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Abstract

We examine how firms invest along their knowledge cycles. If investment is only
a means to accumulate capital, cycles are irrelevant for the investment-value relation,
with the two declining together over cycles. But we argue that investment also creates
knowledge—serendipitously—disconnecting it from value. Investment is high early
and late in the cycle, its relation with value spikes before new cycles start and declines
thereafter. We uncover this specific pattern in the data, identifying new cycles using
sharp changes in patents’ citations to prior technologies. Cycles’ length has tripled in
recent years, coinciding with concurrent changes in the investment-value relation.
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1 Introduction

The creation of technological knowledge within firms follows cycles. The case of Intel is

a classic example (Casadesus-Masanell, Yoffie, and Mattu, 2014). From the early 1970s

to 1982 Intel developed RAM chips technology, creating unique technological knowledge

of substantial value for its shareholders. Competition from Japanese producers eventually

eroded profits Intel made on this knowledge, precipitating the decision to switch technology

and start a new cycle featuring a central processors technology, that began in 1988 and

declined in the early 2000s. Interestingly, the value of Intel closely followed these cycles,

peaking early in each cycle when superior knowledge conferred a leading market position, and

declining afterwards when the returns to knowledge from the existing technology plunged.

In this paper, we study how firms should invest along their knowledge cycles. In par-

ticular, if firms’ value varies over knowledge cycles, as the example of Intel indicates, at

which stage of the cycle should firms invest most? Do investment and value move together

along cycles, as neoclassical models predict, or in opposite directions? What determines

the exploration of new technologies, and what is the resulting length of knowledge cycles?

These questions appear particularly relevant in a time of rapid technological changes (e.g.,

clean technologies) in which many companies must decide whether and how to adjust their

technological knowledge; yet, they have received surprisingly little attention in the literature.

Our main argument is that the answers to these questions depend on the role of invest-

ment in the process of knowledge creation. We first argue that from a theoretical perspective

the relevance of knowledge cycles for investment is questionable. We make this point in a

frictionless neoclassical model in which cycles arise and are determined entirely by firm

value. In this context if investment is only a means to accumulate capital, value (marginal

q) dictates entirely how the firm invests. Hence, remarkably, knowledge cycles are irrelevant

for the relation between investment and value, with the two declining hand in hand over

cycles. However, borrowing a long-standing idea in economics we propose that investment

is also a means to create knowledge, a way to learn about and to experiment with a tech-

nology.1 This notion, and more broadly the idea that knowledge creation is a by-product of

1Braguinsky, Ohyama, Okazaki, and Syverson (2021) show empirically that expanding firms’ productive
capital refines their knowledge about the quality of their current technology, in support of the idea that
investment creates knowledge. This idea is also used in Grossman, Kihlstrom, and Mirman (1977), or more
recently by Farboodi, Mihet, Philippon, and Veldkamp (2019).
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economic activity (Arrow, 1962), remains unexplored in the neoclassical literature. Yet, we

show that once investment becomes a means to learn knowledge cycles become central for

understanding firms’ investment decisions.

We develop a model that retains the main themes of neoclassical investment models, but

considers investment as a form of experimentation that creates knowledge, and which allows

firms to engage in exploration (to adopt new technologies). We study a risk-neutral firm that

operates a given technology whose quality is unobservable. The firm combines this technology

with capital to produce output and generate profits. Knowledge is the firm’s confidence, in

a statistical sense, about the quality of its existing technology. More knowledge increases

the firm’s productivity (Jovanovic and Nyarko, 1996). The firm accumulates knowledge

by observing productivity realizations (learning-by-doing) and, because investment is also a

means to create knowledge, by actively experimenting with its technology through investment

(learning-by-investing). Importantly and distinct from capital expansion, the accumulation

of knowledge is genuinely noisy. Thus unlike neoclassical models, the uncertainty inherent

to experimentation outcomes (e.g., Callander (2011)) affects the firm’s investment decision.

Knowledge cycles arise in the model because the firm cannot fully appropriate the re-

turns on its knowledge. Due to workers’ mobility, social interactions, imitation or competitive

pressures, the firm’s own technological knowledge “dissipates” to others, and thus the dol-

lar benefits of knowledge on an existing technology are bounded (Young, 1993). In other

words, operating the same technology forever is not optimal, and the exploration of new

technologies is necessary to generate future revenues. To the extent that knowledge is only

partially transferable across technologies (Jovanovic and Nyarko, 1996), the adoption of new

technologies leads to partial knowledge resets, and generates knowledge cycles.

The model delivers four main insights. In contrast to neoclassical predictions, (1) firm’s

investment is high both early and late in a knowledge cycle, (2) the relation between in-

vestment and value shifts around knowledge resets, and, most importantly, (3) in a specific

way—it spikes late in the cycle and declines early in the cycle. In addition, whereas knowl-

edge resets often follow pre-determined schedules in the literature (e.g., Berk, Green, and

Naik (2004) or Pastor and Veronesi (2009)), knowledge cycles in our model are endogenous:

(4) they are entirely determined by firm value, much as in the Intel example, they are

surprisingly short, and they expand when knowledge is easier to protect.

Two separate intuitions suggest that investment should be high at the beginning of a
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knowledge cycle. At early stages a new technology has highest option value. In addition,

early stages are associated with high uncertainty and thus high learning benefits from in-

vesting. Perhaps it seems that investment should be low late in the cycle, when both value

and uncertainty are low. Yet, this intuition omits that when investment creates knowledge

the possibility to explore a new technology is a put option on experimentation. Although

risk-neutral the firm develops an attitude towards the uncertainty of experiments, as their

outcomes affect value only after it has made its investment decision. Owing to the concavity

of firm’s revenues in productivity, early in the cycle firm value is concave in knowledge—

experimentation is a risk the firm would prefer to avoid. Later in the cycle firm value becomes

convex in knowledge since learning benefits are bounded. The firm changes attitude, and

starts gambling on new technologies by investing actively when the end of a cycle is in sight.

The point is that firm’s attitude towards noisy experiments creates a disconnect between

investment and value. The extent of this disconnect, and thus the relation between invest-

ment and value, itself varies along the knowledge cycle in a specific way. Early on, when

uncertainty about the new technology is high, the firm prefers to avoid experimentation and

invests prudently when in fact value is highest; this weakens the relation between investment

and value. A cycle ends when exploration is optimal, and this occurs when the marginal

value of knowledge on the current technology approaches zero. Since more knowledge harms

value late in the cycle due to accelerated revenue erosion, the marginal value of capital and

that of knowledge together go up, exactly when the firm gambles on new technologies by

raising investment. Hence, the relation between value and investment is stronger late in the

cycle. This pattern is specific to the disconnect experimentation creates; it does not arise

when investment in capital and knowledge are separate decisions nor can it be explained by

traditional frictions (e.g., fixed adjustment costs), and it is flat when investment only serves

to expand capital.

We exploit this novel prediction to demonstrate the relevance of knowledge cycles for

firms’ investment in the data. Guided by the theory, we test whether the relation between

investment and value shifts around knowledge resets as the model predicts. To implement

this test we develop a measure of knowledge resets using information from the patents of

a large sample of U.S. publicly-listed firms between 1976 and 2017. We first define all

patents that a firm cites in its own patents (in recent years) as its “knowledge base”: these

citations capture the technological knowledge the firm has accumulated over time (Ma, 2021).
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Aggregating cited patents across NBER technology classes, we then identify major annual

changes in a firm’s knowledge base through cosine similarity between the firm’s current

and lagged distributions of its technological knowledge across classes. A “knowledge reset”

corresponds to a year in which the distributions of cited technologies suddenly becomes

dissimilar.

To map the measurement of investment and value to their definition in the model, we

follow Peters and Taylor (2017) and consider “total investment” in physical and intangible

capital and “total Q,” the ratio of firm value to physical and intangible capital. We then

examine the relation between the two in event time around knowledge resets. Confirming that

there exists a disconnect between investment and value over knowledge cycles, we first find

a clear break in the relation around resets. Furthermore and most notably, supporting the

idea that the disconnect results from investment creating knowledge, we uncover a significant

spike in the investment−Q relation immediately prior to the reset (late in the cycle) and a

steady decline (of about 40%) following it (early in the cycle).

There exists many theories for a disconnect between investment and value but these

do not easily explain this specific pattern, and their potential connection with knowledge

resets is unclear. Competition and the “rise of intangibles,” two forces deemed responsible

for a disconnect in recent years (Gutierrez and Philippon, 2018), are building blocks of our

benchmark and so do not explain the pattern, which we also confirm empirically. Another

established origin of a disconnect is financing frictions (Gomes, 2001; Hennessy, Levy, and

Whited, 2007), but we find they do not explain the pattern, reminiscent of the result of

Gutierrez and Philippon (2018). Another possibility is that investment in physical capital

and intangibles are separate decisions, but we uncover empirically that the two follow similar

patterns around resets. Fixed adjustment costs also create a disconnect (Caballero and

Leahy, 1996) but we find theoretically they imply the opposite pattern. Nor is this pattern

explained by potential changes in ownership structure around resets, nor by mechanical

changes in patenting activity, nor by acquisition of firms with distinct technologies.

We also find that knowledge cycles (the time between two resets) are short, with a median

of 5 to 7 years. They are shorter in more competitive markets in which knowledge likely dis-

sipates faster and thus induce firms to explore new technologies sooner. Notably, we observe

that knowledge resets have become less frequent over time, with cycle length almost tripling

between 1980 and 2017 (from about 5 years to 13 years). Though not our focus, longer
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cycles could originate from the increased difficulty to generate new ideas (Bloom, Jones,

van Reenen, and Webb, 2017) or declining competition (Gutierrez and Philippon, 2018).

Since our model predicts that the investment−Q relation is dictated by knowledge cycles, it

is interesting to contrast their lengthening to the evolution of this relation. Gutierrez and

Philippon (2017) and Alexander and Eberly (2018) document a decline in investment in the

last twenty years but no decline in Q, which our sample confirms. The relationship between

investment and Q being strongest around resets, its weakening over time could be plausibly

tied to less frequent resets and changes in firms’ process of knowledge creation.

This paper adds to a growing literature on the role of intangible capital in firms’ invest-

ment and valuation. Recent models do not consider knowledge cycles and often incorporate

intangible capital as a production factor that accumulates similarly to physical capital, and

under perfect information (e.g., Eisfeldt and Papanikolau (2013), Peters and Taylor (2017),

Crouzet and Eberly (2018), Crouzet and Eberly (2020)). Closer to this paper, Andrei, Mann,

and Moyen (2018) develop a model in which technological innovation occurs randomly and

firms learn about it passively. In contrast, we consider that investment is a means to create

knowledge, and we study the implications of this idea for understanding the firms’ invest-

ment over their knowledge cycles. Our results extend the existing literature by highlighting

that investment creates knowledge and thus directly affects firms’ stock of intangible capital.

We also contribute to the literature in finance that explicitly models the process of knowl-

edge creation within firms (e.g., Berk et al. (2004), Bergemann and Hege (2005), Pastor and

Veronesi (2009), Manso (2011), or Manso, Balsmeier, and Fleming (2019)). Whereas we

share the view that experimentation and exploration dictate the evolution of firms’ tech-

nological knowledge, we associate experimentation with investment and we focus on the

implications for the relation between investment and value over knowledge cycles.

This paper also belongs to the literature on experimentation, and is closest technically

to Moscarini and Smith (2001).2 Similar to their decision maker, our firm decides how

much to experiment (to invest) and when to take a payoff-relevant action (permanent stop

in their case, and exploration in ours). We also find that experimentation intensity is high

when the action is about to be taken. Their decision maker minimizes the present value of

experimentation costs which delays high-intensity experimentation. Our firm experiments

2For instance, Grossman et al. (1977), Weitzman (1979), Jovanovic and Rob (1990), Rob (1991), Aghion,
Bolton, Harris, and Jullien (1991), Jovanovic and Nyarko (1996), Keller and Rady (1999), Callander (2011).
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more late in the cycle because exploration induces gambling on new technologies. Another

difference is in the formulation and scope. They focus on sequential analysis (Wald, 1947),

whereas we study investment in a neoclassical context.

2 Model setup

2.1 Main assumptions

We consider a firm that combines capital, Kt, with some technology to produce a unique

non-storable output, Yt, at time t according to the production function:

Yt = An,tK
α
t , (1)

where An,t denotes the productivity of technology indexed by n ∈ N and α ∈ (0, 1) denotes

returns to scale on capital. Productivity, An,t, of technology n follows the law of motion:

dAn,t/An,t = τ
1/2
A

Mn

Ω
1/2
n,t

dt+ dBt, (2)

where Mn determines the growth rate of the productivity of the current technology and

thus captures its quality, and B is a Brownian shock.3 Throughout the analysis, we use the

concept of technology in a broad sense as a “technology” may refer to production techniques,

but also management practices (e.g., Bloom, Sadun, and van Reenen (2016)), or organization

design (e.g., Prescott and Visscher (1980)). We assume that technologies only differ with

respect to their respective quality.

The quality, Mn, of each technology n is unobservable, and learning about it is a noisy

process. Although the firm does not observe the quality of its current technology, it observes

realizations of its productivity. Each incremental realization of dA/A reveals noisy informa-

tion about Mn, allowing the firm to revise its estimate of quality.4 Following Jovanovic and

Nyarko (1996) learning improves productivity, which we model by scaling quality, Mn, by

3The literature (e.g., Acemoglu (2009)) typically assumes that technological innovation modifies the level
of productivity (i.e., A), as opposed to its growth rate (M). Adding this feature to the model is possible but
is strictly equivalent to reducing obsolescence costs, given the way we model the evolution of capital below.
Hence, we characterize technologies only in terms of their productivity growth.

4Formally, we define how the firm sets its own estimate about M in Section 2.2.
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the conditional standard error, Ω
1/2
n , of the firm’s estimate of quality (learning reduces Ωn

in a way to be described). To simplify interpretation, we normalize the conditional variance

of productivity realizations in (2) to one so that τA measures the informativeness of the

productivity signal (aboutMn) in time-invariant units of uncertainty (e.g., Kyle, Obizhaeva,

and Wang (2018)).

The firm decides optimally how much to invest, and which technology to operate. At

any time t, exploration refers to the firm’s decision to abandon its current technology, n, and

switch to a new one, n + 1. Consistent with previous work incorporating exploration into

neoclassical settings (see, e.g., Abel and Eberly (2012)), abandoning an existing technology to

explore is costly: a fraction ω of capital K becomes obsolete. In contrast with these studies,

however, in this model the link between qualities across technologies is informational. We

follow Jovanovic and Nyarko (1996) and assume that switching to a new technology reduces

knowledge temporarily, and that once a technology has been abandoned it can never be

“recalled.” In the main analysis, for simplicity, we focus on the extreme case in which each

technology resets knowledge completely, or equivalently the firm “learns and forgets” (e.g.,

Benkard (2000)); we relax this assumption in Section 4.4, allowing knowledge to be partially

transferable across technologies. Upon selecting technology n + 1, its quality is randomly

drawn as per:

Mn+1 ∼ N (0, τ−1
M ), with Mn ⊥Mn+1, ∀n ∈ N,

so that the technology index n can be discarded, and the parameter τM captures prior

precision regarding the quality of the technology.5

The firm has incentives to explore new technologies because the benefits of knowledge are

bounded (Young, 1993). A large literature indicates that, because technological knowledge

is non-rival and largely embodied in (inalienable) workers, firms cannot fully appropriate its

returns. Proprietary knowledge thus typically dissipates over time (e.g., Romer (1986); Lucas

(1988)). Knowledge dissipation results, for instance, from workers moving across firms (e.g.,

Stoyanov and Zubanov (2012)), social interactions (e.g., Glaeser, Kallal, Scheinkman, and

Shleifer (1992)), imitation (e.g., Lieberman and Asaba (2006)), or illegal actions (corporate

5The assumption that each technology resets knowledge completely, along with the specification of the
signals in Eqs. (2)–(6) below, jointly imply that the parameter τM plays no role in the analysis.
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spying or thefts).6 To incorporate this aspect we assume that the firm faces an isoelastic

demand curve for the good (or service) it produces, Pt = (YtNt)
−η, with N an exogenous

variable that captures the dissipation of the firm’s knowledge in reduced form and η ∈ (0, 1)

the price elasticity of demand. The firm’s revenues are increasing in the productivity of the

current technology, A, but are decreasing in the intensity of knowledge dissipation, N :

Π (At, Kt, Nt) ≡ PtYt = A1−η
t K

α(1−η)
t N−η

t . (3)

Knowledge dissipation erodes revenues, making exploration necessary for firms to regenerate

future revenues.7 Upon exploration the firm faces an informational trade-off: it gives away

a known technology with low expected profitability, in exchange for a new technology with

higher expected return but of unknown quality.

The remaining corporate decision is that of investment, which in our model is coupled

with experimentation. As is customary in the neoclassical literature, the firm accumulates

capital K in (1) through corporate investment. Let It ≥ 0 represent investment in capital

at time t and it = It/Kt be the corresponding investment rate. We assume that capital

depreciates at a constant rate, δ. It follows that the net change in the stock of capital is:

dKt = (it − δ)Ktdt− ωKt−1t=ν , (4)

where, throughout the paper, ν denotes dates at which the firm decides to abandon the

current technology and to explore an unknown technology. Absent exploration, capital ac-

cumulation in (4) is identical to that in the neoclassical literature. In addition, investment

entails adjustment costs, γt(i), for purchasing and installing new capital, which for ana-

lytical convenience we assume proportional to operating revenues, Πt (e.g., Cooper (2006);

Hackbarth and Johnson (2015)):

γt ≡
(
i+ γ/2(i− δ)2

)︸ ︷︷ ︸
≡γ̂(i)

·Πt, (5)

6The firm may limit the dissipation of its knowledge by using patents (or trademarks). Intellectual
property tools are however limited in their scope because certain types of knowledge cannot be precisely
codified, are costly to give away through public filings (e.g., trade secrets), or because patents may fail to
adequately protect property rights (e.g., Lanjouw and Schankerman (2001)).

7We specify the law of motion for the process N in Section 2.2.
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so that the price of capital is taken to be proportional to Π/K, and the adjustment cost

function is convex (e.g., Abel and Eberly (1994)). In Section 5.4.2 we consider an extension

with fixed costs. We assume investment is strictly positive (I > 0) and, thus, irreversible.8

The novelty of the investment decision in this model compared to previous neoclassical

studies is that investment is not only a means to expand capital, but also a way to create

knowledge. Knowledge is a serendipitous by-product of economic activity (e.g., Arrow (1962);

Grossman et al. (1977); Farboodi et al. (2019)). For instance, Braguinsky et al. (2021) show

that expanding the set of machines used for production enlarges the productivity of machines

and refines the firm’s information about its current technology.9 Experimentation thus takes

the form of an expansion of capital on which the current technology is applied. Formally,

investment is a form of experiment that provides the firm with an informative signal flow,

dS, about the quality of the existing technology, M :

dSt =
τ
1/2
S i

1/2
t

Ω
1/2
t

Mdt+ dBS,t, (6)

where τS is a parameter that, together with investment, τSi, captures how informative ex-

perimentation is. The more the firm invests relative to its stock of capital, the more it learns

about M . Setting τS to zero further allows us to shut down experimentation (see Section 3).

Importantly, the last term in (6) introduces an independent Brownian, BS ⊥ B, in signal

realizations, which captures a genuine feature of experimentation: when the firm invests

to create knowledge, the outcome of its experiments is uncertain (e.g., Callander (2011)).

Similar to the productivity signal, informativeness of S is measured in time-invariant units

of uncertainty. Since investment augments both capital and knowledge, it can be viewed as

total investment in capital and knowledge (Peters and Taylor, 2017); in Section 5.4.2 we also

allow the firm to make separate investment decisions in capital and in the signal flow, S.

2.2 Knowledge creation within the firm

These assumptions imply that the firm collects information about the quality of its existing

technology both through productivity realizations (passive learning, as per (2)) and the signal

8Formally, this implies that adjustment costs are asymmetric, and that disinvestment is infinitely costly.
9As noted by Arrow (1962): “Each new machine produced and put into use is capable of changing the

environment in which production takes place so that learning is taking place with continually new stimuli.”
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flow investment creates (active learning, as per (6)). These two signals together represent

all information that is available to the firm:

Ft = σ ((Au, Su) : u ≤ t) .

Based on this information, the firm computes an estimate, M̂t = E[M |Ft], of quality. The

conditional error variance of this estimate is Ωt = V[M |Ft] (introduced in (6)). Standard

arguments imply that the firm gradually updates these statistics according to:

dM̂t = Ω
1/2
t τ

1/2
A dB̂t + Ω

1/2
t τ

1/2
S i

1/2
t dB̂S,t − M̂t−1t=ν

dΩt = −Ωt (τA + τSit) dt+ (τ−1
M − Ωt−)1t=ν ,

where B̂ and B̂S are two independent Brownian processes under the firm’s probability mea-

sure.10 The firm updates its estimates about the quality of its current technology continu-

ously, by observing realized productivity and by experimenting with it, and resets its estimate

and precision to priors (0 and τM , respectively) whenever it decides to trigger exploration.

We specify the dynamics of knowledge dissipation, N , that erodes revenues based on the

ratio of these two numbers, Z ≡ M̂/Ω1/2, which will be shown to define the relevant notion

of “knowledge” in the model. Since (the logarithm of) revenues in (3) are increasing linearly

in Z but decreasing linearly in log(N), we let the dissipation intensity evolve according to:

dNt/Nt = ϕZ2
t 1Zt≥0dt, (7)

with ϕ > 0.11 In words, we assume that knowledge dissipates faster as it accumulates, and

this dissipation only occurs for “good” technologies, Z > 0. When a technology is likely

of poor quality, the firm has strong incentives to explore. When the firm discovers a good

technology instead, it does not let knowledge grow unboundedly by sticking to the same

technology forever, as dissipation eventually erodes its revenues to zero (e.g., Jovanovic and

MacDonald (1994)).

We conclude by formulating the firm’s problem. The firm maximizes the expected value

10These dynamics follow directly from Theorem 12.7 in Lipster and Shiryaev (2001).
11We assume that the growth rate of log(N) is quadratic in Z, because the resulting affine-quadratic

framework remains tractable. However, any strictly convex increase in N will keep profits bounded and
produce qualitatively similar results, except in terms of the asymmetry between good and bad technologies.
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of its future profits (that is, revenues net of costs) by optimally choosing its technology and

its investment. Assuming the firm is risk neutral and discounts its profits at a constant rate,

r, its value, V (·), then equals:

max
{νn},it+s≥0

E

[∫ ∞

0

e−rs (Π (At+s, Kt+s, Nt+s)− γt+s) ds

∣∣∣∣Ft

]
. (8)

In Appendix B we show that our specification of adjustment costs in (5) implies that value is

homogeneous in revenues; learning improving productivity as in (2) and our specification of

knowledge dissipation in (7) further mean value is homogeneous of degree zero in (M̂,Ω1/2):

V
(
Nt, At, Kt, M̂t,Ωt

)
≡ Π(At, Kt, Nt) · v

(
M̂t/Ω

1/2
t

)
≡ Π(At, Kt, Nt) · v (Zt) , (9)

where v (·) denotes the intensive value of the firm.

We can now be specific about what “knowledge” means in this model. The firm’s es-

timate, M̂ , and its standard error, Ω1/2, do not matter separately; they only matter as

a t−statistic, Zt, which summarizes all the information the firm has at date t about the

technology it operates to decide whether to experiment or to explore:

dZt = τA/2Ztdt+ τ
1/2
A dB̂t︸ ︷︷ ︸

passive learning

+ τSit/2Ztdt+ τ
1/2
S i

1/2
t dB̂S,t︸ ︷︷ ︸

learning by experimenting

−Zt−1t=ν︸ ︷︷ ︸
knowledge reset

.

Positive (negative) values of Z indicate that the firm is confident, in a statistical sense, that

the quality of its current technology is high (low). On average, knowledge moves away from

prior beliefs, Z0 = 0, accumulating in continuation of the current estimate, Zt, at the speed

with which passive and active signals reveal information (τA/2 and τSit/2, respectively).

Exploring a new technology resets firm’s knowledge to Zν = 0, leading to a knowledge reset.

3 On the relevance of knowledge cycles: a benchmark

To highlight the role of investment as a form of experimentation, we first study the benchmark

case in which investment is simply a means to accumulate capital. Even absent experimenta-

tion, the firm retains the ability to explore new technologies. Thus knowledge cycles already

arise in this benchmark case, which is regularly overlooked in the neoclassical literature.
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Similarly, whereas knowledge and competition in the form of knowledge dissipation are not

standard elements in this literature they are building blocks of this benchmark. We explain

how these features matter for theoretical conclusions whenever relevant.

As a first step, we define the marginal product of capital (hereafter q).

Definition 1. The marginal product of capital q is the ratio of value of an additional

unit of capital to profits, ignoring the effect of investment on knowledge:

q(Z) ≡ 1

Π
·K · VK . (10)

A (cosmetic) difference of Eq. (10) relative to the standard definition of q in the neoclassical

literature is on the relation between firm value and q. In neoclassical models, firm value

is often assumed to be homogeneous in K so that q is proportional to V/K (average q).

Our specification of adjustment costs, however, considers that firm value is homogeneous in

profits, Π, (see Eq. (9)) so that q is proportional to V/Π (intensive firm value v):

q(Z) = α(1− η)v(Z) ∝ v(Z).

The benchmark model delivers the seminal insight in Hayashi (1982) that q is a sufficient

statistic for investment. To show this, and solve for the firm’s optimal investment policy,

suppose for the moment that it is optimal for the firm to stick to its current technology.

In this case the (intensive) value of the firm, v, associated with Eq. (8) satisfies the HJB

equation:

v(Z)
(
r + ηZ2ϕ1Z>0 − (η − 1)

(
αδ +

η

2
−
√
τAZ

))
(11)

= ψ(q(Z)) +
1

2
τAv

′′(Z) +
√
τAv

′(Z)

(
−2η +

√
τAZ

2
+ 1

)
,

where we have defined ψ to be the maximand:

ψ(q) ≡ max
i≥0

{qi− γ̂(i)} ≡ (q − 1)(2γδ + q − 1)/2γ. (12)
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The firm’s optimal investment policy is given by:

it ≡ i(q) = max{δ + (q − 1)/γ, 0},

thus delivering the traditional insight that q is a sufficient statistic for investment. In the

benchmark experiments are uninformative and Z evolves through passive learning and resets:

dZt = τA/2Ztdt+ τ
1/2
A dB̂t − Zt−1t=ν .

Since investment only affects value through capital accumulation, the marginal product of

capital satisfies q(Z) ≡ 1
Π

d
di

dV
dt
, and thus summarizes entirely how investment affects value.

Not only does q determine investment, but it is also a sufficient statistic for when the

firm decides to explore a new technology. The solution assumes so far that it is optimal

for the firm not to switch technology. When the firm decides to explore a new technology,

it resets its knowledge to priors and incurs a lump-sum cost of obsolescence, ωK, on its

existing capital stock. Since q in Eq. (10) is proportional to (intensive) firm value, q upon

exploration is:

q⋆ ≡ (1− ω)α(1−η)q (0) , (13)

so that the firm switches technology whenever q ≤ q⋆. Because exploration resets knowledge,

of which q is a function, determining when exploration is optimal implies solving for q in Eq.

(11); this requires some conjecture on the dependence of firm value on knowledge.

Intuitively, q peaks around knowledge resets, Z ≈ 0, following exploration. As Z grows

negative the firm is confident that its technology is poor, and its value must decrease as Z

further declines; as the firm instead becomes confident that its technology is of high quality,

knowledge dissipation intensifies and its value must decline as Z further rises. We conjecture

that q has a single peak, and later use parameter values under which this conjecture is

verified numerically. Thus, q is high when a technology has high option value and knowledge

dissipation is low (Z ≈ 0), and this occurs following exploration. Conversely, q is low when

option value is low and dissipation is high, and this triggers exploration.

Under this conjecture, there must exist two “trigger levels” of knowledge Z, say a < a,

at which q(Z) = q⋆ is satisfied and the firm decides to explore. Thus, A = (a, a) denotes
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the region in which the firm does not explore. The times {νk}∞k=0 in Eq. (8) at which the

firm explores correspond to hitting times at which knowledge exits A :

νn = inf{t ≥ νn−1 : Zt /∈ A }, ∀n ∈ N. (14)

Every time the firm triggers exploration, it ends a cycle and begins a new one. We refer to

the period in between exploration triggers as a “knowledge cycle”.

Definition 2. A knowledge cycle starts when the firm resets its knowledge to 0 by explor-

ing a new technology (Z0 = 0), and ends after a period of (random) length as per Eq. (14)

when the firm abandons the technology to explore a new one (Z /∈ A ).

We compute firm value piecewise over the two regions [a, 0] and (0, a]. Eq. (11) does

not have an explicit solution; we proceed numerically, imposing the two boundary conditions

implied by Eq. (13), v(a) = v(a) = (1−ω)α(1−η)v(0). We obtain another boundary condition

by “piecing together” firm value across the two regions, v(0−) = v(0+). Customary “smooth-

pasting” conditions then provide the remaining conditions that determine the location of

the optimal exploration thresholds.12 Figure 1 illustrates q as a function of the stock of

knowledge. This illustration relies on parameter values, which we discuss in Appendix A.2.

Recall that absent experimentation knowledge is irrelevant for investment—only q mat-

ters. Now, since q itself depends on knowledge, there exists an indirect relation between

investment and knowledge. Figure 1 confirms that q is high (low) early (late) in the cycle.

Thus, investment is highest following recent exploration (Z ≈ 0), and weakest when q is low

and triggers exploration (Z ≈ a or Z ≈ a). However, because investment and q move exactly

together their relation (investment−q sensitivity) is flat (at 1/γ) throughout the cycle. In

other words, although knowledge cycles are present they do not affect the relation between

investment and value.

12Smooth-pasting conditions satisfy:

lim
Z↓a

v′ (Z) = lim
Z↑a

v′ (Z) = 0, and lim
Z↑0

v′ (Z) = lim
Z↓0

v′ (Z) .
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Figure 1: Marginal product of capital as a function of knowledge in the benchmark model. The
figure plots q as a function of knowledge, Z. Smooth-pasting for exploration requires that q lands
flat at the edges of the domain defined by the exploration thresholds a and a. Parameter values are
defined in Appendix A.2.

4 Revisiting knowledge cycles with experimentation

We now study the case in which the firm invests as a means to experiment and to create

knowledge. The solution method in this case is similar to that of the benchmark. We

conjecture that there exists a region A , outside of which the firm decides to explore, and

inside which it experiments; we solve Eq. (11) imposing identical boundary conditions. The

only difference is that the maximand in Eq. (12) now not only involves q but also the expected

marginal benefit of knowledge, c:

ψ(q, c) = max
i≥0

{(c+ q)i− γ̂(i)} , (15)

which we define next.

Definition 3. The expected marginal benefit of knowledge is the ratio of expected value

of an additional unit of knowledge to profits, ignoring the (traditional) effect of investment

on capital:

c(Z) ≡ 1

Π
· τS · Ω ·

(
−VΩ +

1

2
· VM̂M̂

)
. (16)
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The expected marginal benefit of knowledge is a new variable that explains investment,

in addition to the marginal product of capital, q, and which affects, to a large extent, its

relation to value. From Eq. (15) the first-order condition for optimal investment, i, is:

γ̂′(i(Z)) = q(Z)︸ ︷︷ ︸
neoclassical trade-off

+ c(Z)︸︷︷︸
expected marginal

benefit of knowledge

. (17)

The neoclassical trade-off, as present in the benchmark, equalizes the marginal value of

capital, q, to marginal costs. When investment also creates knowledge, marginal costs equal

the sum of q and the expected marginal benefit of knowledge. Hence, q is no longer a

sufficient statistic for investment, and this disconnect means that the firm now follows a

knowledge-contingent investment plan, i(Z), which q does not subsume.

The effect of investment on knowledge, unlike traditional capital, is uncertain. For this

reason, note first that c represents the average marginal benefit of knowledge. Formally, we

can rewrite c (over a period of length dt) as:

c(Z)dt =
1

Π

d

di
E

[
VMdM̂ + VΩdΩ +

1

2
VM̂M̂d⟨M̂⟩

]
=

1

Π

d

di

(
VΩdΩ +

1

2
VM̂M̂d⟨M̂⟩

)
.

The first equality averages the value of an additional unit of knowledge over the firm’s

revisions in quality estimates, dM̂ , associated with each possible experimentation outcome.

From the firm’s perspective M̂ is a martingale (because quality is fixed for a given technology)

and these revisions are pure noise and thus have mean zero, the second equality. However,

and most importantly, this noise does matter through its instantaneous variance, d⟨M̂⟩.
Because experimentation noise matters for evaluating the expected marginal benefit of

knowledge, this benefit is a bundle of two alternative forces. To see this, note that Eq. (9)

implies VΩ = −Z/2v′ΠΩ−1 and VMM = v′′ΠΩ−1 and we can rewrite Eq. (16) as:

c(Z) ≡ τS
2
v′(Z)Z︸ ︷︷ ︸

knowledge q

+
τS
2
v′′(Z)︸ ︷︷ ︸

attitude towards
noisy experimentation

. (18)

Just as q measures the marginal value of capital, the first component in (18) measures the

marginal value of reducing the conditional error variance, Ω, of the quality estimate M̂ and
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can be thought of as “knowledge q.” In a Gaussian setup, the effect of experimentation on the

conditional variance is known, much as that on capital accumulation. Yet a distinction with

capital is that knowledge accumulation is noisy. The second component in Eq. (18), which is

central to our argument, captures the firm’s attitude towards this noise. The firm’s attitude

towards experimentation noise and its knowledge q evolve differently over the knowledge

cycle, as we now demonstrate.

4.1 Investment and firm’s attitude towards noisy experimentation

Our main argument is that when investment creates knowledge it is high at the beginning

and at the end of the knowledge cycle. Intuitively, early stages of a cycle are associated with

high q, the intuition the benchmark delivers. And if, in addition, investment is a means to

learn, early stages are associated with high uncertainty and thus high learning benefits. It

would seem that investment should be low late in the cycle when both q and uncertainty are

low. But this conjecture ignores that when investment creates knowledge the possibility to

explore new technologies is a put option on experimentation. Exploration induces firms to

gamble on new technologies by investing actively when the end of a cycle is in sight.

The economic mechanism underlying our argument operates as follows. Focus first on

knowledge q, the first component of the expected marginal benefit of knowledge in Eq. (18),

and use it to define “total q” as:

qtot(Z) ≡ q(Z) +
τS
2
v′(Z)Z, (19)

that is, traditional q plus knowledge q. Total q has the notable advantage that it can be

reasonably constructed from the data (Peters and Taylor, 2017). Figure 2 shows how tradi-

tional q (solid line) and total q (dashed red line) differ over the knowledge cycle, separately

for good (Z > 0, left panel) and bad (Z < 0, right panel) technologies. Note that in the

benchmark model they are identical; with experimentation, they may only coincide at the

beginning of a knowledge cycle (because Z ≡ 0) and at the end of it (due to smooth-pasting,

v′ ≡ 0).

Knowledge q works hand in hand with traditional q (defined earlier), except late in the

knowledge cycle. Note first that experimentation does not affect the shape of traditional

q (relative to that in Figure 1 in the benchmark): with or without experimentation, q is
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Figure 2: Traditional q and total q. This figure plots traditional q (solid black line) and total q
(dashed red line) as functions of knowledge, Z, separately for good (left panel) and bad (right panel)
technologies. Parameter values correspond to the baseline calibration, defined in Appendix A.2.

high early in the cycle and low late in the cycle. Since learning benefits are high early in

the cycle and decline thereafter, knowledge q pushes total q above traditional q early in the

cycle and causes it to decline faster after, thus reinforcing the neoclassical channel. However,

for exploration to be optimal improvement in knowledge on the current technology must be

eventually valueless (knowledge q is 0), causing total q to rise late in the cycle. Nevertheless,

both total and traditional q may only imply low investment late in the cycle.

This intuition is incomplete, as noisy experimentation only affects firm value ex-post, that

is, only after the firm has made its investment decision. Hence, the curvature of firm value,

as measured by the second component, v′′, in Eq. (18), matters for the firm’s decision of

ramping investment up or down. In particular, Eqs. (17), (18) and (19) together imply that

total q does not constitute a sufficient statistic for investment:

i(Z) = δ +
1

γ

(
qtot(Z) + τS/2v

′′(Z)︸ ︷︷ ︸
attitude towards

noisy experimentation

−1
)
, (20)

as it ignores the firm’s attitude towards noisy experimentation, an attitude which we illus-

trate in Figure 3.

Early in the cycle firm value is concave, v′′ < 0, owing to the concavity of revenues
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in productivity, and experimentation is a risk the firm would prefer to avoid. That is,

keeping capital fixed expected value post investment is below its known, pre-investment

value. Halfway through the cycle, however, knowledge dissipation accelerates and firm value

becomes convex, v′′ > 0. As the firm becomes confident about the quality of the existing

technology, it develops a gambling attitude towards noisy experiments and ramps up on

investment. The possibility of ramping knowledge down through exploration is a put option

on experimentation, inducing the firm to gamble on new technologies by raising investment

late in the cycle.
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Stock of Knowledge |Z|

τ S
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Attitude Towards Noise
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Figure 3: Attitude towards noisy experimentation over the knowledge cycle. This figure plots the
second component of the expected marginal benefit of knowledge in Eq. (18), τS/2v

′′, as a function
of knowledge, separately for good (black line) and bad (blue line) technologies. Parameter values
correspond to the baseline calibration, defined in Appendix A.2.

To examine how the firm’s attitude towards noisy experiments affects investment over

the cycle, Figure 4 contrasts the relation between investment and knowledge in the bench-

mark (solid line, a scaled version of Figure 1) to that with experimentation (dashed red

line), separately for good (left panel) and bad (right panel) technologies. Focus first on the

benchmark. Since neoclassical theory works in this case, investment is proportional to q: it

is highest following recent exploration, and lowest late in the cycle. Furthermore, when the

technology is likely good investment rises early in the cycle (q goes up), and then declines.

Activating experimentation (dashed red line) causes investment to rise late in the cycle.

Early in the cycle, though total q dictates the shape of investment, the firm’s reluctance
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towards experimentation noise flattens considerably the relation between investment and

knowledge. As knowledge accumulates along the cycle the firm changes attitude and starts

experimenting actively as a way to gamble on new technologies despite low total q. Figure 4

shows that this gambling attitude dominates late in the cycle and causes investment to rise.

This effect is particularly important for bad technologies, and turns the neoclassical relation

on its head: investment is decreasing in knowledge in the neoclassical case, but increasing

in knowledge when investment is a means to experiment. For good technologies instead, we

observe that investment is high not only early in the cycle—as in the benchmark model—but

also late on, as exploration becomes more likely.

0 −a a

0.15

0.2

0.25

0.3

0.35

Stock of Knowledge |Z|

In
ve
st
m
en
t
i(
Z
)

Good Tech

benchmark
experimentation

0 −a a

0.15

0.2

0.25

0.3

0.35

Stock of Knowledge |Z|

In
ve
st
m
en
t
i(
Z
)

Bad Tech

benchmark
experimentation

Figure 4: Knowledge-contingent investment with and without experimentation. This figure plots
investment as a function of knowledge, Z, in the benchmark model of Section 3 (solid black) and in
the model with experimentation of Section 4.4 (red dashed). The panel plots investment under good
technologies; the right panel plots investment under bad technologies. Parameter values correspond
to the baseline calibration, defined in Appendix A.2.

Finally, Figure 5 illustrates how key parameters of the model affect the relation between

investment and knowledge. Making experiments more precise (a higher τS) may give full force

to the firm’s attitude towards noisy experiments, exacerbating the late rise in investment

and reducing early investment (left panel). Another important parameter of the model is

knowledge dissipation. When knowledge is easier to protect (lower ϕ), the investment pattern

over the cycle is qualitatively similar, but the investment level is substantially higher.
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Figure 5: Investment and knowledge frictions. This figure plots investment as a function of
knowledge, Z, with experimentation for alternative parameter values, separately for good (left panel)
and bad (right panel) technologies. The blue line corresponds to the case of low experimentation noise
(τS = 0.45 > 0.3). The red line corresponds to the case of low knowledge dissipation (ϕ = 0.3 < 0.35).
Parameter values are defined in Appendix A.2.

4.2 Relation between investment and q over the knowledge cycle

Firm’s attitude towards experimentation noise creates a disconnect between investment and

total q, which causes the relation between the two to vary along the cycle in a specific way. In

particular, experimentation causes total q and investment to rise late in the cycle but weakens

their relation early on. Knowledge resets identify a shift in investment−q sensitivity, with a

spike before the reset and a drop upon and following it. Although there are alternative ways

of creating a disconnect between q and investment, in Section 5.4.2 we show that these are

unlikely to explain this specific pattern.

We approach the relation between investment and q in a way that can be replicated in

empirical tests. From the firm’s perspective, the relevant statistic for investment is the sum

of traditional q and the expected marginal benefit of knowledge. Alternatively, this sum

can be expressed as total q and the firm’s attitude towards noise, as seen in Eq. (20). The

problem is that, unlike traditional q, the expected marginal benefit of knowledge cannot be

directly constructed from the data. Empirical proxies for total q do exist (Peters and Taylor,

2017), but measuring attitude towards experimentation noise seems difficult (e.g., it requires

averaging value over all possible experimentation outcomes before the firm invests). Yet we
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know from the model that this attitude matters most and changes in opposite directions

around knowledge resets. How to measure knowledge resets is itself an empirical challenge,

which we tackle in Section 5. For the present section suppose these resets are available to the

empiricist. Therefore, to assess the relevance of firm’s attitude towards noise we estimate

investment−q regressions, which are common in empirical studies, but examining specifically

how the relation evolves around knowledge resets.

We simulate daily time series of total q and investment, which are long enough (8, 000

years) to cover many different knowledge cycles (≈ 2, 460 cycles). Because we use patent data

to measure knowledge resets in the data, we note that it is unlikely that bad technologies are

patented, and we remove all cycles that revealed a technology to be poor, which amount to

about half of the sample. Every time the firm explores a new technology (Z /∈ A ), we flag

the exploration date (ν). To map the data frequency in later tests we aggregate investment

and total q annually:

It =
∫ t+1

t
isds and Qt =

∫ t+1

t
qtot,sds.

We keep track of whether a knowledge reset occurred over the year using the dummy variable:

DReset
t = 1ν∈[t,t+1).

To examine how the relation between investment and total q evolves around resets, we

track this relation 5 years preceding and following the reset by estimating the specification:

It = α + βQt +
+5∑

k=−5

γkD
Reset
t+k Qt +

+5∑
k=−5

δkD
Reset
t+k + ϵt, (21)

where k ∈ {−5, ..., 5} denotes the number of years preceding or following the reset year, t.

The coefficient β captures the average level of investment−q sensitivity; each coefficient γk

captures variation in sensitivity relative to this level k years before or after the reset. Figure

6 reports the sensitivity, β + γk, in event time k around the reset (k = 0).
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Figure 6: Investment−q sensitivity in event time around a knowledge reset. Each panel plots the
sensitivity of investment to total Q within the five years before and after the reset event, k = 0.
We plot the sensitivity in the benchmark (flat black line) and with experimentation (red line). The
middle panel corresponds to the baseline calibration (Appendix A.2), the left panel considers high
experimentation noise (τS = 0.25 < 0.3), and the right panel considers low knowledge dissipation
(ϕ = 0.3 < 0.35). Dashed gray lines correspond to the confidence intervals at the 95% level.

Recall that benchmark investment−q sensitivity is constant and equal to 1/γ throughout

the cycle (the flat black line in Figure 6). Note further that this prediction based on total

q would carry over to experimentation if the firm’s attitude towards noisy experiments did

not matter. However, when this attitude matters, total q is not a sufficient statistic for

investment—and the relation between the two must exhibit variation around resets, as is

clearly apparent from the red lines in Figure 6.

Variation in the strength of the investment−q relation follows a specific pattern around

resets—the relation is weaker early in the cycle and stronger late in the cycle. The firm’s

attitude towards noise weakens the relation between investment and total q early in the cycle

(v′′ < 0). When uncertainty about the current technology is high, the firm prefers to avoid

experimentation risk and invests prudently when in fact total q is highest. Late in the cycle,

the firm gambles instead on new technologies by raising investment, when simultaneously

knowledge q causes total q to rise. This pattern is robust to alternative values of key model

parameters: it is more pronounced either when experiments are less informative or when

knowledge is easier to protect (see left and right panels in Figure 6).
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4.3 What is the length of a knowledge cycle?

Let τx = inf{t > ν· : Zt = x} be the first time knowledge hits level x after switching to a

new technology. The probability that the next exploration time for good technologies occurs

before or at time t ≥ 0 immediately following exploration (i.e., Z0 = 0) is:

P (τa ≤ t|Z0 = 0, τa < τa) ≡ E
(
1τa≤t1τa<τa |Z0 = 0

)︸ ︷︷ ︸
≡G(t;0)

/E
(
1τa<τa |Z0 = 0

)︸ ︷︷ ︸
≡g(0)

.

For an arbitrary starting point Z ∈ A within the experimentation region, standard argu-

ments show that G(t, Z) solves the Kolmogorov Backward Equation (KBE):

Gt =
1

2
(τA + τSi(Z))(GZZ +GZZ),

with initial condition G(0, Z) = 0 and boundary conditions G(t, a) = 0 and G(t, a) = 1.13

The distribution of a cycle length is d
dt
G(t; 0)/g(0) and is plotted in Figure 7 with and

without experimentation (left panel) and with experimentation only but when knowledge is

more difficult to protect (right panel).

All curves in Figure 7 suggest that knowledge cycles are short, with a median of approx-

imately 6 years. Casual intuition may suggest otherwise. For instance, the cycles associated

with Intel ’s knowledge about RAM chips or central processor technology lasted around ten

years. Thus, a median of 6 years seems substantially “shorter.” However, we will show

empirically in Section 5 that knowledge cycles are consistently short in the data.

Experimentation leads to shorter knowledge cycles (the left panel of Figure 7). Note

that we have chosen parameter values in the benchmark model so that the benchmark

exploration thresholds coincide with those under experimentation. Hence, the shortening

of the cycle is a unique consequence of the learning benefits of active experimentation.

Because experimentation allows the firm to learn faster about the quality of its technology,

it shortens the average and median length of the cycle. Considering the substantial effect

of experimentation on investment relative to neoclassical predictions, however, this effect

is relatively small; this is because experimentation significantly reduces the initial level of

investment due to the firm’s reluctance to take experimentation risk early in the cycle.

13Similarly, g(Z) solves 0 = (τA + τSi(Z))(gZZ + gZZ), with boundary conditions g(a) = 1 and g(a) = 0.
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Figure 7: Distribution of the length of a knowledge cycle for good technologies. The left-hand
panel plots the distribution of the length of the cycle with (solid line) and without (dashed line)
experimentation. The right-hand panel does comparative statics, with the black curve denoting the
case with experimentation, and the blue curve corresponding to the case with experimentation and
high knowledge dissipation (ϕ = 0.8 > 0.35). Parameters are reported in Appendix A.2

It is intuitive that knowledge dissipation, for instance in the form of competitive pressures,

should reduce the length of knowledge cycles. In the case of RAM chips, competition from

Japan precipitated to a large extent the end of Intel ’s knowledge cycle. Alternatively, when

property rights are harder to protect the firm’s incentive to explore a new technology are

higher. The right panel of Figure 7 shows that high knowledge dissipation (the blue line)

reduces the length of the knowledge cycle, a prediction that we confirm later in the data.

4.4 Model extension: partially transferable knowledge

It is likely that knowledge acquired about a technology is in fact partially transferable to

another. Thus, we now relax our baseline assumption that knowledge is fully reset upon

exploration. In the spirit of Jovanovic and Nyarko (1996), we assume that upon exploring a

new technology (which occurs at time ν) knowledge is reset to:

Zν = λ · Zν−, (22)

where λ ∈ [0, 1). When λ ≡ 0, knowledge is specific to a technology and we recover the

model of Section 2. When λ > 0, knowledge is partially transferable across technologies.
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The case λ ≡ 1 in which knowledge is freely transferable across technologies does not lead

to a stationary solution and must be discarded.

The solution method is identical to the baseline, except for the boundary conditions that

apply when exploration is optimal. Value-matching conditions are now given by:

limZ↓a v(Z) = (1− ω)α(1−η)v(λ · a) and limZ↑a v(Z) = (1− ω)α(1−η)v(λ · a).

Smooth-pasting conditions are modified similarly.14 Figure 8 compares investment under

partially transferable knowledge (λ > 0, dashed lines) to that when knowledge is technology-

specific (λ = 0, solid lines) separately for good and bad technologies.
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Figure 8: Investment and its sensitivity to total q when knowledge is partially transferable across
technologies. The left-hand and center panels plot investment as a function of knowledge, Z, with par-
tially transferable (λ = 0.2, dashed lines) and with technology-specific (λ = 0, solid lines) knowledge
for good (left panel) and bad (center panel) technologies. The right-hand panel plots investment-q
sensitivity according to the simulation procedure of Section 4.2 5 years before and after a reset event,
k = 0, but with λ = 0.2. Parameter values are defined in Appendix A.2.

The main insights of the model remain, although the asymmetry between good and bad

technologies becomes stronger. When the firm uncovers a good technology, it is now more

likely to uncover another good one in the next cycle. Thus, the firm has greater incentives to

invest when it is able to partially reuse its existing knowledge. The same argument implies

that investment is lower for bad technologies relative to its level under technology-specific

knowledge, except early in the cycle when partial transferability of knowledge raises total q.

14 limZ↓a v
′(Z) = λ · (1− ω)α(1−η)v′(λ · a) and limZ↓a v

′(Z) = λ · (1− ω)α(1−η)v′(λ · a).
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Around knowledge resets, the relation between knowledge and investment and the evolution

of investment−q sensitivity (right panel) remain qualitatively unchanged.

5 Empirical tests

5.1 Measuring knowledge resets

To test the model’s main predictions, we measure knowledge resets using firms’ patents.

We obtain patent data from the United States Patent and Trademark Office (USPTO)

PatentView platform. We consider all utility patents applications granted between 1976

and 2017 and link assignees to public firms in Compustat using the bridge file provided by

NBER until 2006, and that extended by Stoffman, Woeppel, and Yavuz (2021) for later

years. Central to our measurement of knowledge resets, the data contains all the citations

each patent makes to prior patents, that we consider as the prior art that each patent is

building upon. We only consider firms that were granted at least one patent over the 1976-

2017 period, and require available data on total investment and total Q, as defined by Peters

and Taylor (2017). Firms enter the sample when they apply for their first patent over that

period and leave three years after their last patent grant. The sample comprises 1,442,813

distinct patent applications granted to 5,428 firms, or 54,250 firm-year observations. On

average firms are granted 26 new patents per year (the median is 2), and each patent makes

on average 15 citations to prior patents (with a median of 7).

We define firm f technological “knowledge base” at time t as the set of all the patents

cited by the patents applied for by f between t − 5 and t.15 Following Ma (2021), this set

captures the underlying technological knowledge that f has accumulated between t−5 and t.

On average, firms’ knowledge base is composed of 148 (median of 11) distinct patents cited

from 133 patents (median of 11). To track the evolution of f ’s knowledge base, we aggregate

the cited patents across the 38 distinct NBER patent technology sub-classes. Specifically, we

define the vector vft where each of its 38 elements represents the share of f ’s knowledge base

in year t corresponding to each class. Intuitively, vft represents the distribution of knowledge

accumulated by f in year t across distinct technology areas. The innovation of some firms

15We consider patent application year instead of grant year to better reflect the true timing of firms’
innovation. While we consider a period of 5 years to define the knowledge base, we obtain similar results if
we consider longer periods of 10 or 15 years.
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builds on patents from a few technology areas whereas other firms have a more dispersed

knowledge base.

Then, we measure annual changes in f ’s’ knowledge base from the cosine similarity

between vft and vft−1 according to:

∆vft =
vft

∥vft ∥
·
vft−1

∥vft−1∥
,

where the operator “·” denotes the scalar product, and “∥v∥” denotes vector v’s Euclidean

norm. By definition, ∆vft is bounded in [0, 1]. Higher values of ∆vft reflect greater similarity

between vft and vft−1, and indicate stability in the knowledge base. In contrast, lower values

of ∆vft indicate instability. Knowledge base is instable when the technology developed by f

in year t builds on patents from different technological classes compared to what was used

previously. Hence, ∆vft = 0 indicates that new technology in year t builds on technologies

that were not used until year t − 1. Table 1 (Panel A) shows that, perhaps unsurprisingly,

firms’ knowledge base is remarkably stable since the average value of ∆vft is 0.96 and the me-

dian is 0.99. The sample standard deviation of ∆vft is 0.10, indicating that firms’ innovations

typically build on a stable distribution of technologies.

To identify knowledge “resets”, we flag years in which ∆vft is abnormally low, using the

following binary variable(s):

Resetft (θ) =

{
1 if ∆vft < ∆vf − θ × σ(∆vf )

0 otherwise,

where ∆vf and σ(∆vf ) are the time-series average and standard deviation of ∆vt for firm f ,

and θ ∈ (1, 1.5, 2, 2.5). A reset occurs when ∆vft is θ standard deviations below its average.

Table 1 indicates that, across all firms and years, knowledge resets are infrequent as their

occurence, the average of Reset(θ), ranges between 3.8% (θ = 2.5) and 10.8% (θ = 1).

Although infrequent, the change in knowledge base during resets is sizable, as ∆vft ranges

between 0.67 and 0.77, implying roughly a 30% change in the knowledge base.

To build intuition, we detail the knowledge resets of two firms in our sample.16 The first

16Selected among the 25 largest firms with a least 10 patents forming their knowledge base and experiencing
large resets during the sample period (θ = 2.5)
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Variable mean sd p25 p50 p75 N

Panel A: firm-year variables
∆v 0.964 0.107 0.982 0.997 0.999 54,250
Reset(1.0) 0.108 0.310 0 0 0 54,250
Reset(1.5) 0.081 0.273 0 0 0 54,250
Reset(2.0) 0.058 0.234 0 0 0 54,250
Reset(2.5) 0.039 0.193 0 0 0 54,250
∆v|Reset(1.0) 0.779 0.229 0.678 0.859 0.961 5,827
∆v|Reset(1.5) 0.745 0.245 0.596 0.826 0.950 4,353
∆v|Reset(2.0) 0.708 0.258 0.535 0.780 0.930 3,107
∆v|Reset(2.5) 0.682 0.264 0.500 0.751 0.911 2,076
Total Q 1.194 1.949 0.223 0.615 1.345 54,250
Total Investment 0.236 0.185 0.124 0.183 0.278 54,250
Physical investment 0.066 0.080 0.022 0.042 0.079 54,250
Intangible Investment 0.169 0.143 0.076 0.130 0.213 54,250

Panel B: Cycle variables
τdata(1.0) 6.404 5.348 3 5 8 1,885
τdata(1.5) 7.526 6.429 3 6 9 1,095
τdata(2.0) 8.387 7.273 3 6 11 568
τdata(2.5) 9.674 8.298 3 7 13 227

Table 1: Summary Statistics. This table presents the summary statistics of all variables used in
the empirical analysis. Panel A reports statistics for firm-year variables. Panel B reports statistics
for cycle variables. The sample period is from 1976 to 2017.

is the business-to-business software company CA Technologies that experienced a knowlegde

reset in 1997, and the second is the distributor of motor fuels Sunoco that experienced a

reset in 1985. Table 2 displays the elements (larger than 5% for brevity) of both firms’

vectors v for years t (the reset year), t − 1, and t − 2. Panel A reveals that CA’s reset

(∆v dropping from 0.99 in 1996 to 0.39 in 1997) is driven by an abrupt increase in its

share of citations of patents in “computer hardware and software”, “communication”, and

“peripherals”, and “information storage”, and a simulateneous decrease in citations from

“material processing and handling”, “coating”, and “agriculture, food, and textiles”. These

changes reflect the company’s strategy in the mid nineties to improve compatibility with

products from other vendors, e.g., Hewlett-Packard or Apple Computer.17 Panel B indicates

that the knowledge reset of Sunoco (∆v dropping from 0.98 in 1984 to 0.73 in 1985) stems

from its increased reliance on technologies related to “organic compounds”, and a decreased

17See CA Technologies’ history at: https://en.wikipedia.org/wiki/CA_Technologies.
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NBER Sub-category vt vt−1 vt−2

Panel A: CA Technologies (reset in t=1997)
Agriculture, Food, Textiles 0.01 0.04 0.05
Coating 0.02 0.12 0.07
Miscellaneous 0.02 0.08 0.07
Communications 0.05 0.00 0.00
Computer Hardware & Software 0.43 0.10 0.11
Computer Peripherials 0.05 0.00 0.00
Information Storage 0.14 0.00 0.00
Electronic business methods and software 0.09 0.00 0.00
Mat. Proc & Handling 0.11 0.53 0.55
∆v 0.39 0.99

Panel B: Sunoco (reset in t=1985)
Gas 0.05 0.09 0.08
Organic Compounds 0.28 0.03 0.01
Resins 0.02 0.01 0.06
Miscellaneous 0.38 0.53 0.48
Drugs 0.07 0.04 0.03
Measuring & Testing 0.00 0.06 0.10
Mat. Proc & Handling 0.05 0.01 0.01
Heating 0.07 0.13 0.11
∆v 0.73 0.98

Table 2: Examples of knowledge resets.

reliance on technologies related to “measuring and testing”, and “heating”, coinciding with

its launch of the Sunoco ULTRA 94 in 1983, the market’s highest octane unleaded gasoline.18

5.2 What is the length of knowledge cycles in the data?

We define the length of a cycle as the number of years between two resets (τdata(θ)) for

firms that have completed at least one cycle (two observable resets). This restricted sample

comprises between 227 (θ = 2.5) and 1,885 (θ = 1) cycles for 190 and 1,242 distinct firms,

respectively. Figure 9 displays the distributions of τdata for the four values of the threshold

θ. Mirroring the distribution in the model (see Figure 7), the empirical distributions are

asymmetric and right skewed. Panel B of Table 1 indicates that the average cycle length

varies between 6.40 and 9.67 years, and the median is between 5 and 7 years. Figure 10 reveals

notable heterogeneity across broad (one-digit SIC) industries and confirms the prevalence

18See Sunoco’s history at: https://en.wikipedia.org/wiki/Sunoco.
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of skewed cycles (averages are larger than medians). The longest cycles appear in mining

with an average close to 10 years, and the shortest in retail with less than 6 years. Although

existing research provides no point of comparison that we are aware of, knowledge cycles

appear rather short in our sample.
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Figure 9: Empirical length of knowledge cycles. This figure plots the distribution of the
length of knowledge cycles, where a cycle is given by the number of years between two
knowledge resets. We consider resets based on four distinct values of θ.

Figure 11 displays length distributions separately for firms operating in competitive and

concentrated industries, measured using the Herfindhal index (HHI) computed at the 3-digit

SIC level below and above the sample median based on firms in Compustat. We use HHI as

a proxy for the intensity of knowledge dissipation (ϕ), assuming lower dissipation in more

concentrated industries (high HHI). In line with the model’s prediction, Figure 11 reveals

longer cycles for firms facing lower knowledge dissipation, with an average length of 8.37 years

in concentrated industries compared to 6.69 years in competitive industries (the difference

is statistically significant).19 Figure 11 reveals that the intensity of knowledge dissipation is

linked to the length of knowledge cycles, which reinforces the economic plausibility of our

19The model also predicts that the distribution of knowledge cycles should depend on the noise association
with experimentation, τS . Unfortunately, we could not find a plausible empirical proxy for this parameter.
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Figure 10: Empirical length of knowledge cycles across industries. This figure plots the average
and median length of knowledge cycles across one-digit SIC industries, where a cycle is given by the
number of years between two knowledge resets. We consider resets based on θ = 1.5.

measurement of knowledge resets and cycles.

5.3 Investment and total q around knowledge resets

We examine the relation between investment and total q around knowledge resets (see Figure

6) using “total” investment from Peters and Taylor (2017) to capture the optimal investment

rate i(Z). Similar to i(Z), total investment is the sum of capital (capex) and intangible

(R&D+0.3×SG&A) expenditures divided by (lagged) total capital. Total capital is the

sum of property, plant, and equipment, intangible assets on the balance sheet, research and

organizational capital (accumulated R&D and SG&A spending). We use Peters and Taylor

(2017)’s total Q as a proxy for the model’s total q. Total Q is defined as firm value divided by

total capital, which we view as a reasonable proxy for the sum of the model’s traditional and

knowledge q. Using simulated data, in untabulated tests, we obtain a correlation coefficient

of 0.96 between the model’s total q and that in Peters and Taylor (2017), and verify that
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Figure 11: Empirical length of knowledge cycles by HHI. This figure plots the distribution of
the length of knowledge cycles across firms in concentrated and competitive industries. Firms are
assigned to groups based on whether the HHI of their industry is above or below the sample median.
A cycle is given by the number of years between two knowledge resets. We consider resets based on
θ = 1.5.

the evolution of investment−q sensitivity is virtually unchanged.20

Table 1 presents summary statistics. Average total Q is 1.280, with a median of 0.636.

Total investment is 0.235 on average, with a median of 0.183. The average (median) physical

investment is 0.065 (0.042) and the average (median) intangible investment is 0.168 (0.130).

Overall, these statistics are close to those reported by Peters and Taylor (2017) on a larger

sample that also includes non-patenting firms (see their Table 1). Firms in our sample

invest more in intangible than in physical assets, which is expected as we focus on firms with

patents.

To track the relation between total investment and total Q around resets we estimate

the empirical counterpart to Eq. (21) in simulations:

If,t = αf + ηt + βQf,t−1 +
+5∑

k=−5

πkQf,t−1 ×DReset
t+k +

+5∑
k=−5

δkD
Reset
t+k + εf,t, (23)

20Formally, using the notation of our model, the variable vK
K+Z boils down to Peters and Taylor (2017)’s

definition of total Q—up to a constant.
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where If,t is total investment of firm f in year t, and Qf,t−1 is its lagged total Q. To

closely map the model, we include firm fixed effects αf to isolate the within-firm variation

of investment and Q over resets. In addition, year fixed effects ηt absorb common variations

across firms (e.g., investment or valuation booms or busts common to all firms in specific

years). We cluster the standard errors at the firm level. The sample includes firms that

experience, or not, a reset at some point. The indicators DReset
t+k identify years around resets,

from 5 years before to 5 years after.21 Hence, the coefficients πk’s on the interactions between

Qf,t−1 and DReset
t+k track the within-firm evolution of the investment−Q sensitivity around

resets. Because β captures average sensitivity outside periods surrounding resets or for

control firms not experiencing resets, investment-Q sensitivity around resets is given by

β̂ + π̂k for k ∈ [−5,+5], which Figure 12 plots (together with their 95% confidence bounds)

for resets corresponding to θ = 1.5.
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Figure 12: Investment-Q sensitivity around knowledge resets. This figure plots the sensitivity of
investment to Q (β̂ + γ̂k for k ∈ [−5,+5]) in event-time around resets, with resets corresponding to
θ = 1.5.

Figure 12 reveals substantial variation in the relation between total investment and total

Q around resets, which first confirms a disconnect between value and investment around

21Because firms could have several resets within short periods, this specification accounts for the fact that
some years could be simultaneously before and after a reset.
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resets. Second, and most importantly, this disconnect evolves in a way that closely mirrors

the relation that experimentation implies. Specifically, resets mark a clear break in this

relation, with investment-Q sensitivity increasing and spiking before the reset (at k = −1),

and dropping following the reset (for k ≥ 0). The evolution of investment-Q sensitivity is

both economically and statistically significant. It rises to 0.05 just before resets, and reaches

to 0.03 five years into the new cycle, implying a drop of 40% that is significant at 1%.

Reassuringly, the magnitude of investment-Q sensitivities is in line with Peters and Taylor

(2017). In their sample, sensitivity is 0.049 (see their Table 2), whereas it is 0.042 in ours.

The specific pattern of Figure 12 is quite puzzling if one ignores that investment creates

knowledge. In particular, a strong (weak) relation between value and investment at the end

(start) of a cycle is not easily explained by traditional arguments. Of course, there exists

various ways of rationalizing a disconnect (e.g., financing fricitions) but we argue and show

next that few imply the specific pattern of Figure 12. In particular, traditional origins of

a disconnect are either not at play in the data around resets or imply patterns that are

theoretically inconsistent with that of Figure 12. We take these counterfactuals as indicative

that the economic force driving the disconnect in our model—firms’ attitude towards noisy

experiments—is at play in the data.

5.4 Are alternative channels at play?

In principle, the timing of knowledge resets could coincide with changes in firms’ environ-

ment, unrelated to the value of knowledge or to firms’ attitude towards experimentation

noise, but related to their investment and Q. We consider two categories of alternative ex-

planations, those that are mechanical and those that are based on other economic theories.

5.4.1 Mechanical channels

Our measure of knowledge resets could be affected by changes in acquisition or innovation

strategies related to investment and Q. For instance, resets may arise following the purchase

of firms with distinct patented technologies, or large discontinuities in patenting (e.g., the

rising importance of secrecy). We track investment-Q sensitivity around resets seperately for

firms that (i) were acquirers in the three years preceeding resets (or not), or (ii) experienced
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increase (or decrease) in the size of their patent portfolios at the time of resets.22 Figure 13

shows that the dynamics of investment-Q sensitivity around resets (β̂ + π̂k for θ = 1.5) are

similar for both groups, labeled as “Low” and “High.” Thus our conclusions are unlikely

due to changes in firms’ acquisition or patenting activities around resets.
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Figure 13: Investment-Q sensitivity around knowledge resets: robustness I. This figure plots the
sensitivity of investment to Q (β̂ + γ̂k for k ∈ [−5,+5]) in event-time around resets across groups.
Firms are assigned to groups based on whether they acquired other firms in the last three years
(left panel), or whether the change in the size of their patent portfolio is above of below the sample
median. Resets correspond to θ = 1.5.

5.4.2 Alternative economic theories

The relevance of knowledge resets for the relation between investment and value must arise

from a disconnect between the two. Following Gutierrez and Philippon (2017) we focus

on three origins of a potential disconnect: (i) financial frictions, (ii) competition, and (iii)

institutional ownership. To this list we add (iv) the possibility that, in contrast to our

standing assumption, investment in capital and intangibles are separate decisions, and (v)

fixed adjustment costs, which are a known theoretical origin of the disconnect.

22Specifically, we re-estimate specification (23) but interact all variables with two binary variables identi-
fying the two groups in which firms are assigned at the time of resets.
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Financing frictions, competition and ownership. We capture financing frictions us-

ing the ratio of cash and marketable securities to assets (e.g., Fazzari, Hubbard, Petersen,

Blinder, and Poterba (1988)). Furthermore, competition is another potential origin of the

disconnect in the literature. We measure competition using industries’ Herfindhal index

computed at the 3-digit SIC level from Compustat. Finally, we measure ownership using the

fraction of shares held by institutional investors. For each variable, we assign firms experi-

encing resets into two groups based on whether they are below or above the median taken

across all resets, and track the investment-Q sensitivity seperately across groups. Figure 14

reveals no significant difference across groups, suggesting that the dynamics of investment-Q

sensitivity around resets is unrelated to these channels.

At this stage a clarification regarding the effect of competition in the model is perhaps

appropriate. In the model we capture competitive pressures by assuming that they exacer-

bate knowledge dissipation, which we parametrize with ϕ. Thus competition in this form is

a building block of the model and cannot explain the relevance of knowledge resets in this

context. Although competition affects knowledge cycles to a large extent (see Figure 7),

absent a disconnect between investment and value it does not affect the relation between the

two. And under the disconnect experimentation creates, competition merely shifts the over-

all level of the relation leaving its specific pattern unaffected (see the right panel of Figure

6). We conclude that the data supports this intuition.

As an alternative robustness exercise, we include all these variables along with those of

Section 5.4.1 (whether a firm is an acquiror, the number of patents in its portfolio, cash, HHI

and institutional ownership) in Eq. (23) as controls, both in levels and interacted with the

indicators DReset
k . The lower-right panel of Figure 14 indicates that the inclusion of these

variables does not affect the dynamics of the investment-Q sensitivity around resets (despite

significant coefficients for some of them, not displayed for brevity).

Capital and knowledge as separate investment decisions. The key assumption we

make is that knowledge is a by-product of investment in capital. Consider instead what

happens in the model if investment in capital and knowledge are in fact separate decisions.

In this case the firm solves:

max
{νn},iK,t+s≥0,iZ,t+s≥0

E

[∫ ∞

0

e−rs (Π (At+s, Kt+s, Nt+s)− γt+s) ds

∣∣∣∣Ft

]
(24)
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Figure 14: Investment-Q sensitivity around knowledge resets: robustness II. This figure plots the
sensitivity of investment to Q (β̂ + γ̂k for k ∈ [−5,+5]) in event-time around resets across groups.
Firms are assigned to groups based on whether their cash-to-asset ratio (upper-left panel), industry
HHI (upper-right panel), or institutional ownership (bottom-left panel) is above of below the sample
median. In the bottom-right panel, we display the sensitivity of investment to Q after controlling
for whether a firm is an acquiror, the number of patent in its portfolio, cash, HHI and institutional
ownership). Resets correspond to θ = 1.5.

s.t. dZt = τA/2Ztdt+ τ
1/2
A dB̂t + τSiZ,t/2Ztdt+ τ

1/2
S i

1/2
Z,t dB̂S,t − Zt−1t=ν

s.t. dKt = (iK,t − δ)Ktdt− ωKt−1t=ν ,

where the dynamics of A and N remain unchanged and adjustment costs are modified to:

γt ≡
(
iK + pZiZ + γ/2(iK − δ)2 + γZ/2i

2
Z

)
· Πt,

to reflect that knowledge has adjustment costs of its own (and unrelated to δ). We relegate

the solution method to the appendix and plot the two separate investment policies in Figure

15. The pattern for value is similar to that in the baseline model and thus not reported.

Unsurprisingly, given that value is a sufficient statistic for investment in capital, its

pattern (left panel) is very similar to that of Section 3. Furthermore, we know from Eq.

(18) that the benefits of knowledge, c, are a bundle of two opposite forces, knowledge q and
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Figure 15: Investment in capital and knowledge when optimized separately. This figure plots
investment in capital K (left panel) and in knowledge Z (right panel) as functions of knowledge, Z,
separately for good (solid black) and bad (dashed red) technologies. Parameter values correspond to
the baseline calibration, defined in Appendix A.2 with γZ ≡ γ and pZ ≡ 0.

attitude towards noise. Early in the cycle knowledge q is positive but investment is risky,

which dominates, c < 0, so that the firm chooses to be “knowledge inactive.” Late in the

cycle knowledge q is negative but investment becomes a form of gambling, which dominates,

c > 0, and triggers investment in knowledge. The point is that separating the two forms

of investment creates inaction regions for investment in knowledge and thus a disconnect

between investment and value. Therefore, we now reiterate the simulations of Section 4.2

and plot the sensitivity of the two kinds of investment to total q in Figure 16.

Two patterns are clear. Sensitivity of investment in knowledge to total q is weak and

negative, which is due to intangible investment occuring at the end of the cycle when total q is

slowly declining. In contrast, value and investment in capital, and thus their relation, follow

similar patterns to those that prevail when investment creates knowledge. We conclude that

the two patterns of sensitivity across the two kinds of investment differ when investment

does not create knowledge. To verify whether this is the case empirically, we reiterate

these regressions in the data. Figure 17 indicates that the patterns associated with distinct

investment decisions are not supported in the data, with sensitivity of investment in capital

knowledge following similar patterns instead. This finding suggests that the two decisions are

likely entangled, and should be modeled together. Our standing assumption that investment
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Figure 16: Sensitivity of investment in capital and knowledge to total q when optimized separately.
This figure plots sensitivity of investment in capital (left panel) and investment in knowledge (right
panel) to total q in event time in a 5-years window around knowledge resets, k = 0; Parameter values
correspond to the baseline calibration, defined in Appendix A.2 with γZ ≡ γ and pZ ≡ 0.

generates knowledge is not only consistent with this evidence, but has also been validated

empirically in a different context (Braguinsky et al., 2021).

Fixed adjustment costs. Another well-known cause of inaction are fixed adjustment costs

(Caballero and Leahy, 1996), in which case investment is no longer driven by marginal q. To

examine whether the resulting disconnect can explain the main fact we document, we now

consider the benchmark framework of Section 3 (that is without experimentation, τS ≡ 0)

and modify the structure of adjustment costs to:

γt ≡
(
i+ F + γ/2(i− δ)2

)
· Πt, (25)

where F > 0 is a fixed cost that is paid per unit of time, dt (Abel and Eberly, 1994).

We relegate methodological details to the appendix and plot the optimal investment policy

in Figure 18. The pattern for value is similar to that in the baseline model and thus not

reported.

As desired, the left panel shows that fixed costs create an inaction region and thus a

disconnect between value and investment. Early in the cycle when q is highest the firm

follows an investment strategy that is similar to that of the benchmark. However, halfway
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Figure 17: Investment-Q sensitivity around knowledge resets. This figure plots the sensitivity
of physical (left panel) and intangible (right panel) investment to Q (β̂ + γ̂k for k ∈ [−5,+5]) in
event-time around resets, with resets corresponding to θ = 1.5.
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Figure 18: Investment and investment−q sensitivity in the presence of fixed costs. The left panel
plots investment in capital K as a function of knowledge, Z, separately for good (solid black) and bad
(dashed red) technologies. The right panel plots its sensitivity to marginal q in event time in a 5-years
window around knowledge resets, k = 0; dashed gray lines correspond to the confidence intervals
at the 95% level. Parameter values correspond to the baseline calibration, defined in Appendix A.2
with F ≡ 0.1.
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through the cycle q becomes too low to justify paying the fixed costs and investment ceases

altogether. The right panel reiterates the simulations of Section 4.2 and plots the sensitivity

of investment to q. The resulting disconnect creates a pattern in sensitivity that is opposite

to that we uncover in the data. Specifically, sensitivity weakens ahead of the reset and

strengthens following it. Intuitively, fixed costs deter investment late in the cycle and thus

cannot explain a strong relation between investment and value preceding resets.

Other robustness checks. We subject our results to other checks unreported for brevity.

The dynamics of investment-Q sensitivity holds if we (i) focus only on firms experiencing

resets at some point, (ii) consider other values for the threshold θ, (iii) eliminate years before

1980 to limit the potential truncation in reset measurement, (iv) include the interaction

between year and industry (3-digit SIC) fixed effects to absorb time-varying industry shocks

(e.g., unobserved common technological changes), and (v) add firms’ size (log of assets) and

cash-flows as additional controls, mimicking typical investment specifications (e.g., Peters

and Taylor (2017)). The post-reset decline in investment-Q sensitivity also remains in a

difference-in-differences specification aggregating all DReset
k indicators into one capturing the

post period k > 0 for firms experiencing resets, accounting for EIV in Q using the estimator

of Erickson and Whited (2000).

6 Concluding Remarks

The relation between investment and Q drops when firms explore new technologies and

reset their technological knowledge. This pattern is novel and consistent with a model in

which investment is a means to accumulate capital, as is customary in the literature, but

also a means to create knowledge. Investment as a means to experiment is high early in

the cycle (after adopting a new technology) but also late in the cycle (just before exploring

new technologies). The relation between investment and value is weaker early in the cycle

and stronger late in the cycle. The model generates endogenous knowledge cycles that are

short, and expand when knowledge is easier to protect. We find empirical support for these

predictions, confirming that knowledge cycles are an important determinant of investment.

Knowledge resets have become less prevalent over time, as illustrated in Figure 19, re-
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Figure 19: Evolution of cycles length and reset incidence. This figure plots the average length of
knowledge cycles by year (left panel) and the average incidence of knowledge resets by year. Resets
correspond to θ = 1.5.

sulting in cycles whose length almost tripled between 1980 and 2017.23 The lengthening of

cycles (which we believe we are first to document) could have various origins, for instance,

the increased difficulty to generate new ideas (Bloom et al., 2017) or declining product mar-

ket competition (Gutierrez and Philippon, 2018). Since investment−Q sensitivity is linked

to knowledge cycles, it is interesting to contrast its evolution to that of knowledge cycles.

Gutierrez and Philippon (2017) and Alexander and Eberly (2018) document a decline in

investment in the last twenty years, despite no decline in Q, which we confirm in our sample.

Because the relation between investment and Q is strongest around resets (see Figure 12),

its recent weakening could be connected to less frequent resets and the underlying changes in

the process of knowledge creation within firms. We leave these questions for future research.

23We obtain similar evolutions if we consider other values for θ, and if we control for changes in the
composition of the sample by removing firm fixed effects.
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A Model Calibration

A.1 Baseline Calibration

We first define parameter values for our baseline calibration, and summarize them in Table 3. Many
parameters are standard, and thus calibrated following common practices in the literature. Consis-
tent with Nikolov and Whited (2014), we set the discount rate to r ≡ 5%, the capital depreciation
rate to δ ≡ 13%, and the production function is such that α ≡ 0.8. The profit function exhibits
significant decreasing returns to scale, consistent with the rise of market power documented in
Gutierrez and Philippon (2017). We set the inverse of the elasticity of demand to η ≡ 0.5, to cap-
ture the average markup of 1.5 in recent years as estimated in De Loecker, Eeckhout, and Unger
(2019). Importantly, conjecturing that firm value is concave when experimentation is optimal,
the“expected returns on knowledge” is endogenously lower than 0.5 (by Jensen’s inequality); ac-
cordingly, we choose returns on capital, α(1− η) = 0.4 < 0.5. The curvature of profits with respect
to capital is therefore on the lower bound as discussed in Abel and Eberly (2011). Last, because
firms’ variable adjustment costs in our setting are proportional to profits, we calibrate firms’ vari-
able adjustment costs to γ ≡ 5 so that the investment rate is consistent with the summary statistics
observed in our sample (see Table 1) and in Table 1 of Peters and Taylor (2017).

Table 3: Baseline parameter values in our full model. The table summarizes standard
parameters in neoclassical models (part 1), and others specific to our model (part 2).

Symbol Definition Value

1. standard parameters

r risk-free rate 5%

δ depreciation rate 13%

α returns to scale on capital 0.8

η inverse of price elasticity of demand 0.5

γ variable adjustment costs 5

2. other parameters

τA informativeness of aggregate productivity 0.6

τS informativeness of experiments 0.3

ω obsolescence costs 59%
ϕ knowledge dissipation 0.4

Other parameters determining the behavior of exploration and experimentation in our model
are τA, τS , ω and ϕ. In our baseline calibration, we set the informativeness of experimentation to
τS ≡ 0.3, and the informativeness of the productivity signal to τA ≡ 0.6, to match the observed
variation in firm-level growth rates of output (i.e., Ma (2021)). Similarly, we ensure that exploration
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is infrequent by setting sufficiently high obsolescence costs ω. The stock of capital becomes obsolete
so that firm value decreases by 1 − (1 − ω)α(1−η) ≈ 30% upon exploration. We thus assume
significant creative destruction upon breakthroughs in exploration, consistent with the evidence
in Foster, Haltinwanger, and Krizan (2001). Finally, the dissipation of knowledge occurring upon
experimentation determines how desirable a technology is. We set ϕ ≡ 0.35, a value that triggers
sufficient asymmetry in the exploration thresholds, so that the firm is more likely to experiment
with an existing technology when the firm is confident that the technology is good (Z > 0).

A.2 Alternative Parametrizations

In Figure 7, we illustrate the properties of the model with respect to the expected length of the
knowledge cycle by considering the same parameters as in Table 3, with the exception of τA = 0.3.

In the extension with partially transferable knowledge, we illustrate the properties of the model
numerically by considering the same parameters as in Table 3, in addition to imposing λ = 0.2.

In the extension with fixed costs, we consider all standard parameters as stated in the first panel
of Table 3, as well as ω = 0.59, which we also use in the baseline calibration. Considering that our
assumptions on adjustment costs, knowledge dissipation and the signals extracted from experimen-
tation in this extension are different from the baseline model, we modify the remaining parameters
so that γ = 0.5, κ = 0.095, τA = 0.7, τS = 0.2, and ϕ = 2.

B Homogeneity of the value function

In this appendix we show that the value function of the firm takes the form in Eq. (9). We can
write the problem of the firm as:

V
(
Nt, At,Kt, M̂t,Ωt

)
≡ max

{νn},it+s

E

[∫ ∞

0
e−rs (Π (At+s,Kt+s, Nt+s) (1− γ̂t+s)) ds

∣∣∣∣Ft

]
s.t. dNt = ϕNt

(
M̂t/Ω

1/2
t

)2
1
M̂t/Ω

1/2
t ≥0

dt

dAt = At(τ
1/2
A M̂t/Ω

1/2
t dt+ dB̂t)

dKt = (it − δ)Ktdt− ωKt−1t=ν

dM̂t = Ω
1/2
t τ

1/2
A dB̂t +Ω

1/2
t τ

1/2
S i

1/2
t dB̂S,t − M̂t−1t=ν

dΩt = −Ωt (τA + τSit) dt+ (τ−1
M − Ωt−)1t=ν .

Consider the expectation in the firm’s objective. Integrating over the dynamics of A, N and K and
substituting we obtain:

E

[∫ ∞

0
e−rs (Π (At+s,Kt+s, Nt+s) (1− γ̂t+s)) ds

∣∣∣∣Ft

]
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= Π(At,Kt, Nt)E

∫ ∞

0

(1− ω)α(1−η)kse(1−η)(B̂t+s−B̂t)(1− γ̂t+s)

e

∫ t+s
t

(
(1−η)

(
τ
1/2
A M̂u/Ω

1/2
u +α(iu−δ)−1/2

)
−ηϕ

(
M̂u/Ω

1/2
u

)2
1
M̂u/Ω

1/2
u >0

−r

)
du

ds

∣∣∣∣∣∣Ft

 ,

where ks denotes the number of times exploration was triggered over the interval [t, t + s]. Now
introduce the change from the firm’s probability measure, P̂, to another probability measure, P̃,
according to:

P̃

P̂

∣∣∣∣∣
Ft

= e−1/2(1−η)2t+(1−η)B̂t ,

and define the function:

F
(
M̂t,Ωt

)
≡ Ẽ


∫ ∞

0
(1− γ̂t+s)(1− ω)α(1−η)kse

∫ t+s
t

(1−η)

(
τ
1/2
A

M̂u

Ω
1/2
u

+α(iu−δ)−η/2

)
−ηϕ

(
M̂u

Ω
1/2
u

)2

1
M̂u

Ω
1/2
u

>0
−r

du

ds

∣∣∣∣∣∣∣∣∣∣
Ft

 .

We can now rewrite the firm’s value function as:

V
(
Nt, At,Kt, M̂t,Ωt

)
= Π(At,Kt, Nt) max

{νn},it+s

F
(
M̂t,Ωt

)
dM̂t = Ω

1/2
t (1− η)τ

1/2
A dt+Ω

1/2
t τ

1/2
A dB̃t +Ω

1/2
t τ

1/2
S i

1/2
t dB̂S,t − M̂t−1t=ν

dΩt = −Ωt (τA + τSit) dt+ (τ−1
M − Ωt−)1t=ν ,

where B̃ is a P̃−Brownian motion. The firm’s problem is to choose a stochastic process (iu)t≥t and

stopping times {νk}k∈N given the initial conditions (M̂t,Ωt) at date t.
Let (suppressing time indices for simplicity)

J
(
M̂,Ω

)
≡ max

{νn},i≥0
F
(
M̂,Ω

)
,

and let A denote the region in which sticking to the current technology is optimal. We want to
show, first within the inaction region, that the value function has the property that:

J(λ1/2M̂, λΩ) = J(M̂,Ω), (26)

for an arbitrary constant, λ1/2 ∈ R, (the value function is homogenous of degree 0 in (M̂,Ω1/2)).
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The customary martingale argument implies J satisfies within the inaction region, (M̂,Ω) ∈ A :

0 = 1 +

(1− η)

(
τ
1/2
A

M̂

Ω1/2
− αδ − η/2

)
− ηϕ

(
M̂

Ω1/2

)2

1 M̂

Ω1/2
>0

− r

 J (27)

+ J
M̂
Ω1/2(1− η)τ

1/2
A + τAΩ(JM̂M̂

− JΩ) + ψ(M̂,Ω),

where ψ denotes the maximand:

ψ(M̂,Ω) ≡ max
i≥0

{
α(1− η)Ji+ τS(JM̂,M̂

− JΩ)Ωi− γ̂(i)
}
.

From the first-order condition the optimal investment policy satisfies:

i(M̂,Ω) =

{
0 if α(1− η)J + τS(JM̂,M̂

− JΩ)Ω ≤ 1
1
γ (α(1− η)J + τS(JM̂,M̂

− JΩ)Ω− 1) otherwise
.

Differentiating the conjectured identity in Eq. (26) twice w.r.t. M̂ and once w.r.t. Ω shows that

the same level of investment is optimal for (M̂,Ω) and (λ1/2M̂, λΩ):

i(λ1/2M̂, λΩ) = i(M̂,Ω),

and the same property thus applies to the maximand. Repeating the exercise on the PDE in Eq.
(27) shows that the conjectured homogeneity holds within the region A . Now when adopting a

new technology capital is depleted by ω and knowledge is reset to priors, so that for (M̂,Ω) ∈ ∂A :

J(M̂,Ω) = (1− ω)α(1−η)J(0, τ−1
M ),

and thus the conjectured homogeneity holds upon exploration as well. Note that homogeneity upon
resets follows from our baseline assumption that knowledge is reset to priors. In Section 4.4 we
allow for partial resets. For homogeneity to be preserved we need that Mν ∝Mν− and Ων ∝ Ων−,
which underlines the assumption we make in Eq. (22). Finally, letting J(M̂/Ω1/2, 1) ≡ v(M̂/Ω1/2)
we can write:

V
(
Nt, At,Kt, M̂t,Ωt

)
= Π(At,Kt, Nt) v(M̂/Ω1/2).

C Extensions

In this appendix we describe the solution method for the model extensions presented in Section 5.
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C.1 Separate investment decisions in capital and knowledge

We start by writing the HJB equation associated with the problem in Eq. (24). This HJB takes
the form in Eq. (11) with the maximand replaced by:

ψ(q, c) = max
iK≥0,iZ≥0

{qiK + ciZ − γ̂(iK , iZ)} .

The first-order conditions for optimal investment in capital and knowledge are:

iK(q) = max{δ + (q − 1)/γ, 0}
iZ(c) = max{(c− pZ)/γZ , 0}.

As in the benchmark case of Section 3 q is a sufficient statistic for investment in capital, and
mirroring this solution the expected marginal benefit of knowledge, c, is a sufficient statistic for
investment in knowledge. Yet we know from the main analysis that q and c behave differently as
functions of Z. In particular, whereas marginal q is guaranteed to be positive, we know that the
sign of c depends on those of v′Z and v′′. From the main analysis we have seen that early in the
cycle v′Z > 0 and v′′ < 0 with the latter dominating c < 0, and late in the cycle v′Z < 0 and
v′′ > 0 with the latter dominating c > 0. Therefore, the constraint that iZ ≥ 0 triggers inaction
early in the cycle (inaction with respect to investment in knowledge only). Under the conjecture
that firm value is single peaked in knowledge, there must exist two “trigger levels” of knowledge
Z, a < b < 0 < b < a, at which:

c(b) = c(b) = 0

is satisfied and beyond which the firm decides to invest in knowledge. Thus B ≡ (b, b) with
B ⊂ A denotes the region within which the firm does not invest in knowledge. We solve firm value
piecewise over the four associated regions ([a, b], [b, 0], (0, b] and [b, a]), imposing the boundary
conditions in the main text and adding the smooth-pasting condition associated with each of the
two b thresholds:

lim
Z↑b

v′(Z) = lim
Z↓b

v′(Z).

C.2 Fixed adjustment costs

The HJB equation is identical to that in Eq. (11) with the maximand in Eq. (12) but in which
adjustment costs are replaced by Eq. (25). Optimal investment is as in the benchmark, entirely
driven by q, but the fixed costs now triggers inaction in some regions. As q declines beyond a
certain level it can no longer justify paying the fixed cost and the firm no longer invests. Given the
conjectured shape of firm value there must exist two “trigger levels” of knowledge Z, a < b < 0 <
b < a, at which marginal q is so that:

ψ(q(b)) = ψ(q(b)) = 0,
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and this value of marginal q in turn corresponds to:

q(b) = q(b) =
1− δγ +

√
γ(2F + δ2γ)

α(1− η)
.

In contrast to Section C.1 in which inaction takes place at the center in a neighborhood of Z ≈ 0,
with fixed adjustment costs inaction takes place for large values of Z (when q is low). Thus
B ≡ (a, b) and B ≡ (a, b) denote the two regions within which the firm is inactive. We solve firm
value piecewise over the four associated regions ([a, b], [b, 0], (0, b] and [b, a]), imposing the boundary
conditions in the main text and adding the smooth-pasting condition associated with each of the
two b thresholds:

lim
Z↑b

v′(Z) = lim
Z↓b

v′(Z).
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