implied dispersion estimated in
Section II in the solid line. Data are at a monthly frequency from 02/1976
to 11/2013.

D. Empirical Dispersion vs. Model-Implied Dispersion (Section IV)

Figure IA.6 plots the standardized analysts’ forecast dispersion in the

dash-dotted line and the standardized model-implied dispersion estimated in

Section II in the solid line. Standardization is performed in order to get both

time series on the same scale. The figure provides evidence that both time

series are positively correlated. Indeed, the correlation coe�cient between

the two series is equal to 0.2539 and is significant at the 1% confidence level.
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E. Empirical Pattern of Time-Series Momentum in Periods of Low

Dispersion (Section IV.B.2)

To verify that we observe, as predicted by the model, short-term time-

series reversal in low dispersion periods, we run the regression

ret+�,emp = ↵(p) + �
1

(p)ret,emp + �
2

(p)retZt,Gemp(p) + ✏t+�

,

where � = one month, reemp denotes monthly excess returns on the S&P

500, and Zt,Gemp(p) is a dummy variable that takes the value of one when

the monthly weighted dispersion, Gemp ⌘ Disp⇥ (1� omega)2 ⇥ omega, is

smaller than its pth percentile. The coe�cient �
2

(p) measures excess time-

series momentum in low dispersion period, whereas the sum �
1

(p) + �
2

(p)

measures one-month time-series momentum in low dispersion periods. Fig-

ure IA.7 shows that the data lend support to the prediction of the model.

Indeed, we observe 1-month time series reversal during low dispersion peri-

ods, particularly when the dispersion threshold is the 30th percentile.

F. Empirical Persistence of Time-Series Momentum

To verify that we observe, as predicted by the model, persistent time-

series momentum in both expansions and recessions, we run the regression

ret+h�,emp = ↵(h) + �
1

(h)ret,emp + �
2

(h)ret,empXt + ✏t+h�,

where � = one month, reemp denotes monthly excess returns on the S&P

500, and X is a dummy variable that takes the value of one in NBER reces-
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Figure IA.7. Empirical time-series momentum in low disagree-
ment periods. This figure plots the t-statistics of one-month time-series
momentum �

1

(p) + �
2

(p) when weighted dispersion is smaller than its pth

percentile. Standard errors are adjusted using Newey andWest (1987). Data
are at a monthly frequency from 02/1976 to 11/2013.

sions. The first coe�cient, �
1

(h), captures time-series momentum in NBER

expansions (what we refer to as normal and good times in our model), which

we plot in the right panel of Figure IA.8. Second, the sum of the coe�cients,

�
1

(h) + �
2

(h), captures time-series momentum in NBER recessions (what

we refer to as bad times in our model). Both panels show that on average

there is time-series momentum up to the 12-month lag, followed by reversal

over subsequent horizons.

G. Additional theoretical prediction: U-shaped relation between time

series momentum and excess returns

In our model, excess returns become extreme only in bad times, when

time-series momentum is strongest. As a result, our model delivers strongest

time series momentum in extreme markets, consistent with Moskowitz, Ooi,

and Pedersen (2012). More generally, the U-shaped relation between time-
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Figure IA.8. Empirical time-series momentum in NBER reces-
sions and expansions. The left and right panels plot the t-statistics of
the coe�cient �

1

(h)+�
2

(h) and �
1

(h), respectively, for lags h ranging from
one month to three years. Standard errors are adjusted using Newey and
West (1987). Data are at a monthly frequency from 01/1871 to 11/2013.

series momentum and excess returns in Moskowitz, Ooi, and Pedersen (2012)

is not related to the sign of market returns, but rather to the volatility of

market returns: the authors regress the returns on time-series momentum

against market returns and squared market returns and show that, while

the relation between time-series momentum and market returns is not sig-

nificant, the relation between time-series momentum and squared market

returns is significantly positive. Hence, time-series momentum is particu-

larly strong during turbulent times (i.e., periods of high volatility).

To demonstrate that our model is consistent with this finding, we run

the regression

rTM
t+�

= ↵+ �
1

�̄t + �
2

�̄2t + ✏t+�

,

where � = one month, �̄t =
R t
t��

�udu is the monthly di↵usion of stock
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Figure IA.9. Model-implied time-series momentum in extreme
markets. This figure plots the relation between time-series momentum
returns and the stock return di↵usion in our model. The relation is obtained
from 1,000 simulations of the economy over a 100-year horizon.

returns, and rTM
t+�

= sign (ret ) r
e
t+�

is the return on time-series momentum,

as defined in Moskowitz, Ooi, and Pedersen (2012). If the sign of excess

returns, and hence the sign of the di↵usion, does not matter, then the first

coe�cient, �
1

, should be insignificant. If its magnitude matters, however,

the second coe�cient, �
2

, should be significantly positive. The t-statistics of

the intercept, linear coe�cient, �
1

, and quadratic coe�cient, �
2

, are 0.6693,

�0.7672, and 1.7402, respectively. Consistent with Moskowitz, Ooi, and

Pedersen (2012), only the quadratic coe�cient is significant (at the 10%

confidence level). As a result, we obtain a U-shaped relation between time-

series momentum and the di↵usion of stock returns, as illustrated in Figure

IA.9. This confirms the intuition that the returns on time-series momentum

are high during extreme markets.
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