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ABSTRACT

We build an equilibrium model to explain why stock return predictability

concentrates in bad times. The key feature is that investors use di↵erent

forecasting models, and hence assess uncertainty di↵erently. As economic

conditions deteriorate, uncertainty rises and investors’ opinions polarize.

Disagreement thus spikes in bad times, causing returns to react to past news.

This phenomenon creates a positive relation between disagreement and fu-

ture returns. It also generates time-series momentum, which strengthens

in bad times, increases with disagreement, and crashes after sharp market

rebounds. We provide empirical support for these new predictions.
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From the perspective of the e�cient market hypothesis, one of the most

important paradigms in finance, evidence of stock return predictability is

a puzzle. Leading theories explain how investors may form beliefs that

lead to deviations from e�ciency, focusing on unconditional patterns in

stock returns.1 However, mounting evidence shows that return predictability

fluctuates over the business cycle, with various forms of return predictability

stronger in bad times.2 Garcia (2013), for instance, shows that news content

(Tetlock (2007)) better predicts future returns in recessions. This evidence

suggests that a theory of predictability must also explain how fluctuations

in investors’ beliefs lead observable predictable patterns to concentrate in

bad times. Our objective is to provide a simple learning mechanism that

gives rise to this concentration.

The main idea of the paper is that agents forecast fundamentals using

di↵erent models. Some agents see the state of the economy as continu-

ously evolving—shades of grey—throughout good and bad times, while other

agents view the economy in discrete terms—black and white—with good and

bad times alternating over the business cycle. These two views have been

adopted as canonical frameworks of economic forecasting. The first mod-

eling approach assumes that economic variables are continuously (linearly)

1Hong and Stein (1999) explain price underreaction, Daniel, Hirshleifer, and Sub-
rahmanyam (1998) explain price overreaction, and Barberis, Shleifer, and Vishny (1998)
provide conditions that may enforce both. Our goal is to develop a theory in which these
phenomena alternate over the business cycle.

2Rapach, Strauss, and Zhou (2010), Henkel, Martin, and Nardari (2011), Dangl and
Halling (2012), and Piatti and Trojani (2015) find that macro variables, such as the price-
dividend ratio, have better predictive power in recessions. Similarly, Cen, Wei, and Yang
(2017) and Loh and Stulz (2014) find that return predictability using investor disagree-
ment, as proxied by the dispersion in analysts’ forecasts (Diether, Malloy, and Scherbina
(2002)), concentrates in recessions. We provide evidence that current excess returns and
disagreement better predict aggregate future excess returns in recessions (Section IV).
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related to their lagged values (Sims (1980)). Active fund managers who

build forecasting models typically use this continuous-state, autoregressive

specification.3 The alternative approach assumes that economic series shift

discretely (nonlinearly) across di↵erent regimes of the economy (Hamilton

(1989)). Federal Reserve banks widely use this discrete-state specification

to forecast business cycle turning points.4

This simple di↵erence in the way agents learn about the state of the econ-

omy can explain a rich set of facts about stock returns. Specifically, there

exists a positive relation between agents’ disagreement and future returns.

More importantly, this relation becomes stronger as economic conditions

deteriorate and gives rise to positive serial correlation in returns at short

horizons, a phenomenon known as “time-series momentum” (Moskowitz,

Ooi, and Pedersen (2012)). This phenomenon strengthens in bad times, in-

creases with disagreement, crashes after sharp market rebounds, and reverts

over longer horizons. Overall, both disagreement and lagged returns predict

future returns, and their predictive power is stronger in bad times.

The model mechanism operates as follows. All agents use the same flow

of news to estimate the state of the economy, which some view as discrete

and others as continuous. As a result, agents assess uncertainty di↵erently.

Those that employ a continuous-state model need not revise the uncertainty

of their estimates, whereas the others must continuously reassess the uncer-

tainty of each discrete state after they observe new information. It follows

3See, for instance, Grinold and Kahn (1999), chapter 10 or Stewart, Piros, and Heisler
(2010), chapter 5.

4See, for instance, https://fred.stlouisfed.org/series/RECPROUSM156N and
https://fred.stlouisfed.org/series/JHGDPBRINDX.
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that agents interpret same news di↵erently depending on economic condi-

tions. Agents who revise their assessment of uncertainty conclude that it

is countercyclical (Veronesi (1999)) and thus give little weight to news in

bad times. After a long streak of bad news, good news is never “good

enough” for these agents to abandon their pessimistic views. Because other

agents always interpret good news favorably, opinions polarize in bad times

and disagreement spikes. Variation in disagreement commands a risk pre-

mium. Since disagreement spikes are persistent, they create positive serial

correlation in returns at short horizons. That disagreement spikes are coun-

tercyclical makes this phenomenon stronger in bad times.

We analyze this mechanism in a dynamic general equilibrium model pop-

ulated with two agents, A and B. Agents trade a stock and a riskless bond

and consume the dividends that the stock pays out. They do not observe

the expected growth rate of dividends, which we call the fundamental, and

use di↵erent models for the empirical process that governs it. In particular,

Agent A uses a continuous-state model in which the fundamental oscillates

throughout good and bad times, while Agent B uses a discrete-state model

in which the fundamental alternates between a high state and a low state.

Unlike Agent A, Agent B must continuously reassess uncertainty as infor-

mation flows from dividends.

Because agents assess uncertainty di↵erently, they revise their expecta-

tions at di↵erent speeds and in di↵erent directions depending on the state

of the economy.5 In particular, agents’ disagreement spikes when the di↵er-

5Chalkley and Lee (1998), Veldkamp (2005), and Van Nieuwerburgh and Veldkamp
(2006) obtain similar learning asymmetries. In their setup, however, the information flow
fluctuates with economic conditions.
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ence in their assessment of uncertainty is large. Estimating the parameters

of the model, we find that dividend volatility is low, so that Agent A faces

low uncertainty, while the distance between the high and low states of Agent

B’s model is large, so that she faces high overall uncertainty. In this con-

text, Agent A always interprets good news favorably, but Agent B may or

may not do so. Good news in good states causes Agent B to over-react,

revising her expectations upwards significantly faster than Agent A. In con-

trast, good news in bad states is never good enough to convince Agent B

that economic conditions are improving. Both the di↵erence in adjustment

speeds in good states and the polarization of beliefs in bad states generate

disagreement spikes.

That Agent B faces countercyclical uncertainty causes disagreement

spikes to be countercyclical. Since good states are empirically more per-

sistent than bad states, the high and low states of Agent B’s model are,

respectively, close to and far from the mean of Agent A’s model. This

asymmetry accentuates the polarization of beliefs in bad states and damp-

ens the di↵erence in adjustment speeds in good states. In good times both

agents face low uncertainty, they adjust their beliefs similarly, and disagree-

ment exhibits little variation. In normal times uncertainty rises and agents’

expectations adjust at di↵erent speeds, which exacerbates disagreement. In

bad times agents’ opinions polarize and disagreement spikes.

In our model countercyclical spikes in disagreement lead return pre-

dictability to concentrate in bad times. Because variation in disagreement—

positive or negative—commands a risk premium, contemporaneous returns

decrease with the square of disagreement. The sign of disagreement de-
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termines only the direction in which returns move in the future. News

in bad times polarizes opinions—Agent B underreacts relative to Agent

A—inducing future returns to move opposite to news and to persistently

underreact. News in normal times precipitates a revision in Agent B’s

expectations—she overreacts relative to Agent A—causing future returns

to persistently overreact. In good times beliefs move together and returns

adjust immediately. Since disagreement spikes raise the risk premium persis-

tently, both under- and overreaction create time series momentum. That dis-

agreement spikes are countercyclical makes time-series momentum stronger

in bad times.

The model can explain several features associated with time-series mo-

mentum. Excess returns exhibit momentum over a one-year horizon and

then revert over subsequent horizons. This later phase of reversal arises

through the long-run behavior of agents’ consumption shares, which adjust

to gradually dampen the e↵ect of short-term disagreement spikes. Moreover,

the serial correlation of returns has a hump-shaped term structure: momen-

tum is strong at short horizons and decays at intermediate horizons. By

contrast, in good times excess returns exhibit strong reversal at short hori-

zons. An important consequence of this reversal spike is that a time-series

momentum strategy may crash after sharp market rebounds.

We provide empirical support for three predictions of the model. We

construct an empirical proxy for the square of disagreement using the disper-

sion in analysts’ forecasts. Based on this proxy, the model predicts that (1)

future excess returns are positively related to dispersion, and time-series mo-

mentum at short horizons (2) increases with dispersion and (3) is therefore
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strongest in bad times. We test these predictions and find that dispersion

positively predicts future excess returns on the S&P 500 and that time-

series momentum increases significantly with dispersion at short horizons.

We show that, over the last century, time-series momentum at a one-month

lag is significantly stronger during NBER recessions.

This paper contributes to the vast literature on heterogeneous beliefs.

While we borrow the methodologies of David (2008) and Dumas, Kurshev,

and Uppal (2009), we introduce a new form of disagreement. In this paper

investors disagree because they use di↵erent forecasting models, namely,

an Ornstein-Uhlenbeck process (Agent A) and a two-state Markov chain

(Agent B).6 The resulting dynamics of disagreement exhibits countercycli-

cal spikes, a pattern that does not arise when both agents use one of the

two models with di↵erent but economically plausible parameters. When

both agents use Agent A’s model (e.g., Buraschi and Whelan (2013), Ehling

et al. (2017), Buraschi, Trojani, and Vedolin (2014)), their assessment of

uncertainty does not vary, which precludes spikes in disagreement and thus

momentum. When both agents use Agent B’s model (David (2008)), there

exists combinations of parameters that give rise to counter-cyclical disagree-

ment spikes, as in our model, but the parameter values estimated in David

(2008) imply that disagreement never spikes and returns do not exhibit

momentum. Intuitively, fitting the same model to the same data cannot

6Agent A’s model is based on Detemple (1986, 1991), Brennan and Xia (2001),
Scheinkman and Xiong (2003), and Dumas, Kurshev, and Uppal (2009), while Agent B’s
model is based on David (1997, 2008) and Veronesi (1999, 2000). The disagreement pat-
tern varies depending on whether investors are overconfident (e.g., Scheinkman and Xiong
(2003)), whether they have di↵erent initial priors (e.g., Detemple and Murthy (1994)), or
whether they have dogmatic beliefs (e.g., Kogan et al. (2006)). See Xiong (2014) for a
literature review.
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produce su�cient heterogeneity in parameters across agents, and thus su�-

ciently di↵erent assessments of uncertainty, to generate momentum.

This paper is also related to the literature that studies the link be-

tween heterogeneous beliefs and momentum.7 Banerjee, Kaniel, and Kremer

(2009) show that heterogeneous beliefs generate price drift in the presence

of higher-order di↵erences in opinions. In contrast, we obtain momentum

even when heterogeneous prior beliefs are commonly known. Ottaviani and

Sorensen (2015) also obtain short-term momentum and long-term reversal

through the combination of heterogeneous beliefs and wealth e↵ects. Both

in this paper and theirs, prices underreact because someone—Agent B in

this paper and the marginal trader in theirs—reacts opposite to news. How-

ever, the mechanism in Ottaviani and Sorensen (2015) does not explain why

this e↵ect concentrates in bad times, which is the main focus of our paper.

The remainder of the paper is organized as follows. Section I presents and

solves the model. Section II calibrates the model to the U.S. business cycle.

Section III contains theoretical results on return predictability, while Section

IV tests the predictions of the model. Section V concludes. Computational

details are relegated to the Internet Appendix. (The Internet Appendix is

available with the online version of the article on the Journal of Finance

website.)

7Other theories of momentum include Berk, Green, and Naik (1999), Holden and
Subrahmanyam (2002), Johnson (2002), Sagi and Seasholes (2007), Makarov and Rytchkov
(2012), Vayanos and Woolley (2013), Biais, Bossaerts, and Spatt (2010), Cespa and Vives
(2012), Albuquerque and Miao (2014), and Andrei and Cujean (2017).
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I. The Model

We develop a dynamic general equilibrium in which investors use di↵er-

ent models to estimate the business cycle. In this section, we describe the

economy, we solve investors’ learning and optimization problems, and we

characterize the equilibrium stock price.

A. The Economy and Models of the Business Cycle

We consider an economy with an aggregate dividend that flows contin-

uously over time. The market consists of two securities, a risky asset—the

stock—in positive supply of one unit and a riskless asset—the bond—in zero

net supply. The stock is a claim to the dividend process, �, that satisfies

d�t = �tftdt+ �t��dW
�
t , (1)

where W � is a standard Brownian motion under the objective probability

measure, which governs the empirical realizations of dividends. The ex-

pected dividend growth rate f—henceforth the fundamental—is unobserv-

able and follows the Ornstein-Uhlenbeck process

dft = 
�

f � ft
�

dt+ �fdW
f
t , (2)

where W f is an independent standard Brownian motion under the objective

probability measure. We assume that the system of equations in (1) and

(2) represents the true data-generating process, an assumption we clarify in

Section II.B.
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The economy is populated by two agents, A and B, who consume the

dividend and trade in the market. Agents understand that the fundamental

a↵ects the dividend they consume and the price of the assets they trade.

Since the fundamental is unobservable, agents need to estimate it using the

empirical realizations of dividends, the only source of information available.

This information is meaningless, however, without a proper understanding

of the data-generating process that governs dividends. Agents thus need to

have a model in mind.

Agent A has the correct model in mind and understands that the system

of processes in (1) and (2) generates the data she observes. In particular,

she believes that the fundamental f evolves continuously over the business

cycle according to (2), reverting to a long-term mean f at speed  with

constant uncertainty �f . In that respect, Agent A’s beliefs define the beliefs

of an outside observer—the econometrician—who understands the true data-

generating process (e.g., Xiong and Yan (2010)).

Agent B believes that the fundamental follows a two-state continuous-

time Markov chain and therefore uses the model

d�t = fB
t �tdt+ ���tdW

B
t

fB
t 2 {fh, f l} with generator matrix ⇤ =

0

B

@

�� �

 � 

1

C

A

, (3)

where WB is a Brownian motion under B’s probability measure, which re-

flects her views about the data-generating process. Under Agent B’s model,

the fundamental fB is either high fh or low f l. The economy moves from
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the high state to the low state with intensity � > 0 and from the low state

to the high state with intensity  > 0.

The financial economics literature has focused, largely, on the two types

of model presented in equations (2) and (3) to forecast the growth rate of

dividends. Agent A’s model serves as a canonical model of dividend growth

in the literature on heterogeneous beliefs (e.g., Scheinkman and Xiong (2003)

and Dumas, Kurshev, and Uppal (2009)). The perspective of Agent B is

based on the work of David (1997) and Veronesi (1999) and is closer to

models used in the economics literature to forecast business cycle turning

points.8 Importantly, these models have always been considered separately.

When considered jointly, these models lead to countercyclical spikes in dis-

agreement among agents, the key feature of our framework.

B. Bayesian Learning and Disagreement

Agents learn about the fundamental by observing realizations of the

dividend growth rate and, given the model they have in mind, they update

their expectations accordingly. In doing so, they come up with an estimate

of the fundamental, which we call the filter. We present the dynamics of the

filters of Agents A and B in Proposition 1 below.

PROPOSITION 1: aaa

1. The filter of Agent A, bfA
t = EPA

t

⇥

fA
t

⇤

, evolves according to

d bfA
t = 

⇣

f � bfA
t

⌘

dt+
�

��
dcWA

t , (4)

8See Hamilton (1994) and Milas, Rothman, and van Dijk (2006) for further details.
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where � =

r

�2�

⇣

�2�
2 + �2f

⌘

� �2� denotes Agent A’s steady-state

posterior variance and cWA is a Brownian motion under Agent A’s

probability measure PA,

dcWA
t = 1/��

⇣

d�t/�t � bfA
t dt

⌘

. (5)

2. The filter of Agent B, bfB
t = EPB

t

⇥

fB
t

⇤

, evolves according to

d bfB
t = (�+  )

⇣

f1 � bfB
t

⌘

dt+ v( bfB
t )dcWB

t , (6)

where f1 = limt!1 E
⇥

fB
t

⇤

= f l +  
�+ 

�

fh � f l
�

denotes the uncon-

ditional mean of the filter, v( bfB) = 1

��

⇣

bfB � f l
⌘⇣

fh � bfB
⌘

defines

Agent B’s posterior variance, and cWB is a Brownian motion under

Agent B’s probability measure PB,

dcWB
t = 1/��

⇣

d�t/�t � bfB
t dt

⌘

. (7)

Proof : See Internet Appendix Section I for Part 1 and Lipster and Shiryaev

(2001) for Part 2. ⌅

The two filters in equations (4) and (6) di↵er in terms of uncertainty.

While Agent A’s uncertainty �/�� does not fluctuate, Agent B’s uncertainty

v(·) does, reflecting her need to continuously reassess the likelihood of each

state using dividends that themselves flow continuously. We analyze how

this di↵erence a↵ects agents’ disagreement in Section II.
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Throughout the analysis we derive our results under the beliefs of Agent

A—equivalently, those of the econometrician—which reflect the true data-

generating process. We thus convert Agent B’s views into those of Agent A

through the following change of measure:

dPB

dPA

�

�

�

�

Ft

⌘ ⌘t = exp



�1

2

Z t

0

g2u
�2�

du�
Z t

0

gu
��

dcWA
u

�

, (8)

where g ⌘ bfA � bfB represents agents’ disagreement about the estimated

fundamental. The change of measure in equation (8) implies that Agents

A and B have equivalent perceptions of the world, a result we establish in

Proposition 2.

PROPOSITION 2: The probability measures PA and PB restricted to the

filtration Ft = � (�u : u  t) are equivalent for all t 2 R
+

. In particular, at

any time t 2 R
+

and for any threshold c 2 R, the cumulative distribution

function of disagreement is bounded by

Pj (|gt| � c)  2
X

i=1,2

�

0

B

B

@

(�1)ig
0

+ m

�
j

⇣

e�
j
t � 1

⌘

� c
r

�2

2�
j

⇣

e2�
j
t � 1

⌘

1

C

C

A

, j = A,B (9)
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where � denotes the normal cdf and the constants �
A
, �

B
, m, and � satisfy

�j = + 1j=A

✓

fh � f l

2��

◆

2

+ 1j=B
�

�2�
, j = A,B

m = max
n

|f � (�+  )f1 + (�+  � )f l|, |f � (�+  )f1 + (�+  � )fh|
o

� = max

⇢

�,

�

�

�

�

� � 1

4

⇣

fh � f l
⌘

2

�

�

�

�

�

.

It follows that the change of measure ⌘ in (8) is a true martingale, which

from Girsanov’s theorem implies that the Brownian motions cWA and cWB

satisfy the relation

dcWB
t = dcWA

t +
gt
��

dt.

Proof : See Internet Appendix Section II. ⌅

Proposition 2 ensures that we can translate the perception of Agent B

into that of Agent A. The economic relevance of this result is that, observing

any finite history of data, Agent B cannot falsify her own model—if agents

could sell a claim contingent on which model is correct, this claim would

never pay o↵ (except at an infinite horizon). This result relies critically

on the dynamics of disagreement, which quantify the deviation between

Agent B’s beliefs and those implied by the true data-generating process.

The bound in (9) ensures that, at any finite horizon, this deviation is never

large enough for Agent B’s model to become statistically inconsistent with

the true data-generating process. That is, the distribution of disagreement
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never has a mass accumulating in the far tails. It follows that the process ⌘

remains strictly positive at any finite horizon (i.e., ⌘ is a true martingale).

A direct implication of this result is that both agents survive at any finite

time.

Over an infinite horizon, however, Agent B falsifies her model and van-

ishes asymptotically (see Dumas, Kurshev, and Uppal (2009) for a similar

result). Since empiricists observe a century’s worth of data at most, a rele-

vant question is how long would it take for an empiricist to confidently reject

Agent B’s model. We elaborate on this question in Section II.B.

C. Equilibrium

Agents choose their portfolios and consumption plans to maximize their

expected lifetime utility of consumption. They have power utility preferences

defined by

U (c, t) ⌘ e�⇢t
c1�↵

1� ↵
,

where ↵ > 0 is the coe�cient of relative risk aversion and ⇢ > 0 the subjec-

tive discount rate.

Since markets are complete, we solve the consumption and portfolio

choice problem of both agents using the standard martingale approach (Cox

and Huang (1989)). We present the equilibrium risk-free rate, rf , and the

market price of risk perceived by Agent A, ✓, in Proposition 3 below.

PROPOSITION 3: The market price of risk under the viewpoint of Agent

14



A, ✓, and the risk-free rate, rf , satisfy

✓t = ↵�� +
(1� !t)

��
gt (10)

rft = ⇢+ ↵ bfA
t � 1

2
↵(↵+ 1)�2� + (1� !t) gt

✓

1

2

↵� 1

↵�2�
!tgt � ↵

◆

, (11)

where

!t =
(1/�A)

1/↵

(1/�A)
1/↵ + (⌘t/�B)

1/↵
(12)

denotes the consumption share of Agent A and where �A and �B are the

Lagrange multipliers associated with the budget constraints of Agents A and

B, respectively.

Proof : See Internet Appendix Section III. ⌅

We focus our discussion on the market price of risk in equation (10),

which is a key determinant of return predictability. The risk-free rate in

equation (11) is discussed in detail in David (2008) and Buraschi and Whelan

(2013). The market price of risk is the product of the di↵usion of Agent A’s

consumption growth,

s

1

dt
varP

A

t

✓

dcAt

cAt

◆

= �� +
1� !t

↵��
gt, (13)

and her coe�cient of risk aversion, ↵. Agent A wants to be compensated

for holding assets that co-vary positively with her consumption growth and

is willing to pay a premium for holding assets that co-vary negatively with

her consumption growth. In particular, her consumption varies either when
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dividends fluctuate or when her consumption share fluctuates. Hence, the

market price of risk is proportional to the di↵usion of dividend growth and

the di↵usion of the growth of her consumption share. The market price of

risk then scales with risk aversion, reflecting that the more risk-averse Agent

A is, the more she wants to hedge.

The consumption share of Agent B, 1 � !, determines the extent to

which disagreement a↵ects the market price of risk. Suppose disagreement

is positive today (Agent B is pessimistic). A positive dividend shock tomor-

row then indicates that Agent B’s beliefs were inaccurate—the likelihood of

Agent B’s model relative to the true data-generating process, ⌘, decreases

and the consumption share of Agent A increases through (12). In this case,

Agent A wants to be rewarded for holding assets that co-vary positively

with the dividend shock and thus with her consumption share. Moreover,

as the consumption share of Agent B decreases, the risk of Agent A’s con-

sumption share growth decreases: were Agent A the only agent populating

the economy, disagreement would become irrelevant and Agent A would be

compensated for holding assets that are positively correlated with dividend

growth only. This mechanism applies symmetrically when disagreement is

negative.

In Proposition 4 we conclude the equilibrium description by providing the

equilibrium stock price S, the derivation of which follows the methodology

in Dumas, Kurshev, and Uppal (2009).

PROPOSITION 4: Assuming that the coe�cient of relative risk aversion ↵
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is an integer, there exists an equilibrium in which the stock price satisfies

St

�t
= !↵t

St

�t

�

�

�

�

O.U.

+ (1� !t)
↵St

�t

�

�

�

�

M.C.

+ !↵t

↵�1

X

j=1

0

B

@

↵

j

1

C

A

✓

1� !t

!t

◆j

F j
⇣

bfA
t , gt

⌘

,

(14)

where S
�

�

�

O.U.
and S

�

�

�

M.C.
denote the prices that prevail in a representative-

agent economy populated by Agents A and B, respectively. The functions

F j
⇣

bfA, g
⌘

represent price adjustment for disagreement. Under the calibra-

tion of Section II.B, this equilibrium is unique.

Proof : See Proposition 3 in David (2008) for existence and Internet Ap-

pendix Section IV. XXXXXXXXXXXXXXXXXXX ⌅

The price in equation (14) has three terms. When agents have logarith-

mic utilities (↵ = 1), only the first two terms are relevant and the price is

just an average of the prices that obtain in representative-agent economies

populated by Agents A and B. When agents are more risk-averse than a

logarithmic agent (↵ > 1), the third term becomes relevant. It describes the

joint e↵ect of fundamental and disagreement on the price.

II. Dynamics of Disagreement and Calibration

In this section, we analyze the dynamics of disagreement that arise when

one agent uses a discrete-state model and the other a continuous-state model.

In Section II.A, we provide restrictions on model parameters under which

this di↵erence in models creates countercyclical spikes in disagreement, the
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key feature driving our results. We then calibrate both models and let the

data decide whether these parameter restrictions are satisfied (Section II.B).

We illustrate the resulting pattern of disagreement in Section II.C: agents’

expectations polarize in bad times, adjust at di↵erent speeds in normal

times, and move together in good times, leading to countercyclical spikes in

disagreement.

A. A Mechanism for Countercyclical Spikes in Disagreement

In our framework, agents use di↵erent models and thus learn di↵er-

ently, as apparent from equations (4) and (6). First, Agent B’s discrete-

state model implies state-dependent uncertainty v( bfB), whereas Agent A’s

continuous-state model implies constant uncertainty �/��. We show that

this di↵erence in agents’ assessment of uncertainty causes Agent B’s views

to become self-reinforcing (centrifugal) under the true probability measure

PA, a mechanism that can lead disagreement among agents to spike. Sec-

ond, agents’ views evolve at di↵erent speeds (�+ and ) and have di↵erent

long-term means (f1 and f). This di↵erence in persistence and long-term

mean has an asymmetric e↵ect on disagreement, which can lead disagree-

ment spikes to concentrate in bad states of the economy.

To guide the analysis, we introduce the concepts of “adjustment speed”

and “polarization of beliefs,” which we provide in Definition 1.

DEFINITION 1: The speed at which Agent i updates her expectations con-

ditional on the initial value of her filter, ⌃i
t, is the rate of change of her
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average filter, EPA

0

[ bf i
t | bf i

0

= x
0

], over time

⌃i
t :=

d

dt
EPA

0

[ bf i
t | bf i

0

= x
0

], i = A,B.

Furthermore, a polarization of beliefs occurs at time t when sign(⌃A
t ) 6=

sign(⌃B
t ).

The change of measure of Proposition 2 modifies the speed at which

Agent B learns. Expressing Agent B’s expectations under the true measure

PA introduces a nonlinear term in Agent B’s adjustment speed through the

state-dependent uncertainty v( bfB) of her filter:

⌃B
t = EPA

0



(�+  )
⇣

f1 � bfB
t

⌘

+
1

��

⇣

bfA
t � bfB

t

⌘

v( bfB
t )

| {z }

change of measure

�

. (15)

To understand how the change of measure a↵ects the speed at which

Agent B learns, we make two simplifying assumptions, which are consistent

with our calibration in Section II.B.

ASSUMPTION 1: Agent B’s model has symmetric states fh = �f l ⌘ f?

around zero.

ASSUMPTION 2: The volatility of dividends �� is such that terms of order

o(�4� ) are negligible.

We next then perform a second-order approximation of the change of

measure in (15) and denote by e⌃B
t the resulting adjustment speed for Agent

B, which we present in Proposition 5.
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PROPOSITION 5: Under Assumptions 1 and 2, the second-order approxi-

mation of Agent B’s adjustment speed in a neighborhood of t ⇡ 0 satisfies

e⌃B
t = (1� ⇡(x

0

, t))

⌘ ⌃

B
t under PB

z }| {

(�+  )(f1 � x
0

)+⇡(x
0

, t)

⌘⌃

A
t

z }| {

(f � x
0

)
| {z }

weighted adjustment speed

+ 2
⇡(x

0

, t)2

t
x
0

,
| {z }

centrifugal e↵ect ⌘C(x
0

)

(16)

where ⇡(x
0

, t) = v(x
0

)t/��.

Proof : See Internet Appendix Section V. ⌅

The nonlinear change of measure in (15) has two e↵ects on Agent B’s

adjustment speed. First, it adjusts the dynamics of Agent B’s expectations

to make them consistent with the correct expectations—those of Agent A.

Specifically, the first term in (16) is a weighted average of agents’ adjustment

speeds under their respective probability. Agent B’s uncertainty drives the

weight ⇡(x
0

, t), which reaches its maximum, ⇡(fm, t) = (f?/��)2t, when

Agent B’s filter is equal to

fm =
1

2
f l +

1

2
fh(⌘ 0 under Assumption 1),

the point at which Agent B is most uncertain about the state of the economy.

For ease of interpretation, assume that t = (��/f?)2 so that ⇡(x0, (��/f?)2) 2

[0, 1] in all states. It follows that the first term in equation (16) causes agents’

disagreement to increase when Agent B is confident that the economy is in

a bad or a good state.

Second, the change of measure causes Agent B’s expectations to become
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Figure 1. Centrifugal e↵ect on the speed at which Agent B learns.
This figure illustrates the centrifugal e↵ect on Agent B’s adjustment speed
(see Proposition 5) as a function of the initial value of Agent B’s filter.

self-reinforcing (centrifugal) outward, fm, through the second term, C(x
0

),

in equation (16). To illustrate this e↵ect, in Figure 1 we plot this term as

a function of the initial value of Agent B’s filter. As Agent B’s expecta-

tions rise above fm, they increase at an accelerated rate, which generates

a di↵erence in adjustment speeds across the two agents in good states. As

Agent B’s expectations drop below fm, they decrease at a faster rate, which

creates a polarization of beliefs across the two agents in bad states. In other

words, good news in good states causes Agent B to revise her expectations

upwards sharply. In contrast, good news in bad states always corroborates

Agent A’s view that the economy is recovering, but is never “good enough”

to convince Agent B that economic conditions are improving.

By amplifying disagreement in good and bad states, the centrifugal e↵ect

can produce spikes in short-term disagreement. Specifically, the maximum
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magnitude of this e↵ect is

max
x
0

2[�f?,f?
]

|C(x
0

)| = 8

53/2
f?

��
v(f?/

p
5), around time t ⇡

✓

��
f?

◆

2

.

It follows that the larger the ratio of the distance between Agent B’s states

to the volatility of dividends, the larger and sharper the changes in dis-

agreement. For instance, a ratio of f?/�� ⌘ 10 implies that disagreement

can change Agent B’s uncertainty, v, by up to sevenfold in a matter of

days (t ⇡ 0.01). The economic relevance of such sudden and large changes

in disagreement is that they can generate stock return momentum in our

model, a key result that we present in Section III. In that respect, we reserve

the terminology “disagreement spikes” to refer to changes in disagreement

that are su�ciently large and sharp to produce momentum. Since the ratio

f?/�� determines the magnitude of changes in disagreement, the existence

of disagreement spikes in the model places an implicit restriction on this

ratio.

CONDITION 1: Under Assumptions 1 and 2, a necessary condition for dis-

agreement spikes to arise in the model is that the ratio f?/�� be su�ciently

large.

Importantly, without state-dependent uncertainty, the centrifugal e↵ect

in equation (16) is absent. Consider, for instance, the specification un-

der which both agents use Agent A’s linear continuous-state model (e.g.,

Buraschi and Whelan (2013), Ehling et al. (2017), and Buraschi, Trojani,

and Vedolin (2014)). In this case the change of measure in equation (15)
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only has a linear e↵ect on Agent B’s adjustment speed, making it chal-

lenging to generate sharp increases in disagreement. A discrete-state model

instead implies state-dependent uncertainty, which could lead disagreement

to spike.

Since the centrifugal e↵ect acts symmetrically on the magnitude of dis-

agreement spikes across good and bad states, any asymmetry—procyclicality

or countercyclicality—must arise through the weighted average in equation

(16). Notice first that the speed at which disagreement increases is the

di↵erence between agents’ adjustment speeds, which satisfies

⌃A
t � e⌃B

t = (1� ⇡(x
0

, t))

0

B

@

(��  )f? + f
| {z }

asymmetric e↵ect

�(�  � �)x
0

1

C

A

� C(x
0

).

(17)

Given that the centrifugal e↵ect makes disagreement spikes positive in bad

states and negative in good states, a necessary condition for disagreement

spikes to be stronger in bad states is that the asymmetric e↵ect in equation

(17) be positive. When this e↵ect is positive, it accentuates the polarization

of beliefs in bad states and dampens the di↵erence in adjustment speeds in

good states. This condition for countercyclical spikes imposes a restriction

on the persistence of good states relative to bad states, which we provide in

Condition 2.

CONDITION 2: Under Assumptions 1 and 2, a necessary condition for

disagreement spikes to be countercyclical is that  � � <  f
f? .
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Conditions 1 and 2 jointly define parameter restrictions under which dis-

agreement exhibits countercyclical spikes in our framework. The mechanism

for disagreement spikes that we highlight is not unique to our framework—a

similar mechanism applies when both agents use Agent B’s model with dif-

ferent parameters (David (2008)). Under both model specifications, there

exists combinations of parameters that give rise to disagreement spikes and

countercyclicality. However, these e↵ects must arise through an economi-

cally plausible mechanism, not through an arbitrary choice of parameters.

We therefore let the data decide whether the parameter restrictions of Con-

ditions 1 and 2 are satisfied and whether these estimated e↵ects distinctly

identify our specification, a matter we investigate next.

B. Calibration and Model Fit to the U.S. Economy

In our model, agents use a single source of information—the time series

of dividends—to update their expectations. As a proxy for the dividend

stream, we use the S&P 500 dividend time series recorded at a monthly fre-

quency from January 1871 to November 2013, which we obtain from Robert

Shiller’s website. Looking back to the 19th century allows us to cover a

large number of business cycle turning points, but obviously adds strong

seasonality e↵ects (Bollerslev and Hodrick (1992)). To reduce these e↵ects,

we apply the filter developed by Hodrick and Prescott (1997) to the time

series of dividends.

We assume that both agents observe the S&P 500 dividend time series

after seasonalities have been smoothed out. Since these data are available

monthly, agents need to first estimate a discretized version of their model
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Table I

Parameter Calibration

This table reports the estimated parameters of the continuous-time model of
Agent A and Agent B. Standard errors (computed using the delta method)
are reported in brackets and statistical significance at the 10%, 5%, and
1% levels is denoted by * , **, and ***, respectively. The last three rows
report our choice of preference parameters and initial consumption shares
(�A = �B , !

0

= 1� !
0

= 0.5).

Parameter Symbol Value

Volatility of Dividend Growth �� 0.0225⇤⇤⇤
(3.94 ⇥ 10

�4
)

Mean-Reversion Speed of fA  0.1911⇤⇤⇤
(0.0264)

Long-Term Mean of fA f̄ 0.0630⇤⇤⇤
(0.0083)

Volatility of fA �f 0.0056⇤⇤⇤
(2.34 ⇥ 10

�4
)

High State of fB fh 0.0794⇤⇤⇤
(0.0032)

Low State of fB f l �0.0711⇤⇤⇤
(0.0038)

Intensity of fB: High to Low � 0.3022
(1.1294)

Intensity of fB: Low to High  0.3951
(1.1689)

Relative Risk Aversion ↵ 2
Subjective Discount Rate ⇢ 0.01
Lagrange Multipliers �A = �B 1

by Maximum Likelihood.9 Agents then map the parameters they estimated

into their continuous-time model. In doing so, agents obtain the parameter

values presented in Table I. All discussions and results that follow are based

on these parameter values. For convenience, we discuss the methodological

details in Internet Appendix Section VI.

The parameters of Table I show that both models produce distinct in-

9See Hamilton (1994) for the likelihood function of each model. We present the esti-
mated parameters, their standard errors, and their statistical significance in Table IA.I in
Internet Appendix Section VI.
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terpretations of the data. First, Agent A finds a low reversion speed  and

therefore concludes that the fundamental is persistent. Second, Agent B

finds that the high state fh and the low state f l are symmetric around zero,

consistent with Assumption 1, but that transition intensities between the

two states are asymmetric—expansions are more persistent than recessions

( > �). The values of the transition intensities  and � further imply that

Agent B’s filter reverts about 3.5 times faster than that of Agent A, and

that the long-term mean of Agent B’s filter (f1 ⇡ 0.014) is significantly

lower than that of Agent A (f = 0.063).

This calibration allows us to determine which model better fits historical

data by applying a model selection method such as the Akaike Information

Criterion (AIC).10 Because an Ornstein-Uhlenbeck process is more versatile

than a two-state Markov chain, the information criterion favors Agent A’s

model.11 This fact ultimately justifies our assumption that Agent A’s model

in equations (1) and (2) is the true data-generating process and thus our

choice of computing and analyzing the equilibrium under Agent A’s prob-

ability measure PA. However, it does not necessarily question Agent B’s

rationality, as we now illustrate.

To evaluate whether Agent B’s model is plausible when the data are

actually generated by Agent A’s model, we conduct the following experi-

ment. We simulate a discrete time series {y⌧}n⌧=1

of n monthly dividend

growth using the true data-generating process in equations (1) and (2) and

10The Akaike Information Criterion is defined as AIC = 2K�2 log (L), where K is the
number of parameters estimated and L the likelihood function. The smaller the criterion,
the better the model.

11The AIC for Agent A and B’s models are AIC

Agent A

= �1.7229 ⇥ 104 and
AIC

Agent B

= �1.2154⇥ 104, respectively.
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the parameter values of Table I. We then consider an econometrician whose

goal is to determine which model—Agent A’s or Agent B’s—is most likely

to have generated this time series. Using the time series of dividend growth,

the econometrician first estimates by Maximum Likelihood the parameters

⇥A ⌘ (��,, f̄ ,�f ) of Agent A’s model in (4) and (5) and the parameters

⇥B ⌘ (��,�, , fh, f l) of Agent B’s model in (6) and (7). Following Vuong

(1989) she then constructs a likelihood-ratio test of the two (nonnested)

models using the statistic LR:

LR ⌘ n�1/2

Pn
i=1

log hA
(yt+1

| bfA
t ;⇥

A
)

hB
(yt+1

| bfB
t ;⇥

B
)

r

1

n

Pn
i=1

h

log hA
(yt+1

| bfA
t ;⇥

A
)

hB
(yt+1

| bfB
t ;⇥

B
)

i

2

�
h

1

n

Pn
i=1

log hA
(yt+1

| bfA
t ;⇥

A
)

hB
(yt+1

| bfB
t ;⇥

B
)

i

2

d�! N (0, 1),

where N denotes the normal distribution and hA and hB denote the density

associated with Agent A’s and B’s model, respectively. If LR > ��1(p), the

econometrician rejects the null that both models are equivalent in favor of

Agent A’s model at the p% confidence level.

Figure 2 plots the rejection frequency (at the 90%, 95%, and 99% con-

fidence level) over time, based on 1,000 simulated time series of monthly

dividends, each of length 1,000 years. Figure 2 shows that the econome-

trician would need to observe more than three centuries’ worth of data to

correctly reject the null in favor of Agent A’s model more than 50% percent

of time, even at the 90% confidence level. After 1,000 years, the econometri-

cian would still fail to reject the null more than 10% of the time. Considering
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that empiricists observe a century’s worth of data, we conclude from this

experiment that Agent B’s model is unlikely to be confidently rejected over

a time period that is empirically relevant.
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Figure 2. Rejection frequency of Agent B’s model. This figure plots
the rejection frequency of Agent B’s model over time. Each line corresponds
to the rejection frequency of the null in favor of Agent A’s model at the 90%,
95%, and 99% confidence level, respectively. The rejection frequency is based
on 1,000 simulations of monthly dividend growth rates observed over 1,000
years.

That Agent B’s model is not rejected quickly directly implies that Agent

B will not disappear quickly. To show this, in Figure 3 we plot representative

paths of the relative likelihood of Agent B’s model, ⌘, and the correspond-

ing consumption share of Agent A, !. Illustrating the result of Proposition

2 that the likelihood ⌘ is a true martingale, Figure 3 shows that ⌘ cycles,

thus allowing Agent B to remain influential in the model. Although Agent

A’s consumption grows on average (given that she uses the correct model),

Figure 3 shows that Agent B sometimes enjoys a larger share of consump-

tion. This phenomenon occurs when, by luck, Agent B’s model produces a

succession of forecasting errors that are smaller than those of Agent A. For

instance, when both agents underestimate the fundamental but Agent B

28



does so less, the likelihood of Agent B’s model and hence her consumption

share increase. If this phenomenon occurs su�ciently many times in a row,

Agent B’s consumption may dominate Agent A’s, as Figure 3 shows.
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Figure 3. Representative paths of the likelihood of Agent B’s
model and Agent A’s consumption share. This figure plots in separate
panels representative simulated paths of the likelihood of Agent B’s model,
⌘, and the corresponding consumption share of Agent A, !. Each simulation
is based on the calibration of Table I.

Finally, another important aspect of the calibration in Table I is that

it satisfies Conditions 1 and 2, thus allowing for countercyclical spikes in

disagreement. Notice first that the low volatility of dividends in Table I

is consistent with Assumption 2 and implies that the ratio of Condition

1 can produce disagreement that changes Agent B’s uncertainty by up to

fivefold within days. In Section III we show that these disagreement spikes

are su�ciently large to produce momentum in stock returns (Condition 1).

To emphasize the particularity of this result, consider the specification in

which both agents use Agent B’s model with di↵erent parameters (David

(2008)). The parameter values estimated in David (2008) then imply that

disagreement never spikes and stock returns do not exhibit momentum under
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this specification. In other words, fitting the same discrete-state model to

the data does not produce su�cient heterogeneity in parameters to generate

momentum in the model, hence the relevance of our specification. Second,

the relative persistence of good and bad states meets Condition 2. We now

show that this condition is su�cient to make disagreement spikes counter-

cyclical under our calibration.

C. Estimated Dynamics of Disagreement

In this section we illustrate how the mechanism of Section II.A and

the calibration of Section II.B combine to produce countercyclical spikes

in disagreement, consistent with observed patterns among forecasters (e.g.,

Kandel and Pearson (1995) and Patton and Timmermann (2010)). We first

define three regimes of the economy, which we use to describe the di↵erent

phases of the business cycle throughout the analysis. Based on the results

of Section II.A, the relevant business cycle turning point for Agent A is

her long-term mean, f̄ , while that for Agent B is the point of maximum

uncertainty fm. Accordingly, we say that the economy is going through

good times when agents’ expectations are above f̄ , while the economy is go-

ing through bad times when agents’ expectations are below fm. Otherwise,

when expectations lie between fm and f̄ , we say the economy is in nor-

mal times. To emphasize that future disagreement—as opposed to current

disagreement—drives our result, we set current disagreement to zero in each

case. As a convention, we assume that agents’ filters start in the middle of
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Table II

Definition of Regimes

This table describes the three di↵erent regimes of the economy—good, nor-
mal, and bad times.

Good Times Normal Times Bad Times

( bfA, bfB) 2 [f̄ , fh], g = 0 ( bfA, bfB) 2 [fm, f̄ ], g = 0 ( bfA, bfB) 2 [f l, fm], g = 0

each interval.12 Table II summarizes the definition of the three regimes.

To illustrate the behavior of disagreement over the business cycle, in

Figure 4 we plot Agent A and B’s average filter over time, with each regime

highlighted in a separate panel. In good times (the left panel), both agents

adjust their views at comparable speeds and disagreement exhibits little

variation. In normal times (the middle panel), the di↵erence in adjust-

ment speed between Agents A and B becomes apparent. Although both

agents expect economic conditions to improve—both filters move upwards

on average—Agent B adjusts her expectations sharply due to the centrifu-

gal e↵ect in equation (16). This di↵erence in adjustment speeds causes

disagreement to spike in the short term.

In bad times (the right panel), beliefs polarize in the short term through

the centrifugal e↵ect in equation (16). Good news in bad times always cor-

roborates Agent A’s optimistic views, but is never good enough to invalidate

Agent B’s pessimistic views, reinforcing her beliefs that economic conditions

are deteriorating. This polarization of opinions creates disagreement spikes

12The dynamics of disagreement are consistent within each region, irrespective of the
starting point within each region, except in two knife-edge intervals, (0.063, 0.067) and
(�0.056,�0.0711), around f̄ and f

l, respectively. In Internet Appendix Section XI.A, we
explain why disagreement dynamics di↵er, but show that our results remain una↵ected,
within these intervals.
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Figure 4. Filtered dynamics in three states of the economy. The
solid black and solid gray lines represent Agent A and B’s average filters
(EPA

[ bfA
t ] and EPA

[ bfB
t ]), respectively. The dotted lines depict the corre-

sponding 90% confidence intervals. Filters are plotted against time. Each
panel corresponds to a specific state of the economy: good, normal, and bad
times.

that are strongest in bad times through the asymmetric e↵ect in equation

(17). This asymmetry arises because the high state of Agent B’s model

is more persistent than its low state. As a result, Agent B’s uncertainty

increases as economic conditions deteriorate (see the confidence interval in

each panel of Figure 4), making the e↵ect of the change of measure in equa-

tion (15) stronger in bad times. In the long run, Agent B eventually realizes

that the economy is recovering and rapidly catches up with Agent A, thus be-

coming overly optimistic. Disagreement therefore evaporates in the medium

term and regenerates in the long term through the di↵erence in adjustment

speeds.
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III. Disagreement Driving Stock Return

Predictability

In this section we show that countercyclical spikes in disagreement cause

stock return predictability to concentrate in bad times. In our model fluctu-

ations in disagreement command a risk premium: contemporaneous excess

returns decrease with the square of disagreement (Section III.A). The sign

of disagreement determines only the direction in which excess returns ad-

just in the future (Section III.B). In bad times, Agent B reacts opposite

to news, beliefs polarize, and future excess returns underreact. In normal

times, Agent B overreacts to news, beliefs adjust at di↵erent speeds, and

future excess returns overreact. In good times, beliefs move together, dis-

agreement is nearly constant, and future excess returns adjust immediately.

Since spikes in disagreement—positive or negative—persistently raise the

risk premium, both under- and overreaction create positive serial correla-

tion in excess returns in the short term, a phenomenon known as time-series

momentum (Section III.C). That disagreement spikes are countercyclical

makes this phenomenon stronger in bad times.

To understand how disagreement, contemporaneous excess returns, and

future excess returns are related, it is useful to describe trading strategies.

Following Dumas, Kurshev, and Uppal (2009), Proposition 6 decomposes

Agent A’s strategy into two components.

PROPOSITION 6: The number of shares, Q, that Agent A holds can be de-

composed into a myopic portfolio, M , and a hedging portfolio, H, according
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to

Qt = Mt +Ht =
Vt

↵�tSt
✓t +

↵� 1

↵�tSt
EPA

t



Z 1

t

⇠s
⇠t
cAs

✓

Dt⇠s
⇠s

� Dt⇠t
⇠t

◆

ds

�

,

(18)

where ⇠ denotes Agent A’s state-price density, which is given by

⇠t = e�⇢t��↵t

h

(1/�A)
1/↵ + (⌘t/�B)

1/↵
i↵

, (19)

and V denotes Agent A’s wealth, which we provide in Internet Appendix

Section VII.

Proof : See Internet Appendix Section VII. ⌅

Agent A’s portfolio in (18) tells us how she trades on return predictabil-

ity. While the first part, M , is a myopic demand through which Agent A

seeks to extract the immediate Sharpe ratio, ✓, the second term, H, is a

hedging demand through which she exploits return predictability. To see

this, notice that the hedging demand in (18) incorporates Agent A’s out-

look on future returns through the response of future state-price densities to

a shock occurring today, Dt⇠s. This response represents Agent A’s attempt

to predict future returns. We now analyze how disagreement a↵ects both

contemporaneous and future excess returns and then derive implications for

the serial correlation of excess returns.
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A. Disagreement and Contemporaneous Excess Returns

Our goal is to determine the relation between contemporaneous excess

returns and the state variables of the model. A key result of this section is

that contemporaneous excess returns decrease with the square of disagree-

ment. Contemporaneous (expected) excess returns, µ � rf = �✓, are the

product of the market price of risk, ✓, which we discuss in Section I.C, and

the di↵usion of stock returns, �:

�t =

component 1: A’s uncertainty

z }| {

�� +
�

��

1

St

✓

@S

@ bfA
|{z}

<0

+
@S

@g
|{z}

>0

◆

component 2: B’s uncertainty

z }| {

�(1� !t)v
⇣

bfA
t � gt

⌘ 1

St

@S

@bg
|{z}

>0

+

component 3: A’s cons. share

z }| {

gt(1� !t)!t

↵�2�

1

St

@S

@!
|{z}

<0

, (20)

where bg ⌘ (1� !)g denotes the “consumption-weighted” disagreement (see

Internet Appendix Section VIII).

We first explain the sign of the price sensitivities in equation (20). The

price decreases with the fundamental through the income e↵ect (when risk

aversion is larger than one (Veronesi (2000)): anticipating that an increase

in the fundamental today leads to higher consumption tomorrow, Agent

A decreases her savings, which decreases the price. In contrast, the price

increases with disagreement through the substitution e↵ect: an increase

in disagreement implies that Agent A is optimistic and therefore increases

her stock holdings, which leads to a price increase. Finally, an increase in

Agent A’s consumption share implies a decrease in the risk of Agent A’s
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consumption growth through (13), to which she responds by decreasing her

hedging demand, leading to a price decrease.

We now determine how the di↵usion of stock returns depends on the

state variables of the model. The di↵usion in equation (20) has three com-

ponents, which we plot in separate panels in Figure 5. Because Agent A’s

uncertainty is constant, the first di↵usion component in the left panels of

Figure 5 is nearly constant. In contrast, Agent B’s state-dependent uncer-

tainty causes the second component (the middle panels) to decrease with

disagreement. This decreasing relation steepens when Agent A’s filter in-

creases or when her consumption share decreases. This interaction between

Agent A’s views and Agent B’s uncertainty raises stock return volatility.

Furthermore, fluctuations in Agent A’s consumption share induce a decreas-

ing relation between the third component and disagreement (the right-hand

panels), which steepens as agents’ consumption shares equalize. Overall, our

discussion implies that the di↵usion of stock returns can be approximated

as

�t ⇡ A
0

+A
1

gt bf
A
t (1� !t) +A

2

gt!t(1� !t), (21)

where the signs of the constants A
0

⇡ 0, A
1

< 0, and A
2

< 0 follow from

price sensitivities.

Using Assumption 2 that �� is small, we finally obtain a relation for

excess returns by multiplying the di↵usion in equation (21) with the market

36



�0.5

0

Di↵usion Component 1

bfA
= 4.5%

bfA
=

¯f

bfA
= 7.5%

Di↵usion Component 2

bfA
= 4.5%

bfA
=

¯f

bfA
= 7.5%

Di↵usion Component 3

bfA
= 4.5%

bfA
=

¯f

bfA
= 7.5%

�0.02 0 0.02 0.04

�0.5

0

Disagreement g

! = 0.3

! = 0.5

! = 0.7

�0.02 0 0.02 0.04

Disagreement g

! = 0.3

! = 0.5

! = 0.7

�0.02 0 0.02 0.04

Disagreement g

! = 0.3

! = 0.5

! = 0.7

Figure 5. Decomposition of the stock return di↵usion. The up-
per and lower panels show the three components of stock return di↵usion
against disagreement for di↵erent values of the fundamental and Agent A’s
consumption share, respectively. If not stated otherwise, we set � = 1,
bfA = f̄ , and ! = 0.5. The chosen range for disagreement corresponds to its
90% confidence interval.

price of risk in equation (10):

µt � rft ⇡ constant(⇡ 0) +
A

1

��
bfA
t ((1� !t)gt)

2 +
A

2

��
!t ((1� !t)gt)

2 .

(22)

Equation (22) accurately approximates excess returns and serves as the ba-

sis for our empirical specifications in Section IV.13 This relation has two

main implications for excess returns. First, contemporaneous excess returns

13Simulations show that regressing excess returns, µ� r

f , on both b
f

A ((1� !)g)2 and
! ((1� !)g)2 yields a R

2 of 95%, while regressing it on ! ((1� !)g)2 yields a R

2 of 85%.
See Internet Appendix Section VIII for further details.
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are hump-shaped in disagreement and decreasing in the square of disagree-

ment. Second, as the right-hand panels of Figure 5 show, the main source

of fluctuations in excess returns is the last term in equation (22).

B. Disagreement, Future Excess Returns, and Reaction to News

We now show that future excess returns react to contemporaneous news

in a way that is predictable if disagreement spikes in the short term. In bad

times, news polarizes opinions, causing returns to persistently underreact. In

normal times, news exacerbates the di↵erence in beliefs’ adjustment speed,

causing returns to persistently overreact. In good times, news provokes

an immediate return adjustment. Since disagreement spikes are counter-

cyclical, news content (Tetlock (2007)) better predicts future returns in bad

times (Garcia (2013)).

Agent A’s hedging demand in (18) shows that forecasting future returns

in our model involves computing the response of the future state-price den-

sity to a shock occurring today. Hence, as emphasized in Dumas, Kurshev,

and Uppal (2009), the concept of future returns that is relevant for portfolio

choice is the future response, Dt⇠s/⇠s, of the state-price density, as opposed

to the usual multiperiod rate of return, ⇠t/⇠s. We accordingly refer to “fu-

ture returns” and “the response of the state-price density” indi↵erently and

denote future returns from time t to horizon s > t by R(t, s) = Dt⇠s/⇠s.

This concept can be mapped into the empirical measures of Tetlock (2007)

and Garcia (2013): the average, EPA

t [R(t, s)], is the regression coe�cient of

news arriving at time t on future stock returns from time t to s.

We start with an illustration of the concept of future response. To com-
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pute a response to a news shock, Agent A first considers a trajectory of

the Brownian innovation cWA, the only source of news in our model. She

then contemplates a news surprise today (an initial perturbation of the news

trajectory), while keeping the news trajectory otherwise unchanged, as illus-

trated in the upper panel of Figure 6. Each news trajectory, both perturbed

and unperturbed, is associated with a trajectory of the state-price density,

as illustrated in the lower panel. The di↵erence, D⇠, between these trajec-

tories (the shaded area) captures the reaction of the state-price density to

the news surprise relative to the state-price density that would have pre-

vailed had there been no news surprise. Because Agent A is interested in

all possible trajectories, she computes an average reaction E[D⇠] (the solid

black line).

When the news surprise is “small,” the reaction of the state-price den-

sity, D⇠, becomes a well-defined mathematical object known as a Malliavin

derivative.14 It has the economic meaning of an impulse-response function

following a shock in initial values (in our case, a news shock). However,

unlike a standard impulse-response function, a Malliavin derivative takes

future uncertainty into account: Agent A does not assume that the world

becomes deterministic after the shock has occurred and therefore computes

an average response.

To obtain an analytical expression for average future returns in our

model, notice that the state-price density, ⇠(�, ⌘), in equation (19) depends

on two state variables, namely, dividends and the likelihood of Agent B’s

14See, for example, Detemple and Zapatero (1991), Detemple, Garcia, and Rindisbacher
(2003, 2005), Berrada (2006), and Dumas, Kurshev, and Uppal (2009) for applications of
Malliavin calculus in financial economics.
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Figure 6. Illustration of the state-price density’s response to a
news shock. The upper panel shows a trajectory of news before (dashed
gray line) and after (solid gray line) a news surprise. The lower panel shows
the associated trajectory of the state-price density before (dashed gray line)
and after (solid gray line) a news surprise. The shaded area represents the
reaction D⇠ to a news shock and the solid black line represents the average
reaction E[D⇠] of the state-price density.

model. As a result, the way the future state-price density reacts to news

depends first on how it reacts to a change in these state variables and second

on how these state variables themselves react to news. Applying the chain

rule to equation (19), the average response of the state-price density satisfies

(see Internet Appendix Section VII for derivations):

EPA

t [R(t, s)] =�↵⇥
✓

�� +
�

��

⇣

1� e�(s�t)
⌘

◆

| {z }

fundamental channel ⌘ �s
⇠s

@
@�s

⇠s⇥Dt�s
�s

+ EPA

t



(1� !s)⇥
✓

�
Z s

t

guDtgu
�2�

du

◆�

| {z }

disagreement channel ⌘EPA
t

h
⌘s
⇠s

@
@⌘s

⇠s⇥Dt⌘s
⌘s

i

. (23)
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We now unravel the chain reaction in equation (23). As news hits,

dividends react in a perfectly predictable fashion because the fundamental

mean-reverts with constant uncertainty, �
��
. The first term in brackets in

(23) indicates that dividends respond positively to good news and that their

response gradually weakens at speed . In contrast, the likelihood of Agent

B’s model reacts ambiguously to news on average, as news may either cor-

roborate or invalidate Agent B’s model depending on economic conditions.

When the reaction of disagreement g ⇥ Dg is persistently negative, Agent

B is overly optimistic and good news thus corroborates her model, as the

second term in brackets in (23) shows. When the reaction of disagreement

is persistently positive, Agent B is pessimistic and good news invalidates

her model.

As dividends and the likelihood of Agent B’s model move, the state-price

density responds in turn. It decreases after a dividend increase, @
@� ⇠(�, ⌘) =

�↵⇠(�, ⌘)/� < 0, and increases following an increase in the likelihood of

Agent B’s model, @
@⌘ ⇠(�, ⌘) = (1 � !(⌘))⇠(�, ⌘)/⌘ > 0. The reason is that

an increase in dividends decreases marginal utility. An increase in the likeli-

hood, ⌘, instead increases the risk of Agent A’s consumption share growth,

which increases her hedging demand and thus her marginal utility, �A⇠.

Overall, news shocks move the state-price density through two channels:

the fundamental and disagreement. The fundamental channel in (23) trig-

gers a negative state-price density reaction following good news, as it hints

future dividend abundance. The disagreement channel leads to an ambigu-

ous reaction depending on whether news corroborates Agent B’s model,

thereby making Agent A’s consumption share growth riskier. Our calibra-
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tion indicates that the magnitude of the former channel ranges from �0.045

to �0.058, while that of the latter ranges from �0.3 to 0.3. Clearly, dis-

agreement is the main channel driving future returns in our model. As a

result, average future returns move together with the average reaction of the

likelihood, ⌘, and therefore against the average reaction of disagreement:

sign(EPA

t [R(t, s)]) ⇡ sign(EPA

t [Dt⌘s]) ⌘ �sign

✓

EPA

t



Z s

t
guDtgudu

�◆

.

(24)

We plot the three-year average future returns in the left panel of Figure

7 along with the average reaction of disagreement, Et[guDtgu], in the right

panel. When interpreting average future returns, based on (24) a negative

sign implies that returns move opposite to news—they underreact. A pos-

itive sign either means that returns adjust to news or overreact, in which

case returns subsequently revert—average future returns change direction.

Finally, when interpreting the average reaction of disagreement, a negative

sign implies that Agent B is overly optimistic while a positive sign means

that she is pessimistic.

In bad times (dashed line), news exacerbates disagreement by polarizing

agents’ opinion. Agent A interprets news positively, whereas Agent B in-

terprets it negatively and disagreement spikes (see right panel). Since news

invalidates Agent B’s model, returns move opposite to news: good news

is followed by negative returns in the short term (see left panel). Hence,

Agent B’s pessimism slows returns’ adjustment to news (decreasing reac-

tion), similar to the underreaction phenomenon in Ottaviani and Sorensen
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news shocks. The left panel plots the total (sum of the fundamental and
disagreement channels) impulse response of stock returns. The right panel

plots the response of disagreement to news shocks EPA
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(2015).

In normal times (solid line), news shocks precipitate an upward adjust-

ment in Agent B’s expectations, sharpening the di↵erence in adjustment

speeds across agents. While agents interpret news in similar ways, Agent B

overreacts to news and becomes overly optimistic (see the right panel). Be-

cause news corroborates Agent B’s overoptimism, returns overreact to news

in the short term (see the left panel). As a result, Agent B’s overreaction

accelerates returns’ adjustment to news (increasing reaction), similar to the

overreaction phenomenon in Daniel, Hirshleifer, and Subrahmanyam (1998).

In good times (dash-dotted line), the reaction of disagreement to news

is weak and exhibits little persistence (see the right panel). Because news

corroborates both agents’ views that economic growth is high, returns ad-

just immediately (see the left panel). Hence, return continuation arises

only when disagreement spikes in the short term. Whether disagreement
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spikes result from the polarization of opinions in bad times or the di↵erence

in adjustment speeds in normal times dictates whether returns under- or

over-react. Unlike Ottaviani and Sorensen (2015), under- and overreaction

alternate over the business cycle in our model. Finally, because disagree-

ment spikes are countercyclical, news better predicts future returns in bad

times.

In the long term (after about six months), excess returns systematically

revert, that is, future returns change direction. This later phase of correction

arises through the long-term behavior of Agent B’s consumption share, 1�!,

which multiplies the cumulative disagreement response in equation (23).

Since the drift of 1� !,

1

dt
EPA

t [d(1� !t)] =
g2t (2!t � 1� ↵)(1� !t)!t

2↵2�2�
 0, 8↵ � 1, (25)

is negative and decreases with the square of disagreement, strong disagree-

ment today leads to a strong downward trend in Agent B’s consumption

share, which gradually dampens the disagreement response in the right panel

of Figure 7. Hence, while a spike in disagreement creates return continuation

in the short term, it generates a reversal in the long term.

C. Time-Series Momentum and Momentum Crashes

One of the most pervasive facts in finance is momentum (Jegadeesh and

Titman (1993)). Recently, Moskowitz, Ooi, and Pedersen (2012) uncover

a similar pattern in aggregate returns, which they coin time-series momen-

tum. In our model, return under- or overreaction to news directly relates to
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time-series momentum. Disagreement spikes persistently raise the risk pre-

mium for holding the stock, thus creating positive serial correlation in excess

returns. Disagreement spikes simultaneously reduce Agent B’s consumption

share over time and thus the risk premium in the future, which ultimately

leads to long-term reversal. That disagreement spikes are countercyclical

further explains why time-series momentum is stronger in bad times at short

horizons and how it crashes following sharp market rebounds.

The economic mechanism for return continuation of Section III.B is

based on the concept of returns that matters to investors of the model—the

response of the state-price density. However, the same mechanism can be

described in terms of time-series momentum based on a common definition

of excess returns,

ret ⌘
Z t

t��

✓

dSu + �udu

Su
� rfudu

◆

=

Z t

t��

�u(✓udu+ dcWA
u ), (26)

over a period of length �. Consider the serial correlation of excess returns

at lag h:

⇢(h) = covP
A �

ret+h�, r
e
t

�

/varP
A
(ret ) . (27)

Following Banerjee, Kaniel, and Kremer (2009), the sign of the coe�cient in

(27) determines whether returns exhibit momentum (⇢(h) > 0) or reversal

(⇢(h) < 0). Because Brownian innovations in (26) are uncorrelated across

nonoverlapping periods, the covariance of instantaneous excess returns, �✓,

in (26) dictates the sign of this coe�cient.
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To show how disagreement spikes a↵ect the coe�cient in (27), it is sim-

pler to focus on the covariance of market prices of risk, ✓, as opposed to

instantaneous excess returns. An approximation of covariances of products

(Bohrnstedt and Goldberger (1969)) then yields

covP
A
(✓t, ✓s) ⇡

1

�2�

⇣

EPA
[gt]EPA

[gs]cov
PA

(!t,!s) + EPA
[1� !t]EPA

[1� !s]cov
PA

(gt, gs)
⌘

| {z }

momentum e↵ect �0

� 1

�2�

⇣

EPA
[gt]EPA

[1� !s]cov
PA

(!t, gs) + EPA
[1� !t]EPA

[gs]cov
PA

(gt,!s)
⌘

| {z }

reversal e↵ect 0

.

(28)

Disagreement and agents’ consumption share separately move the market

price of risk in the same direction. In the short term, disagreement keeps

moving in the same direction both in bad and in normal times (see Section

II), and so does agents’ consumption share through (25). Hence, the first

term in (28) is positive and induces momentum. In contrast, the interaction

between disagreement and consumption shares moves current and future

prices of risk in opposite directions. In normal and good times, disagreement

is negative and moves opposite to Agent A’s consumption share; in bad

times, it is positive and moves together with Agent A’s consumption share.

Hence, the second term in (28) is negative and induces reversal.

Whether the momentum e↵ect or the reversal e↵ect in (28) dominates

depends on the magnitude of fluctuations in disagreement. Because large

and sharp moves in disagreement strengthen the momentum e↵ect in the
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Figure 8. Model-implied conditional time-series momentum. This
figure plots the t-statistics of the coe�cient ⇢(h) for lags h ranging from one
month to three years. Each panel corresponds to a di↵erent state of the
economy. Standard errors are adjusted using Newey and West (1987). The
values reported above are obtained from 10,000 simulations of the economy
over a 20-year horizon.

short term, disagreement spikes tilt the balance in favor of momentum. To

analyze this e↵ect in a way that is consistent with empirical studies, we

now consider excess returns at a monthly frequency (i.e., � = one month).

Figure 8 depicts the t-statistics of the coe�cient of serial correlation in

equation (27) for lags ranging from one month to three years. The value of

the coe�cient is reported in Internet Appendix Section XI.B.

The serial correlation of returns has a similar term structure in normal

times (center panel) and bad times (right panel): returns exhibit time-series

momentum over an horizon of 10 to 18 months, followed by reversal over

subsequent horizons. Moreover, the magnitude of momentum varies accord-

ing to the horizon considered: momentum is large at short horizons (up to

four months) and then decays over longer horizons. In Internet Appendix

Section XI.C we show that these patterns are also robust unconditionally.

Both the magnitude and the timing of time-series momentum are in line with
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empirical evidence.15 Indeed, Moskowitz, Ooi, and Pedersen (2012) find sig-

nificant time series momentum at short horizons (one to six months), weaker

momentum at intermediate horizons (seven to 15 months), and reversal at

longer horizons.

Since time-series momentum results from a spike in disagreement, the

term structures of momentum in normal and bad times di↵er in an important

dimension. The polarization of opinions in bad times induces a sharper spike

in disagreement than the di↵erence in adjustment speeds in normal times

and thus time-series momentum at short horizons is significantly larger in

bad times. That is, more disagreement leads to more time-series momentum.

This implication finds strong empirical support (see Section IV). In addition,

long-term reversal occurs earlier and is stronger in bad times because a

stronger disagreement spike implies a steeper downward trend in Agent B’s

consumption share (see Section III.B).

Excess returns have di↵erent time-series properties in good times (left

panel): returns exhibit strong reversal in the very short term and insignif-

icant momentum thereafter. The reason is that news generates little dis-

agreement in good times (see Figure 4). Returns thus immediately revert,

as they would if agents had homogeneous beliefs. A consequence of this re-

versal spike occurring in good times is that a time-series momentum strategy

may crash if the market rises sharply. To see this, suppose we implement

a momentum strategy in bad or normal times. Figure 8 shows that this

strategy remains profitable as long as the economy does not move suddenly

15In Internet Appendix Section XI.F we confirm empirically that time-series momentum
persists up to one year and is followed by long-term reversal in both NBER expansions
and NBER recessions.
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to good times. If, instead, the market sharply rebounds, the trend suddenly

reverts and the momentum strategy crashes. Sharp trend reversals typically

occur at the end of financial crises. For instance, a momentum strategy

incurred large losses at the end of the global financial crisis in March, April,

and May of 2009 (Moskowitz, Ooi, and Pedersen (2012)).16 Furthermore,

we show in Internet Appendix Section XI.G that the model implies stronger

time-series momentum in extreme markets, consistent with Moskowitz, Ooi,

and Pedersen (2012).

IV. Testable Predictions and Empirical Evidence

In Section IV.A we construct empirical proxies for the main variables

driving excess returns in the model. For instance, we use the dispersion in

analysts’ forecasts as a proxy for the square of disagreement. We then focus

on three novel predictions of the model: (1) future excess returns are pos-

itively related to contemporaneous dispersion; and time-series momentum

at short horizons (2) increases with dispersion and (3) is strongest in bad

times. In Section IV.B we quantify these qualitative predictions using sim-

ulations from the model. Repeating the same analysis with observed data,

we provide empirical support for these predictions.

A. Constructing Empirical Proxies for Explanatory Variables

In the model excess returns depend nonlinearly on three variables—

disagreement, the fundamental, and the relative likelihood of agents’ models.

16Daniel and Moskowitz (2016) and Barroso and Santa-Clara (2015) document a similar
phenomenon in the cross-section of stocks.
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However, equation (22) shows that this nonlinear dependence is accurately

described as a linear combination of two weighted products of these vari-

ables, the weighted fundamental bfA(1�!(⌘))2g2 and the weighted dispersion

g2(1�!(⌘))2!(⌘). We borrow the term “dispersion” from the empirical lit-

erature in which heterogeneous beliefs are commonly measured by the dis-

persion in analysts’ forecasts (Diether, Malloy, and Scherbina (2002)), the

square of disagreement in our model. Accordingly, we define the monthly

weighted fundamental F and the monthly weighted dispersion G as

Ft ⌘
Z t

t��

bfA
u (1� !u)

2g2udu Gt ⌘
Z t

t��

g2u(1� !u)
2!udu. (29)

To construct empirical counterparts to F and G in (29), we need em-

pirical proxies for dispersion, the fundamental, and Agent A’s consumption

share, which we now describe separately. To build an empirical proxy for

dispersion, we follow Diether, Malloy, and Scherbina (2002). We first ob-

tain monthly data on analysts’ forecasts from I/B/E/S, for the period from

February 1976 to November 2013. Denoting by f i,j analyst j’s forecast for

firm i’s fiscal year earnings per share, we define the dispersionDi in analysts’

forecasts about firm i as

Di
t = (|mean

j
(f i,j

t )|)�1std
j
(f i,j

t ),

where mean
j

(.) and std
j
(.) denote the mean and standard deviation of fore-

casts computed across analysts, respectively. We then compute aggregate
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dispersion, D, across firms as

Dt =
1

Nt

Nt
X

i=1

Di
t,

where Nt is the number of firms in the S&P 500 that have at least two ana-

lyst forecasts and a mean forecast di↵erent from zero at time t.17 Regressing

the aggregate dispersion Dt on time t shows that dispersion has a strong

linear downward trend (see left panel of Table III). Communication and

transparency greatly improved over the last 40 years due to technological

innovations, for example, the internet and other information technologies.

Since our model abstracts from these technological changes, it does not gen-

erate a downward trend in the model-implied dispersion. We thus construct

a de-trended empirical proxy for dispersion, Disp, using the residual from

the regression of aggregate dispersion on time.

In Section II we estimate the beliefs bfA and bfB using monthly S&P

500 dividend growth. These beliefs provide a model-implied time series of

dispersion, DispMI , which is defined as

DispMI
t ⌘ g2t = ( bfA

t � bfB
t )2.

If the beliefs bfA and bfB o↵er a reasonable description of observed analyst

forecasts, then the model-implied dispersion DispMI should be correlated

with the dispersion among forecasters Disp. To investigate this prediction,

we regress the observed dispersion, Disp, on the model-implied dispersion,

17Over the time period 02/1976 to 11/2013, a mean of 490 firms meet these two con-
ditions each month.
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Table III

Linear Trend in Dispersion and 12-Month Seasonality in Funda-
mental

The left and right panels report the outputs obtained by regressing the dis-
persionDt on time t and the fundamentalGMF on the 12-month seasonality
dummy variable Y 12, respectively. Standard errors are reported in brackets
and statistical significance at the 10%, 5%, and 1% levels is denoted by with
* , **, and ***, respectively. Standard errors are adjusted using Newey and
West (1987). Data are at the monthly frequency from 02/1976 to 11/2013.

Dep. Var. Dt

Const. 0.2099⇤⇤⇤

(0.0137)
Time t �0.0032⇤⇤⇤

(0.0005)
Adj. R2 0.1255
Obs. 454

Dep. Var. GMFt

Const. �0.0309⇤⇤⇤

(0.0076)
Y 12

t 0.1258⇤

(0.0660)
Adj. R2 0.0310
Obs. 454

DispMI . The right panel of Table IV shows that there is a strong positive

relation between the two, thus lending support to our assumption that agents

use heterogeneous forecasting models. Moreover, conditioning on NBER

recessions with the dummy variableRec, we find that the observed dispersion

is higher in recessions than in expansions (left panel of Table IV). The

observed dispersion is therefore countercyclical, as our model predicts (see

Internet Appendix Section XI.D for an illustration of the time series of Disp

and DispMI).

We build a proxy for the fundamental using the simple growth rate,

GMF , of the aggregate mean forecast, MFt =
1

Nt

PNt
i=1

mean
j

(f i,j
t ), which

we compute according to

GMFt = (MFt��

)�1(MFt �MFt��

),
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Table IV

Empirical Dispersion in Recessions and Empirical vs. Model-
Implied Dispersion

The left panel reports the outputs obtained by regressing the empirical dis-
persion, Disp, on the dummy variable Rec, which equals one during NBER
recessions. The right panel reports the outputs obtained by regressing the
empirical dispersion, Disp, on the model-implied dispersion, DispMI , esti-
mated in Section II. Standard errors are reported in brackets and statistical
significance at the 10%, 5%, and 1% levels is denoted by * , **, and ***,
respectively. Standard errors are adjusted using Newey and West (1987).
Data are at the monthly frequency from 02/1976 to 11/2013.

Dep. Var. Dispt
Const. �0.0071

(0.0044)
Rect 0.0525⇤⇤⇤

(0.0137)
Adj. R2 0.0370
Obs. 454

Dep. Var. Dispt
Const. �0.0145⇤⇤

(0.0060)
DispMI

t 6.6594⇤⇤⇤

(1.7589)
Adj. R2 0.0624
Obs. 454

where � = one month. We do not work with the log growth rate because

the aggregate mean forecast is sometimes negative. We also remove three

outliers from the time series of growth rates, despite their minor influence

on the results. We further eliminate seasonalities from the resulting time

series of growth rates by running the regression

GMFt = ↵+ �Y 12

t + Fundt,

where Y 12 is a 12-month seasonality dummy variable (see the right panel

of Table III). We use the residual of this regression, Fund, as an empirical

proxy for the fundamental.

Finally, since a model-free proxy for Agent A’s consumption share is
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unavailable, we start by approximating the Brownian shock, cWA
t+�

� cWA
t ,

as perceived by Agent A using

cWA
t+�

� cWA
t ⇡ 1

��

✓

log

✓

�t+�

�t

◆

�
✓

bfA
t � 1

2
�2�

◆

�

◆

, (30)

where bfA
t is the belief of Agent A that we estimate in Section II, log

⇣

�t+�

�t

⌘

is

the S&P 500 dividend growth rate, and � = one month. We then obtain an

empirical proxy for the change of measure, which we call eta, by substituting

the shock in (30) into the discretized dynamics of disagreement and then

into the discretized dynamics of the change of measure in equation (8).18

The empirical proxy for the consumption share of Agent A, which we call

omega, is obtained by substituting eta into equation (12). Figure 9 depicts

the historical path of the change of measure, eta, and the consumption share

of Agent A, omega. The consumption share of Agent A varied substantially

over the last century, cycling between 0.1 and 0.98 with an average level

of 0.61. Although Agent A’s share of consumption was larger than that of

Agent B on average, both shares of consumption remained mostly within

0.2 and 0.8, with both agents remaining economically influential over the

last century.

We now have all the variables we need to compute the empirical coun-

18We perform an Euler discretization of the dynamics of disagreement in equation
(IA.1).
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terparts to the weighted fundamental F and weighted dispersion G in (29):

Femp ⌘ Fund⇥ (1� omega)2 ⇥Disp

Gemp ⌘ Disp⇥ (1� omega)2 ⇥ omega. (31)
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Figure 9. Realized historical path of the change of measure, eta,
and the corresponding consumption share of Agent A, omega, from
01/1871 to 11/2013.

B. Testing the Predictions of the Model

We test three new predictions of the model. We show that current dis-

persion positively predicts future excess returns (Section IV.B.1), and time-

series momentum increases with dispersion (Section IV.B.2) and is strongest

in bad times (Section IV.B.3).
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B.1. Dispersion and Future Excess Returns

To quantify the model-implied relation between excess returns and dis-

persion at di↵erent lags h, we simulate the model and run the regression

ret+h� = ↵(h) + �G(h)Gt + �F (h)Ft + ✏t+h�, (32)

where monthly excess returns re are defined in (26). Because weighted dis-

persion generates most variation in excess returns (see Section III.A), we

focus on the coe�cient �G(h), which measures the relation between ex-

cess returns and dispersion at di↵erent lags h. We then run the empirical

equivalent to the regression in (32) in which we substitute the weighted fun-

damental F and the weighted dispersion G by their empirical counterparts

Femp and Gemp in (31) and take excess returns re to be the monthly excess

returns on the S&P 500. We plot the t-statistics of the theoretical coe�cient

�G(h) and its empirical counterpart �G(h)emp in the left and right panels of

Figure 10 for lags ranging from one month to one year.

Our model predicts a positive relation between contemporaneous dis-

persion and future excess returns, the strength of which weakens with the

time horizon (see the left panel). To see this, suppose that dispersion is

high today. Because dispersion is countercyclical, it will decrease in the

future (see Section II.C and Table IV).19 Since dispersion and excess re-

19To confirm that dispersion is countercyclical in our model, we regress the dispersion
Gt on the fundamental, Fm

t ⌘
R t

t��

b
f

A
u du, using 1,000 simulations over a 100-year horizon.

We find that dispersion and the fundamental are indeed negatively related, with a regres-
sion coe�cient of �0.0017. Using Newey and West (1987) standard errors, the regression
coe�cient is significant at the 1% level. Note that the regular dispersion, Gt ⌘

R t

t��

g

2

udu,
is also countercyclical.
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turns are contemporaneously negatively related (see Section III.A), future

excess returns are high, creating a positive relation between contemporane-

ous dispersion and future excess returns. This observation further implies

that future excess returns are countercyclical in our model, consistent with

empirical findings. Comparing the two panels of Figure 10 shows that the

model can replicate the persistence and the strength of the relation between

contemporaneous dispersion and future excess returns that we observe in

the data.

Interestingly, the positive relation between aggregate dispersion and fu-

ture aggregate returns that we document contrasts with the negative re-

lation that is documented in the cross-section of firms (Diether, Malloy,

and Scherbina (2002)). A possible explanation is that short-selling costs,

which may create a negative relation between dispersion and future returns

(Miller (1977)), matter for the cross-section of firms—costs are high for small

companies’ stocks—but not in the aggregate market. Consistent with this

explanation, Anderson, Ghysels, and Juergens (2005), Boehme et al. (2009),

and Carlin, Longsta↵, and Matoba (2014) find a positive cross-sectional re-

lation between dispersion and future returns in markets that involve low

short-selling costs.

B.2. Time-Series Momentum in High Dispersion Periods

Short-term time-series momentum increases with dispersion in our model.

To measure this e↵ect, we define periods of high dispersion with a dummy

variable, YG,t(p), that takes the value of one when the monthly dispersion
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Figure 10. Model-implied and empirical relation between future
excess returns and dispersion. The left panel plots the t-statistics of
the model-implied response of excess returns to weighted dispersion �G(h)
for lags h ranging from one month to one year. The values reported are
obtained from 1,000 simulations of the economy over a 100-year horizon.
The right panel plots the t-statistics of the empirical response of excess
returns to weighted dispersion �G(h)emp for lags h ranging from one month
to one year. Data are at the monthly frequency from 02/1976 to 11/2013.
All standard errors are adjusted using Newey and West (1987).

G is larger than its pth percentile. We then run the regression

ret+�

= ↵G(p) + �
1,G(p)r

e
t + �

2,G(p)r
e
tYG,t(p) + ✏t+�

, (33)

where the model-implied coe�cient �
2,G(p) measures excess time-series mo-

mentum in periods of high dispersion. We repeat this exercise by substitut-

ing in (33) the weighted dispersion G by its empirical counterpart Gemp in

(31) and taking excess returns re to be the monthly S&P 500 excess returns.

The empirical coe�cient �
2,G(p)emp measures excess time-series momentum

at a one-month lag in high dispersion periods.20,21 We plot the t-statistics

20We present an alternative approach for estimating the positive relation between time-
series momentum and dispersion in Internet Appendix Sections IX and X.

21Our results are qualitatively similar if we replace the weighted dispersion Gt ⌘R t

t��

g

2

u(1�!u)
2

!udu (respectively, Gemp ⌘ Disp⇥ (1�omega)2⇥omega) by the regular

dispersion Gt ⌘
R t

t��

g

2

udu (respectively, Gemp ⌘ Disp).
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of �
2,G(p) and �

2,G(p)emp in separate panels in Figure 11 for percentiles

ranging from 10 to 50.22

Both in the model and in the data, time-series momentum at a one-

month lag is larger in periods of high dispersion. However, while the sig-

nificance of the model-implied relation between dispersion and excess time-

series momentum is robust to changes in the dispersion percentile, the em-

pirical relation is strongly significant when the dispersion threshold is the

30th percentile and is relatively weak when the threshold ranges from the

40th to the 50th percentile. The reason for this discrepancy is that spikes in

dispersion persist in our model, whereas they revert back quicker in the data

(see Internet Appendix Section XI.D). Furthermore, the data also lend sup-

port to the prediction that there is short-term time-series reversal in periods

of low dispersion (see Internet Appendix Section XI.E).

B.3. Time-Series Momentum over the Business Cycle

The model predicts strongest time-series momentum in bad times at

short horizons, a result we quantify as follows. We first identify bad times

in our model in a way that can be mapped into our empirical analysis, in

which we use NBER recession dates. Since NBER recessions have histori-

cally accounted for 30% of the business cycle, we capture recessions with

a dummy variable YFm that takes the value of one if the fundamental,

22We describe the statistics �
2,G(p) and �

2,G(p)emp for momentum at a one-month lag
only. A positive relation between time-series momentum and dispersion also holds at a
two-, three-, and four-month lag.
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Figure 11. Model-implied and empirical excess one-month time-
series momentum in high dispersion periods. The left panel plots
the model-implied t-statistics of excess one-month time-series momentum
�
2,G(p) when weighted dispersion is larger than its pth percentile. These

values are obtained from 1,000 simulations of the economy over a 100-year
horizon. The right panel plots the empirical t-statistics of excess one-month
time-series momentum �

2,G(p)emp when weighted dispersion is larger than its
pth percentile. Data are at the monthly frequency from 02/1976 to 11/2013.
All standard errors are adjusted using Newey and West (1987).

Fm
t ⌘

R t
t��

bfA
u du, is below its 30th percentile.23 We then simulate the

model and run the regression

ret+h� = ↵F (h) + �
1,F (h)r

e
t + �

2,F (h)r
e
tYFm,t + ✏t+h�, (34)

where the model-implied coe�cient �
2,F (h) measures excess time-series mo-

mentum in recessions at lag h.

To construct the empirical equivalent to the regression in (34), we spec-

ify YFm as a dummy variable that takes the value of one during NBER

recessions and take excess returns re to be monthly S&P 500 excess returns.

The empirical coe�cient �
2

(h)emp measures excess time-series momentum

in recessions at lag h. To cover su�ciently many business cycle turning

23Note that our results are robust to any other threshold lying between the 10th and
the 50th percentiles.
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points, we extend the sample period and focus on monthly S&P 500 excess

returns from January 1871 to November 2013. Looking back to the 19th cen-

tury allows us to account for a large number of recessions—NBER reports

29 recessions since the beginning of our sample. We plot the t-statistics of

�
2,F (h) and �2(h)emp in separate panels in Figure 12 for lags ranging from

one month to one year.

The model accurately replicates excess time-series momentum in reces-

sions and its level of statistical significance at the one-month lag. However,

while the model implies persistent excess time-series momentum up to the

five-month lag, excess time-series momentum vanishes in the data over lags

beyond one month. This discrepancy in persistence between model-implied

and observed excess time-series momentum in bad times results from the

di↵erence in persistence between model-implied and observed spikes in dis-

persion. To bring about closer alignment in persistence between the two,

disagreement spikes would need to revert faster. For instance, introducing

transient states in Agent B’s Markov chain would increase the reversion

speed of her expectations—the sum of all transition intensities—reducing

the persistence of disagreement and thus the persistence of excess time-series

momentum.

Our finding that short-term time-series momentum is stronger in reces-

sions contrasts with evidence reported in the cross-section of returns: Chor-

dia and Shivakumar (2002) and Cooper, Gutierrez, and Hameed (2004) find

that cross-sectional momentum is weaker in downmarkets than in upmar-

kets. While Moskowitz, Ooi, and Pedersen (2012) show that time-series and

cross-sectional momentum are related, their relation seems to vary over the
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Figure 12. Model-implied and empirical excess time-series mo-
mentum in recessions. The left panel plots the t-statistics of the model-
implied excess time-series momentum in recessions �

2,F (h) for lags h ranging
from one month to one year. The values reported above are obtained from
1,000 simulations of the economy over a 100-year horizon. The right panel
plots the t-statistics of the empirical excess time series momentum in reces-
sions �

2

(h)emp for lags h ranging from one month to one year. Data are at
the monthly frequency from 01/1871 to 11/2013. All standard errors are
adjusted using Newey and West (1987).

business cycle.

V. Conclusion

This paper suggests at least two interesting avenues for future research.

First, our analysis describes how a single stock—an index—reacts to news

shocks, but individual stocks in the index may react di↵erently. In partic-

ular, the performance of one stock relative to another may vary over the

business cycle. Some may be “losers,” while others may be “winners,” and

this relation may persist or revert depending on economic conditions. Ex-

tending our framework to an economy with two trees would allow us to

study this cross-sectional relation. Second, in our framework, investors esti-

mate heterogeneous models, both of which measure a di↵erent aspect of the
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business cycle. In a representative-agent economy, we would like to study

how the agent dynamically picks one model over the other depending on

economic conditions. We believe that such endogenous “paradigm shifts”

can explain several empirical facts regarding the dynamics of stock return

volatility.
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Detemple, Jerome B., René Garcia, and Marcel Rindisbacher, 2003, A Monte

Carlo method for optimal portfolios, Journal of Finance 58, 401–446.
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