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Abstract

We provide a novel explanation for the empirical failure of the CAPM despite its
widespread practical use. In a rational-expectations economy in which information is
dispersed, variation in expected returns over time and across investors creates an infor-
mational gap between investors and the empiricist. The CAPM holds for investors, but
appears flat to the empiricist. Variation in expected returns across investors accounts
for the larger part of this distortion, which is empirically substantial; it offers a new
interpretation of why “Betting Against Beta” works: BAB really bets on true beta.
The empiricist retrieves a stronger CAPM on macroeconomic announcement days.
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1 Introduction

There is a growing tension between the theory of financial economics and its application. The

Capital Asset Pricing Model, a theoretical pillar of modern finance, fails in empirical tests.1

The consensus among economists is that beta does not explain expected returns, largely

shaping the view that the CAPM does not hold. But a flagrant affront to this view is that

the CAPM remains to this day the model that investors and firms most widely use.2 Adding

to the controversy, the CAPM does hold on particular occasions, e.g., on announcement

days, or at night.3 Why do economists keep rejecting a theory that practitioners refuse to

abandon?

This paper explores the idea that traditional empirical tests reject the CAPM when in

fact it is the correct asset pricing model from investors’ perspective. Of course, there are

many reasons not to believe the CAPM is the correct canonical asset pricing model; and there

are as many ways it could fail empirically. However, in this paper, we present a situation

in which the CAPM holds from the perspective of investors, but it fails empirically in one

specific way: the empiricist perceives a “flat” Securities Market Line, which becomes steeper

occasionally, e.g., when public information is released.

We build our argument in a rational-expectations model of informed trading in which a

continuum of mean-variance investors trade multiple assets (e.g., Admati, 1985). Investors

use their own private information and the information they infer from prices to predict future

excess returns. Even though returns are predictable from the perspective of investors, the

operation of the law of iterated expectations ensures that they all observe the same uncondi-

tional CAPM relation. Yet, return predictability leaves a mark on the CAPM relation that

the empiricist estimates: the operation of the law of total variance implies that the betas the

empiricist measures do depend on the extent to which returns are predictable. Critically,

expected returns vary across investors when their information is dispersed. Hence, variation

across investors leaves a mark on traditional CAPM tests, the main point of this paper.

We emphasize that our framework is not a standard CAPM environment—investors have

information that is dispersed among them (Lintner, 1969) and that the empiricist does not

observe (Hansen and Richard, 1987). Hence, the CAPM relation and the sense in which

1See Fama and French (2004) for a comprehensive review.
2The CAPM is the most widely used model to make investment decisions (Berk and Van Binsbergen,

2016; Barber, Huang, and Odean, 2016) and to compute the cost of capital (Graham and Harvey, 2001).
3Savor and Wilson (2014) document a strong relationship between expected returns and betas on days

when news about inflation, unemployment, or FOMC interest rate decisions is scheduled to be announced.
Hendershott, Livdan, and Rösch (2018) document a strong relationship when the market is closed (at night).
Ben-Rephael, Carlin, Da, and Israelsen (2017) document that the CAPM performs better when institutions
demand more information.
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it holds must be redefined. There is CAPM pricing in the sense that unconditional betas

depend on information that investors know, a result that goes back to Admati (1985).4

Thus, the argument that the CAPM is correctly rejected because it does not hold (e.g.,

Merton, 1987) does not apply. In this framework, the CAPM is incorrectly rejected because

the notion of beta that underlies it is not the traditional beta that empiricists commonly

compute.5

Variation in investors’ expectations increases the dispersion in empiricist’s betas relative

to investors’ betas. Since all betas (correct or incorrect) must average one (market’s beta),

the empiricist inflates all betas above market’s beta and deflates all others. As a result,

the empiricist perceives risky assets as riskier than they really are, and safe assets as safer

than they really are. Although the empiricist and investors disagree about betas (by the

law of total variance), they agree on unconditional expected returns (by the law of iterated

expectations). Since market’s beta is the only beta on which they agree, the empiricist’s

SML rotates clockwise around the market portfolio, which flattens its slope and creates a

positive intercept—the SML looks “flat.”

The informational distance between investors and the empiricist originates from two

sources of variation in investors’ expectations. First, there is aggregate (time) variation in

consensus expected returns, of the kind studied in Jagannathan and Wang (1996). How-

ever, time-series variation alone is often found insufficient to explain asset-pricing anomalies

(Lewellen and Nagel, 2006). Our focus is on the second source of variation, which results

from dispersion in investors’ information. Because investors’ information is dispersed there

is variation in expected returns across investors, too. In this model time-series and cross-

sectional variation in investors’ information reinforce each other, leading together to a flat

SML. To our knowledge, variation across investors—as opposed to variation over time—has

been neglected in empirical tests of the CAPM. We show that the impact of cross-sectional

variation on these tests is substantial, stronger than that of time-series variation.

An empirical and methodological contribution of this paper is to measure how expected

returns on pairs of stocks covary across investors. We use this measure to correct beta

estimates according to our theory, which reveals a much better-performing CAPM. We first

obtain proxies for consensus and individual expected returns for a large cross section of

stocks. I/B/E/S is one database that offers such a rich panel of individual expectations; it

provides one-year price targets made by a large set of analysts for S&P500 firms (among

others), starting in 1999. From these price targets we construct expected returns, which we

4See Easley and O’Hara (2004), Fama and French (2007), Van Nieuwerburgh and Veldkamp (2010),
Banerjee (2010), and Biais, Bossaerts, and Spatt (2010).

5See Roll (1978) and Dybvig and Ross (1985).
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use to assess quantitatively how variation over time and across investors affect together and

separately beta mismeasurement. As the theory predicts, both channels contribute to SML

flattening, with variation across investors accounting for the larger part.

Our tests rely on a new form of beta (dispersion beta), which measures how expected

returns on a given stock and on the market covary across investors. For instance, consider

an investor who systematically under-estimates returns relative to consensus and another

investor who does just the opposite. Computed across these two investors, dispersion beta is

positive: although investors deviate from consensus in opposite direction, their expectations

on the stock and on the market individually deviate from consensus in the same direction.

If, further, each investor’s deviation from consensus is larger on the stock than it is on the

market, dispersion beta will be larger than one. Thus, just as traditional beta compares

variation over time of realized returns on a stock to those on the market, dispersion beta

compares variation across investors of expected returns on a stock to those on the market.

Our main result that investors’ betas are shrunk towards one relative to empiricist’s

traditional betas is strongly confirmed in the data. Interestingly, this result corresponds to

the way practitioners adjust beta estimates (e.g., “ADJ BETA” on Bloomberg terminals).

This adjustment in our model and in practice has different origins. Practitioners use it

to reduce sampling biases (Vasicek, 1973), which are absent in our model; in this paper it

results entirely from the informational distance between investors and the empiricist. We

can compare, however, how much shrinkage our theory and empirics imply with how much

shrinkage finance textbooks recommend (e.g, Berk and DeMarzo, 2007). The Bloomberg

adjustment is: (2/3)×Raw Beta+(1/3)×1. Our proposed adjustment is: (1/2)×Raw Beta+

(1/2)× 1. Thus the adjustment used in practice is likely too conservative.

An alternative explanation is that CAPM flattening is caused by leverage constraints

(Black, 1972; Frazzini and Pedersen, 2014). We examine whether there is sufficient variation

in expected returns (both over time and across agents) to explain abnormal returns on the

“Betting Against Beta” (BAB) anomaly. In our data sample, we cannot reject the theoretical

possibility that returns on BAB result from beta mismeasurement, with variation across

agents playing a particularly important role in explaining returns on BAB. Although we do

not dispute the success of the BAB strategy, our interpretation differs: we claim that a large

part of this success is because “betting against measured beta is betting on true beta.”

Variation across investors’ information (dispersed information) causes larger CAPM dis-

tortion than aggregate variation (public information) does, everything else being equal. For-

mally, consider two economies that reveal an equivalent amount of information to investors,

but one in which this information is dispersed and one in which it is public (Albagli, Hellwig,

and Tsyvinski, 2015). In the economy in which all information is public, the empiricist’s
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SML is steeper. Investors’ betas and the unconditional risk premium are, however, identical

across the two economies. Thus empiricist’s SML steepens through a compression in mea-

sured betas when public information dominates (e.g., FOMC meetings). Recent empirical

work provides evidence supporting this result (Bodilsen, 2019; Andersen, Thyrsgaard, and

Todorov, 2020; Eriksen and Gronborg, 2020).

We examine how our conclusions depend on modeling assumptions. When information

is entirely public and the market portfolio is equally weighted, SML flattening is systematic,

irrespective of modeling assumptions. When information is dispersed, the structure of payoffs

matters; however, absent residual uncertainty in payoffs and under conditions on private

signals, dispersed information always amplifies flattening. More generally, the distribution of

eigenvalues of investors’ covariance matrix dictates whether flattening obtains, which occurs

when eigenvalues exhibit little dispersion. We also show that the SML can be downward-

sloping although the risk premium is always positive in this model. For instance, this puzzling

outcome depends on the composition of the market portfolio: it occurs when assets that have

high measured beta simultaneously have little weight in the market portfolio.

There are several established explanations for the finding that the SML is too flat, some of

which go back to the 1970’s.6 None result from variation in expected returns across investors.

We believe that the fleeting appearance of the CAPM on announcement days (Savor and

Wilson, 2014)—let alone its pervasive application in practice—licenses a new look at the

finding that the SML is too flat. In addition to aggregate variation (Jagannathan and

Wang, 1996; Lewellen and Nagel, 2006), we argue that variation across investors creates

CAPM distortion. That CAPM tests fail when the market proxy is not mean-variance

efficient is certainly true (Roll, 1977; Stambaugh, 1982; Roll and Ross, 1994) and is not our

point. Assuming that the CAPM holds unconditionally, we argue that an empiricist may

incorrectly reject it using the correct market proxy.

Section 2 defines the informational distance between an empiricist and investors in the

presence of dispersed information. In equilibrium this distance cannot be simply assumed,

but arises endogenously in a way we describe in Section 3. Section 4 presents our main result,

provides intuition into the distortion in beta estimates, and isolates the role of dispersed

information. Section 5 tests our theory, and reinterprets “betting against beta.” Finally,

Section 6 discusses and relaxes our modeling assumptions, and Section 7 concludes.

6These explanations include leverage constraints (Black, 1972; Frazzini and Pedersen, 2014), inflation
(Cohen, Polk, and Vuolteenaho, 2005), short-sale constraints and disagreement (Hong and Sraer, 2016),
preference for volatile, skewed returns (Kumar, 2009; Bali, Cakici, and Whitelaw, 2011), market sentiment
(Antoniou, Doukas, and Subrahmanyam, 2015), stochastic volatility (Campbell, Giglio, Polk, and Turley,
2012), and benchmarking of institutional investors (Baker, Bradley, and Wurgler, 2011; Buffa, Vayanos, and
Woolley, 2014).
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2 Background

Let R̃e be the vector of future excess return on an arbitrary cross section of N assets.7 It does

not matter here how these excess returns are computed (e.g., simple returns, log returns, or

dollar returns). Suppose a large population of investors observes information about R̃e, or

more specifically about “factors” that partially determine R̃e. Importantly, assume that this

information is dispersed among investors, meaning that each investor i in the population

observes a different information set. Based on her own information set, each investor i forms

her own view Ei[R̃e] regarding R̃e. We further denote by E[R̃e] the average expectation

across investors, which represents consensus beliefs about excess returns on these assets. To

make our point in a simple way, we assume that R̃e and each investor’s information are

jointly normally distributed.8

Suppose an empiricist observes a dataset containing infinitely many realizations of R̃e.

Using the law of total variance, the unconditional variance of R̃e the empiricist computes

can be decomposed into three terms:

Var[R̃e] = Vari[R̃e] + Var[E[R̃e]] + Var[Ei[R̃e]− E[R̃e]]. (1)

Our assumption of a Gaussian information structure makes this decomposition particularly

simple. First, deviations from consensus beliefs do not covary with consensus beliefs them-

selves, Cov[Ei[R̃e]−E[R̃e],E[R̃e]] = 0, and thus this relation only has three terms. This sim-

plification follows from the law of large numbers—because investors are infinitesimally small

individual noise washes out in the aggregate. Second, the conditional variance, Vari[R̃e],

is nonrandom. We further assume that this variance is homogeneous in the population. A

consequence of this assumption is that the last term in Eq. (1) is identical for any investor

i, and thus represents the variance of expected returns computed across the population of

investors.

The first term in Eq. (1) captures investor i’s perception of uncertainty about R̃e; the

second term measures aggregate variation in consensus beliefs; and the third term measures

the dispersion in beliefs across investors. We know that the law of total variance in Eq.

(1) always applies to individual, rational beliefs. When information is homogeneous across

investors, individual beliefs are identical to consensus beliefs and the last term in Eq. (1)

drops out. But when information is dispersed, the law of total variance must incorporate

7Throughout the paper, we will adopt the following notation: we identify random variables with a tilde;
we use bold letters to indicate vectors and matrices, and letters in plain font to indicate univariate variables;
we use subscripts to indicate individual assets, and superscripts to indicate individual investors (agents). A
complete list of symbols is available in Appendix D.

8This assumption holds in the main analysis; whenever relevant we explain how it matters for derivations.
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variation across individual beliefs, which consensus beliefs average out. The relevance of

variation across investors is perhaps unexpected, considering that the empiricist is assumed

to observe time variation only. However, what the right-hand side of Eq. (1) shows is that

cross-sectional variation hides in the variation the empiricist measures.

Without information there can be no variation nor dispersion in beliefs so that the empiri-

cist and investors have identical perceptions of uncertainty, Var[R̃e] = Vari[R̃e]. Perceptions

may only differ if information creates a distance between the empiricist and investors. How

do we measure this informational distance—how do we aggregate the matrix relation in Eq.

(1) into a single number? In the theoretical framework that we construct in this paper, the

market portfolio plays exactly this role. Formally, denote by M the market portfolio for

the cross section of assets. Applying Eq. (1) to this portfolio, dividing it by Var[R̃e
M] and

shifting the first term to the left-hand side yields:

1− Vari[R̃e
M]/Var[R̃e

M]︸ ︷︷ ︸
Informational distance

= Var[E[R̃e
M]]/Var[R̃e

M]︸ ︷︷ ︸
≡C2

+ Var[Ei[R̃e
M]− E[R̃e

M]]/Var[R̃e
M]︸ ︷︷ ︸

≡D2

, (2)

where R̃e
M ≡M′R̃e denotes the excess return on the market portfolio.

Eq. (2) defines the informational distance between investors and the empiricist, and

shows that it has two origins. The left-hand side represents the fraction of variation in

market excess returns explained by investor i’s information—the informational gap between

the empiricist and investor i. Aggregate variation in consensus beliefs contributes C2 to this

informational gap. That is, C2 is the fraction of variation in market excess returns explained

by variation in consensus beliefs. Furthermore, because information is dispersed there is

variation in beliefs across investors, which accounts for the remaining distance, D2, i.e., the

fraction of variation in market excess returns explained by variation in beliefs across agents.

Hence, not only do realized returns vary because of time-varying consensus expected returns,

they also vary because of cross-sectional variation in expected returns.

The purpose of this paper is to understand how the two fractions C2 and D2 together and

separately distort the empiricist’s view of the CAPM relation. Distortions resulting from

time variation in consensus beliefs, C2, have been examined extensively in the literature

(e.g., Jagannathan and Wang, 1996; Lewellen and Nagel, 2006; Boguth, Carlson, Fisher, and

Simutin, 2011). The focus of our paper is mainly on D2, an estimate of which is missing in

the literature. We will show that D2 is not a typical measure of dispersion in beliefs (e.g.,

Diether, Malloy, and Scherbina, 2002): it measures how expected returns on each pair of

stocks covaries across investors, for a large cross section of assets. This source of variation

in expected returns, to our knowledge, has been neglected in CAPM tests.
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3 Model

We build a model of how investors form expectations, imposing an equilibrium structure on

excess returns. Consider a one-period economy in which the market consists of one risk-free

asset with gross return normalized to 1 and N risky stocks indexed by n = 1, ..., N . Suppose

the risky stocks have random payoffs, D̃ ≡ [D̃1 . . . D̃N ]′, realized at the liquidation date

(time 1). These payoffs are unobservable at the trading date (time 0) and have a common

factor structure:

D̃ =


D

D
...

D

+


φ1

φ2

...

φN

 F̃ +


ε̃1

ε̃2
...

ε̃N

 = 1D + ΦF̃ + ε̃, (3)

where D is a strictly positive scalar and 1 is a vector of ones of dimension N . The common

factor, F̃ , and each stock-specific component, ε̃n, are independently normally distributed

with means zero and precisions, τF and τε. We assume, without loss of generality, that

the vector of loadings of assets’ payoffs on the common factor is a unit vector, ‖Φ‖ = 1;

this normalization is equivalent to scaling τF . We further define the mean of this vector,

Φ̄ ≡ 1′Φ/N .

The economy is populated with a continuum of investors indexed by i ∈ [0, 1], who choose

their portfolios at time 0 and derive utility from terminal wealth with constant absolute risk

aversion coefficient, γ. Investors know the structure of realized payoffs in Eq. (3), but do

not observe the common factor, F̃ . Each investor i forms expectations about F̃ based on

information inferred from prices and information from a private signal, Ṽ i:

Ṽ i = F̃ + ṽi. (4)

Signal noises, ṽi, are unbiased and independently normally distributed with precision τv.

In this economy equilibrium prices do not fully reveal investors’ private information about

the common factor, F̃ . Prices change to reflect new information about final payoffs, but they

also change for reasons unrelated to information, e.g., endowments shocks, preference shocks,

or private investment opportunities. To model uninformative price changes, we assume

that an unmodeled group of agents trade for liquidity needs and/or for non-informational

reasons. Liquidity trading prevents prices from revealing F̃ (Grossman and Stiglitz, 1980),
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and prevents investors from refusing to trade (Milgrom and Stokey, 1982).9

We fix the total number of shares for all assets to M (hereafter the market portfolio),

a vector whose elements are all equal to 1/N . Liquidity traders have inelastic demands of

m̃ shares, where m̃ is normally and independently distributed across stocks with precision

τm; the remainder, M− m̃, is available for trade to informed investors. This assumption is

consistent with the usual noise trading story commonly adopted in the literature (e.g., He

and Wang, 1995). Formally, letting 0 be a vector of zeros of dimension N and I denote the

identity matrix of dimension N , M ≡ [1/N . . . 1/N ]′ and m̃ ∼ N (0, τ−1
m I).

This economy relies on several simplifying assumptions. We have assumed that payoffs

in Eq. (3) are driven by a single factor, as opposed to multiple factors; that stocks only differ

according to their loading, Φ, on this common factor; and that stocks have equal weights

in the market portfolio, M, and equal precisions across assets for the supply shocks and the

idiosyncratic noises. These simplifications serve our purpose of isolating the main result in

the clearest and simplest possible terms. We further discuss the generality of our results in

Section 6, where we relax some of these assumptions.

We solve for a linear equilibrium of the economy in which prices satisfy:

P̃ = 1D + ξ0M + λF̃ + ξm̃, (5)

where λ is an N−dimensional vector and ξ0 and ξ are a N × N matrices, all of which are

determined in equilibrium by imposing market clearing. Because in this framework rates

of return are not normally distributed, a convention in the literature is to work with dollar

excess returns instead (e.g., Dybvig and Ross, 1985). We follow this convention and refer to

R̃e ≡ D̃− P̃, as excess returns.10

Each investor i forms expectations about excess returns based on her information set:

F i = {Ṽ i, P̃}. (6)

Because private signals, Ṽ i, all have identical precision, and prices, P̃, are public, each

investor forecasts the common factor, F̃ , with identical precision:

τ ≡ Var[F̃ |F i]−1 = τF + τv + τP . (7)

9There are different ways to endogenize liquidity trading: private investment opportunities (Wang, 1994),
investor specific endowment shocks, or income shocks (Farboodi and Veldkamp, 2017). These alternatives
would unnecessarily complicate the analysis, without bringing additional economic insights.

10Using rates of returns as opposed to dollar excess returns does not change our main results qualitatively.
See Appendix section B.4.1 for a discussion, and also Banerjee (2010) for a similar argument.

8



The last coefficient in Eq. (7), τP , is the sum of squared signal-to-noise ratios over all prices;

it is a scalar (to be determined in equilibrium) that measures price informativeness.

Defining Ei[R̃e] ≡ E[R̃e|F i] as investor i’s vector of expected returns and Σ ≡ Var[R̃e|F i]

as her conditional covariance matrix of returns (which in this model is constant and identical

across investors), investor i’s optimal portfolio choice is

wi =
1

γ
Σ−1 Ei[R̃e], where Σ =

1

τ
ΦΦ′ +

1

τε
I. (8)

Investors in this model are mean-variance maximizers: “They’ve all got their copies of

Markowitz and they’re doing what he says” (William F. Sharpe, quoted from Burton, 1998).

The key (and single) departure from the standard CAPM framework, however, is that each

investor operates under a different information set. In particular, since each investor i forms

conditional views on future asset returns based her own information F i, this information

determines the parameters of the conditional mean-variance set, Ei[R̃e] and Σ, that are the

inputs of the standard Markowitz (1952) recipe.

Market clearing requires that the demand in Eq. (8) aggregated across informed investors

and the demand of liquidity traders sum up to the market portfolio, M:∫ 1

0

widi+ m̃ = M. (9)

Let consensus beliefs of investors be E[R̃e] ≡
∫ 1

0
Ei[R̃e]di. Substituting individual portfolios

in Eq. (8) into the market-clearing condition implies

E[R̃e] = γΣ(M− m̃), (10)

which represents the expected rate of return that every particular asset must pay for investors

to be willing to hold the supplies of the N assets, net of liquidity traders’ demand.

The central departure from the traditional CAPM framework is that individual investors

do not find it optimal conditionally to hold the market portfolio, M. Each investor instead

uses the market portfolio as a starting point, departing from it according to her own views:

wi = M +
1

γ
Σ−1

(
Ei[R̃e]− E[R̃e]

)
︸ ︷︷ ︸
Investor i ’s private views

, (11)

a decomposition that follows from Eq. (8) and the unconditional version of Eq. (10). This

method of constructing portfolios, which combines a natural starting point (the market port-

folio, M) with investors’ private views, is reminiscent of the portfolio construction approach

9



advocated by Black and Litterman (1990, 1992). Eq. (11) also implies that the investor who

has average unconditional beliefs, E[R̃e] and Σ, holds the market portfolio, M.

Since our framework is not a standard CAPM environment—investors have information

that is dispersed among them (Lintner, 1969) and that the empiricist does not observe

(Hansen and Richard, 1987)—how do we define a CAPM relation in this context? There is

CAPM pricing in the sense that betas are conditional on information that investors know.

This result goes back to Admati (1985), and is the sense in which the literature agrees

the CAPM holds in this context (e.g., Easley and O’Hara, 2004; Fama and French, 2007;

Van Nieuwerburgh and Veldkamp, 2010; Banerjee, 2010; Biais et al., 2010).11 Formally,

conditioning down Eq. (10) expected returns are proportional to the market risk premium

and to a new notion of beta, β, that is based on investors’ covariance matrix, Σ.

Definition 1. In this economy, the following linear relation holds:

E[R̃e] =
ΣM

σ2
M

E[R̃e
M] = β E[R̃e

M], (12)

where E[R̃e] ≡ E[E[R̃e]] is a vector of unconditional expected returns on all stocks, E[R̃e
M] ≡

M′ E[R̃e] is the unconditional expected excess return on the market portfolio, and

σ2
M ≡M′ΣM =

Φ̄2

τ
+

1

Nτε
(13)

is the variance of excess returns on the market portfolio conditional on the information set

of any investor i ∈ [0, 1].

The crux of our argument is that the notion of beta, β, that underlies the CAPM repre-

sentation in Eq. (12) is not that of an unconditional beta as empiricists commonly compute.

Betas in Eq. (12) are computed using investors’ covariance matrix, Σ, as opposed to the

covariance matrix of realized returns used in standard empirical tests:

β̂n =
Cov[R̃e

n, R̃
e
M]

Var[R̃e
M]

, (14)

i.e., the slope of a regression of realized excess returns of asset n on realized excess returns of

the market portfolio, M. Therefore, from investors’ perspective β is the vector of true betas

11Our definition is identical to that in the literature, except that we focus on the unconditional CAPM,
whereas the literature focuses on its conditional version. We can write a conditional CAPM in our model,
too, but this relation is not testable, and thus not our focus; furthermore, this conditional CAPM does not
hold with respect to the (observable) market portfolio M; it only holds with respect to informed investors’
holdings in this portfolio, M− m̃, which are unobservable.
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and Eq. (12) is the true CAPM. We now elaborate on the origin of the difference between

true betas and empiricist’s betas.

We take the perspective of an investor i and write how she perceives the cross-section

of excess returns conditional on her own information. The following decomposition results

directly from Eq. (11) and Definition 1:

Ei[R̃e] = β E[R̃e
M] + εi, where εi ≡ γΣ(wi −M) ∼ N (0,Var[Ei[R̃e]]). (15)

An investor i views expected returns as a noisy perturbation around the CAPM relation of

Definition 1. This perturbation arises because returns are predictable from her perspective

(Ferson and Harvey, 1991; Pesaran and Timmermann, 1995; Cochrane, 2007). The more

predictable returns are, Var[Ei[R̃e]] >> 0, the larger this perturbation is. However, even

though there may be substantial predictability at the investor level, the operation of the

law of iterated expectations ensures that this perturbation vanishes on average. Thus, after

conditioning down Eq. (15) investor i retrieves the CAPM relation of Definition 1. Yet, the

perturbation leaves a mark on the CAPM relation that the empiricist estimates: the typical

betas in Eq. (14)—computed using the covariance matrix of realized returns—do depend on

the extent to which returns are predictable (as we will demonstrate formally in Section 4).

We conclude this section by providing an explicit solution to the functional form of

equilibrium prices.

Proposition 1. (Equilibrium) There exists a unique linear equilibrium in which prices

take the linear form in Eq. (5) and are explicitly given by

P̃ = 1D − γ
(

1

τ
ΦΦ′ +

1

τε
I

)
M + Φ

τ − τF
τ

F̃ +

(
γ +
√
τmτP
τ

ΦΦ′ +
γ

τε
I

)
m̃, (16)

and the scalar τP is the unique positive root of the cubic equation:

τP (τF + τv + τP + τε)
2γ2 = τmτ

2
ε τ

2
v . (17)

Proposition 1 delivers a simple expression for the true betas, β, implied by the model.

Corollary 1.1. The vector of true betas, β, in this economy is

β = 1 +
Φ̄2

τσ2
M

(
Φ

Φ̄
− 1

)
. (18)

Corollary 1.1 reveals two aspects about true betas in the model. First, cross-sectional

heterogeneity in betas results entirely from heterogeneity in exposures, Φ, to the common

11



factor; this implies that, absent this heterogeneity all betas equal unity, and that assets with

a stronger exposure to the common factor have larger betas. Second, true betas in Eq. (18)

are a weighted average of two vectors, 1 and Φ/Φ̄. In other words, the whole cross-section

of stocks is spanned by just two vectors in equilibrium, an observation that will prove useful

for the purpose of analyzing the empiricist’s view of this economy.

4 The empiricist’s view

We now examine how an empiricist views this economy. We illustrate the difference between

the empiricist’s view and that of the average investor in the mean-standard deviation dia-

gram; we refer to the “average investor” as the investor who holds average unconditional

beliefs, E[R̃e] and Σ. In the analysis that follows, when we say a portfolio is “minimum-

variance,” we mean that the portfolio is located on the hyperbola of minimum-variance

portfolios; when we say a portfolio is “mean-variance efficient,” we mean that the portfolio

is located on the efficient frontier—the line that goes through 0 and the tangency portfo-

lio. To distinguish the view of the average investor from that of the empiricist, we denote

all variables as measured by the empiricist with a hat. Finally, to ease notation, we de-

fine µ ≡ E[R̃e] as the vector of unconditional expected excess returns on all assets and

µM ≡M′ E[R̃e] as the unconditional expected excess return on the market portfolio.

A synonym for Definition 1 is that the market portfolio, M, is mean-variance efficient for

the average investor; it commands the highest Sharpe ratio in the economy:

µM

σM

=
√
µ′Σ−1µ. (19)

This result follows directly from efficient-set mathematics (see, e.g., Roll, 1977).

The main difference between the empiricist and investors is that the empiricist measures

the economy ex post : the empiricist observes realized returns, but does not observe investors’

conditional expected returns. As a result, her information is coarser than that of any investor

i in the economy. The law of iterated expectations ensures that the empiricist correctly

measures µ and µM. The law of total variance, however, implies that the covariance matrix

of excess returns of the empiricist, Σ̂ ≡ Var[R̃e], differs from Σ:

Σ̂ = Σ + Var[Ei[R̃e]], ∀i ∈ [0, 1]. (20)

This is precisely where return predictability, Var[Ei[R̃e]], leaves a mark on empiricist’s beta.

This relation provides the basis on which we will define the informational distance between

12



the empiricist and any individual investor i.12 Note that, because modeling assumptions

correspond to those of Section 2, Σ = Vari[R̃e] is known and does not vary across investors

because in our economy all investors have the same precision of information; hence the same

relation holds for all i ∈ [0, 1]. The consequence of Eq. (20), and our first result, is that the

empiricist rejects the unconditional CAPM.

Proposition 2. (CAPM rejection) For the empiricist, who observes the economy ex post,

the market portfolio, M, is not mean-variance efficient:

µM

σ̂M

<

√
µΣ̂−1µ, (21)

where σ̂M ≡
√

M′Σ̂M is the volatility of realized excess returns on the market.

Although M is the correct market portfolio, the empiricist rejects the CAPM. Figure 1

contrasts the view of the empiricist with that of the average investor. The solid line depicts

the set of minimum-variance portfolios under average unconditional beliefs. For the average

investor, the portfolio M is the tangency portfolio (T), i.e., the unconditional CAPM holds

under average unconditional beliefs, which is the meaning of Definition 1. For the empiricist,

all assets have the correct unconditional expected returns, but display systematically larger

unconditional variances (due to variation in expected returns, which the empiricist does not

observe). Hence, all assets—including the market—move to the right in the mean-standard

deviation space, and the minimum-variance set of the empiricist (the dashed line) moves

inside that of the average investor. The main result of Proposition 2 is that M does not

have the highest Sharpe ratio for the empiricist. That is, for the empiricist M is not the

tangency portfolio, T̂, nor is it mean-variance efficient and she rejects the CAPM.

[INSERT FIGURE 1 HERE]

Note that the market portfolio for the empiricist, although not mean-variance efficient,

remains minimum-variance. Two assumptions jointly lead to this outcome: (i) the market

portfolio, M, is equally weighted, and (ii) asset payoffs are driven by a single common

factor, F̃ . Relaxing one (or both) of these assumptions would cause M to move inside the

minimum-variance set of the empiricist, and possibly below T̂. This would introduce further

distorting effects on the empiricist’s view of the CAPM, which we discuss in Section 6.

12In Appendix B.4.2, we reduce the informational distance between investors and the empiricist by allow-
ing the empiricist to control for all publicly available information—i.e., public prices. Because the empiricist
cannot possibly control for private information, the results that follow continue to hold and are actually
stronger when investors’ private information is sufficiently precise.
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Based on the market portfolio, M, the vector of betas the empiricist obtains is:

β̂ =
Σ̂M

σ̂2
M

, (22)

which corresponds to the vector formulation of Eq. (14). Roll (1977, Corollary 6) shows that

the betas of individual assets with respect to any portfolio are an exact linear function of

individual expected excess returns if and only if this portfolio is minimum-variance. Since

M is minimum-variance, the empiricist will necessarily observe a linear relation between

expected excess returns and betas, β̂. To characterize this linear relation, we first define the

zero-beta portfolio, Ẑ, as the unique minimum-variance portfolio that is uncorrelated with

M. In the return-standard deviation space, the expected excess return of Ẑ represents the

intercept of the line that is tangent to the minimum-variance set at M. Figure 1 shows that

the empiricist’s zero-beta portfolio, Ẑ, lies on the lower limb of the minimum-variance set.

Using the expected excess return of the zero-beta portfolio, Proposition 3 characterizes

the linear relation between betas and expected returns that the empiricist measures.

Proposition 3. (CAPM tests based on realized returns) The empiricist observes a

zero-beta CAPM (Black, 1972):

µ = 1µẐ + β̂(µM − µẐ), (23)

in which the empiricist’s vector of betas, β̂, satisfies the proportionality relation:

β̂ − 1 = (1 + δ)(β − 1), (24)

where the coefficient δ measures the magnitude of the empiricist’s distortion of the CAPM:

δ =
µẐ

µM − µẐ

≥ 0. (25)

The coefficient δ measures the distortion of the CAPM relation as estimated by the

empiricist relative to the true CAPM in Eq. (12). The zero-beta portfolio has positive

expected excess returns when the market portfolio, M, is located above empiricist’s tangency

portfolio, T̂; this is always the case in our model, and thus the empiricist perceives a flat

Securities Market Line (SML) with a positive intercept.

Further replacing µẐ in Eq. (23) produces the following relation:

µ = 1
δ

1 + δ
µM + β̂

1

1 + δ
µM, (26)
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which describes the biggest failure of the CAPM (e.g., Black, Jensen, and Scholes, 1972, and

the literature that followed)—the high returns enjoyed by many apparently low-beta assets

and the high intercept of the SML. Figure 2 illustrates this failure. The proportionality

relation between betas in Eq. (24) means that the empiricist inflates all betas above market’s

beta, which is 1, and deflates all others, as denoted with arrows in the plot. Hence, the

empiricist perceives risky assets as riskier than they really are, and safe assets as safer than

they really are. Even though the empiricist and the average investor disagree about betas

(the horizontal axis), they agree on expected returns (the vertical axis) and, since they

observe the market portfolio, agree on its location. Thus empiricist’s SML rotates clockwise

around the market portfolio, which flattens its slope and creates a positive intercept.

[INSERT FIGURE 2 HERE]

The main result is that, in equilibrium, true betas are shrunk towards one relative to

empiricist’s betas (shrinkage towards 1 is a consequence of our assumption that the market

portfolio is equally weighted, M ≡ 1/N). The degree of shrinkage is determined by a

unique coefficient, δ, which adjusts the empiricist’s betas towards true betas. Interestingly,

Eq. (24) is identical to the Bayesian estimator proposed by Vasicek (1973), an estimator

that is popular in the financial industry (“ADJ BETA” on Bloomberg terminals).13 We

emphasize, however, that the result of Theorem 3 is not due to sampling error. Nor is this

result a standard attenuation bias, which commonly plagues the second pass cross-sectional

regression in the Fama and MacBeth (1973) method.14 Rather, in equilibrium shrinkage

in betas arises as a consequence of the informational distance between investors and the

empiricist.

How much flatter the SML is, and how large its intercept is, depends on the magnitude

of the coefficient δ. Eq. (25) offers a way of determining a plausible magnitude for δ. For

instance, if the expected excess return on the market is 6% per year and the expected excess

return on the zero-beta portfolio is 3%, then δ is 1. We are interested, however, in measuring

the coefficient δ in terms of the informational distance between investors and the empiricist,

a matter to which we turn next.

13This linear adjustment was first proposed by Blume (1971) (due to mean reversion of betas over time)
and then by Vasicek (1973) (due to measurement error). See Bodie, Kane, and Marcus (2007), Berk and
DeMarzo (2007) among others. Levi and Welch (2017) give best-practice advice for beta-shrinkage.

14In Vasicek (1973), the degree of adjustment depends on the sample size and converges to zero as the
sample size increases. Similarly, Shanken (1992) shows that the attenuation bias becomes negligible as the
length of the sample period grows indefinitely (see also Jagannathan and Wang, 1998; Shanken and Zhou,
2007; Kan, Robotti, and Shanken, 2013). In our case, the adjustment is necessary even in infinite samples.
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4.1 Decomposition of the CAPM distortion into aggregate and

cross-sectional variation

Following Section 2, we decompose the law of total variance in Eq. (20) into time-series

variation in consensus beliefs and dispersion in investors’ beliefs. In our model, dispersion

in investors’ information implies that their expectations differ from consensus beliefs by the

idiosyncratic noise in their private signals, which leads to the following decomposition of

return predictability, Var[Ei[R̃e]]:

Σ̂ = Σ + Var[E[R̃e]]︸ ︷︷ ︸
Consensus covariance matrix

+ Var[Ei[R̃e]− E[R̃e]]︸ ︷︷ ︸
Matrix of co-beliefs

. (27)

This decomposition corresponds to Eq. (1).

Two sources of variation together lead to the empiricist’s rejection of the CAPM. First,

there is aggregate (time-series) variation in consensus expected returns, E[R̃e]. The empiri-

cist observes realized returns but does not observe E[R̃e], and this variation in expected

returns creates a consensus covariance matrix. Second, dispersed information generates

cross-sectional dispersion in expected returns across investors, Ei[R̃e]− E[R̃e]. Because the

empiricist does not observe investors’ individual information, she does not observe cross-

sectional dispersion in beliefs. This latter source of variation generates a matrix of co-beliefs.

Note that Banerjee (2010) refers to this matrix as disagreement matrix. But only the

diagonal elements of this matrix, which measure the dispersion of expected returns for a

given stock across investors, have the traditional meaning of disagreement. However, its

off-diagonal elements reflect the extent to which deviations from consensus beliefs on one

stock tend to covary with deviations on another, which is not the same as disagreement.

We therefore propose the “matrix of co-beliefs” denomination to emphasize this distinction,

which will become important in our empirical tests.

The following Lemma further characterizes the consensus covariance matrix and the

matrix of co-beliefs using the equilibrium result of Proposition 1.

Lemma 1. In equilibrium, the empiricist’s covariance matrix of realized excess returns sat-

isfies

Σ̂ = Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
+
τv
τ 2

ΦΦ′, (28)
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where e1 is the unique largest eigenvalue of Σ:

e1 =
1

τ
+

1

τε
> 0. (29)

Eq. (28) provides explicit expressions for the consensus covariance matrix (the second

term on the right-hand side) and the matrix of co-beliefs (the last term). Remarkably, the

informational distance between Σ̂ and Σ is determined in equilibrium by a unique coeffi-

cient e1. This coefficient represents the largest eigenvalue of Σ (the other eigenvalues, of

multiplicity N − 1, being 1/τε). This uniqueness result follows from our assumption of a

single common factor in payoffs, which implies that Σ has two distinct eigenvalues. Due to

this property, the relation between β̂ and µ is affine, and the market portfolio, M, remains

minimum-variance for the empiricist (see Figure 1). The same property implies that the

CAPM distortion is summarized by a single number, δ.

Although the CAPM distortion δ depends on all elements of the consensus covariance and

co-beliefs matrices, Lemma 1 allows us to summarize this dependence with just two numbers.

These two numbers, C2 and D2, are the ones we introduced conceptually in Section 2. They

represent value-weighted averages over each of these two matrices divided by σ̂2
M:

C2 ≡ Var[E[R̃e
M]]

σ̂2
M

=
γ2

τmτετ σ̂2
M

(τσ2
M + τεe1Φ̄2), (30)

D2 ≡ Var[Ei[R̃e
M]− E[R̃e

M]]

σ̂2
M

=
τvΦ̄

2

τ 2σ̂2
M

. (31)

These numbers are important for our empirical work: they will help us use analyst forecast

data to map the magnitude of the informational gap into that of the CAPM distortion.

The number C2 represents the fraction of variation in market excess returns explained by

variation in consensus beliefs; it can be interpreted as the informational distance between

the empiricist and the average investor who holds consensus beliefs. The larger C2 is, the

stronger is the variation in consensus beliefs. The other number D2 is the fraction of variation

in market excess returns explained by variation in beliefs across investors; it measures the

extent of dispersion in expectations across investors, and is a purely cross-sectional measure;

the larger it is, the more dispersed investors’ expectations are. Both numbers belong to

the interval [0, 1] and are close to 0.05 in our dataset (see Section 5). Together, C2 and D2

account for the informational distance between the empiricist and investors. We now map

this distance into the coefficient of CAPM distortion, δ.
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Proposition 4. In equilibrium, the distortion in the CAPM relation to the empiricist is:

δ =

(
τσ2

M

Φ̄2
− 1

)
︸ ︷︷ ︸
Excess volatility

(
C2 τεe1Φ̄2

τσ2
M + τεe1Φ̄2︸ ︷︷ ︸
∈(0,1)

+D2
)
≥ 0. (32)

Proposition 4 reveals that both C2 and D2 unambiguously increase beta distortion. The

impact of aggregate variation in expected returns (C2 in this model) has been examined

extensively in the literature (e.g., Jagannathan and Wang, 1996). Yet, to our knowledge,

the impact of dispersion in beliefs has been neglected in CAPM tests; Eq. (32) shows that

the impact of the latter is potentially stronger than that of the former (which is given a

weight lower than one). We also note that the term (τσ2
M/Φ̄

2 − 1) has a clear economic

interpretation: it can be understood as the variation of returns of the market portfolio in

excess of the variation of the fundamental.15 In other words, it measures excess volatility in

the market (Shiller, 1981). Thus, excess volatility is key in generating distortion in beta.

It is instructive to characterize the trivial cases in which the distortion is zero or in which

all betas are equal to 1 (and the distortion has no bearing on betas); this exercise reveals the

elements of the model that are necessary ingredients for our results. Table A1 in Appendix

B.4 illustrates these cases. We describe here only the case of a vanishing idiosyncratic

component in payoffs, τε → ∞. In this case, σ2
M = Φ̄2/τ , and there can be no distortion

in empiricist’s SML. There are reasons to believe, however, that the term (τσ2
M/Φ̄

2 − 1) is

in fact much larger than zero; as argued above, this term measures excess volatility in the

market. We find that a plausible value for (τσ2
M/Φ̄

2−1) based on our dataset is as high as 25

(see Section 5.2). This along with other trivial cases from Table A1 reveal that idiosyncratic

shocks ε̃, a non-zero risk aversion, imperfect private information, and incomplete revelation

of information through public prices are necessary ingredients for our results.

A limiting case that provides particularly transparent intuition into some of our results

is that of an infinitely large economy (N →∞). This case, however, makes little sense in an

economy with finitely-many factors driving payoffs. Intuitively, when learning about finitely-

many factors, an infinite cross section of stocks reveals these factors perfectly. We relegate

the analysis of a large economy to Section 6.3, in which we let both the number of stocks and

the number of factors grow to infinity but keeping their ratio finite. This limit is well-defined

because the many endogenous stock signals are always accompanied with many factors to

learn about. In this context, we characterize conditions under which our flattening result

prevails in terms of the distribution of eigenvalues of the matrix of factor loadings; we also

15The precision of the fundamental from investors’ perspective, τ/Φ̄2, is scaled by Φ̄2 due to our initial
assumption of normalizing the vector of loadings on asset payoffs, ‖Φ‖ = 1.
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take advantage of this limiting case to clarify how the distortion caused by the aggregation

of dispersed information magnifies CAPM distortion (see also Section 4.2 below).

In terms of comparative statics, we show in Appendix B.4 (for the case of diffuse priors)

that the flattening coefficient, δ, increases with investors’ risk aversion, γ, and with the

amount of noise in assets’ supplies, 1/τm. This result is perhaps not suprising if one considers

that the ratio of the two, γ2/τm, captures aggregate variation in expected returns; Section

6.1 shows that aggregate variation always has a flattening effect on the SML the empiricist

observes. The additional effect of variation of dispersion of beliefs, D2, is central to our

paper. In the next section, we cleanly isolate its impact on the CAPM distortion.

4.2 The role of dispersed information

In this section we investigate whether the type of information investors receive (public or

private) matters for the distortion and if so, how. We compare our model to an otherwise

identical economy in which all information is public. We call this economy the Common

Information Economy (CIE).16,17 We adopt the following notation: we add “CIE” as a

subscript to variables whose value is different in the common information economy. All

variables without a “CIE” subscript have identical value to that in the baseline model.

We want to ensure that investors’ precisions on the common factor are identical across the

two economies. In our baseline economy prices act as endogenous, public signals. Formally,

all investors observe N endogenous, public signals with the following structure:

ξ−1P̃a =

√
τP√
τm

ΦF̃ + m̃, (33)

where P̃a ≡ P̃− 1D − ξ0M. We assume that investors in the CIE observe a vector G̃ of N

16Bacchetta and Wincoop (2006) and Albagli et al. (2015) perform a similar exercise with the same goal
of isolating the role of dispersed information. In the former reference, the exercise reveals that dispersed
information disconnects the exchange rate from observed macroeconomic fundamentals. In the latter refer-
ence, the exercise reveals that dispersed information can result in over-reaction of the market price to public
information, i.e., the information that is aggregated through the price.

17It is perhaps tempting to create a benchmark economy that features dispersion but no aggregate varia-
tion in beliefs (D2 > 0 and C2 = 0). However, in our framework this requires eliminating noise in supply (the
only source of aggregate variation) and since prices would become fully informative, cross-sectional variation
would only persist under additional, behavioral assumptions (e.g., investors “agree to disagree”).
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exogenous, public signals with same structure:18

G̃ ≡
√
τP√
τm

ΦF̃ + g̃, where g̃ ∼ N (0, τ−1
g I). (34)

To maintain identical informational content about the common factor, F̃ , in the CIE and in

the baseline economy, we choose τg such that the precision τ is identical in both economies;

the following equation determines τg (Appendix B.5 provides analytical details):

τF + τv + τP = τF +
τg
τm
τP . (35)

Clearly, for τ to be identical across the two economies, τg must be larger than τm, meaning

that public information must be more informative in the CIE than prices are in the baseline

model. Intuitively, investors in the baseline model observe information from private signals,

but investors in the CIE do not. Thus for identical posterior precision τ to obtain, the

precision on the exogenous, public information in the CIE, G̃, must be higher than that on

endogenous, public information in the baseline model, ξ−1P̃a.

An important consequence of this construction is that investors’ conditional covariance

matrix of future expected returns, Σ, is identical in the CIE and in the baseline model; this

immediately follows from the fact that τ is identical in both economies. As a result, the

vector of true betas, β, is identical to that in the baseline model, and thus investors in the

CIE also observe the unconditional CAPM relation in Definition 1. But the view of the

empiricist does change—the empiricist observes a stronger CAPM relation in the CIE.

Proposition 5. The distortion of the SML is lower in the common information economy:

δCIE =

(
τσ2

M

Φ̄2
− 1

)
C2

CIE

τεe1Φ̄2

τσ2
M + τεe1Φ̄2

< δ. (36)

Our requirement that precision τ be identical across economies implies that the informa-

tional gap resulting from aggregate variation, C2
CIE > C2, is always larger in the CIE. Since

there is no dispersion in investors’ expectations, D2
CIE = 0, it is possible that the gap between

C2 and C2
CIE is exactly accounted for by dispersion in beliefs, D2. This is, however, not the

case due to a distortion of the kind studied in Albagli et al. (2015). In particular, comparing

18Alternatively, one can consider an economy with a unique public signal on F̃ , but the specification with
N public signals keeps the structure as close as possible to the main model. N Gaussian signals can always
be aggregated into one single signal, with identical results.
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the structure of prices in the CIE and in the baseline model:

P̃CIE = 1D +

√
τmτP
τ

ΦΦ′g̃ − γΣ(M− m̃) +
τP
τ

ΦF̃ (37)

P̃ = 1D +

√
τmτP
τ

ΦΦ′m̃− γΣ(M− m̃) +
τP + τv
τ

ΦF̃ , (38)

shows that the main difference is in the sensitivity of prices to the fundamental (the last

term). The precision of private information, τv, strengthens this sensitivity in the baseline

model, a phenomenon Albagli et al. (2015) interpret as a distortion in how the market aggre-

gates information. Although both economies have identical informational content, investors

in the baseline model treat market information as more informative than it truly is, exac-

erbating price sensitivity to the fundamental. This over-reaction distorts the informational

gap in the baseline economy. Due to this distortion, δ is always lower in the CIE.

Another way of understanding the result of Proposition 5 is that empiricist’s betas, β̂,

is a weighted average between true betas β and Φ/Φ̄, with positive weights. The weight on

β in the CIE is always larger than that in the baseline model, bringing β̂CIE closer to β. In

the words of the previous paragraph, over-reaction due to dispersed information increases

empiricist’s distortion in beta estimates by moving β̂ closer to Φ/Φ̄ and further away from

β. Thus the empiricist observes a stronger CAPM in the CIE.

Importantly, a direct implication of Proposition 5 is that empiricist’s betas are more

compressed in the CIE. Using Proposition 3 we can link the cross-sectional dispersion in β̂

to that in β in the baseline model:

σβ̂ = (1 + δ)σβ. (39)

Since σβ is identical in the CIE (true betas remain unchanged), for the empiricist a decrease

in δ translates into a beta compression. In particular, in our model a stronger CAPM in

the CIE arises solely from this compression, since the unconditional market risk premium

remains the same across economies (investors face, by construction, the same risk). The

immediate theoretical prediction is that days on which public information dominates (e.g.,

important public announcement days, such as FOMC meetings) should be accompanied with

a strong beta compression. Recent empirical work provides evidence supporting this result.

Bodilsen (2019) and Eriksen and Gronborg (2020) find that betas on low-beta assets rise

significantly and betas on high-beta assets drop significantly on FOMC announcement days.

Similarly, Andersen et al. (2020) document a sharp compression in betas on these days.
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5 Empirical Tests

We have argued theoretically that dispersion in expectations is an important source of varia-

tion in returns, in addition to aggregate variation in expectations. Both sources of variation

create distortion in beta measurement from the perspective of the empiricist. In this sec-

tion we want to assess quantitatively how these two sources of variation affect together and

separately mismeasurement in beta.

We start by defining two sets of betas (βC and βD) that measure aggregate and cross-

sectional variation in expected returns. The following proposition shows that these two sets

of betas are linearly related to the set of betas, β, that underlies investor’s representation of

the CAPM relation and those that the empiricist measures, β̂, from realized excess returns.

Proposition 6. The empiricist’s betas are a weighted average of three types of beta:

β̂ = (1− C2 −D2)β + C2βC +D2βD, (40)

where, after defining Ei∗[R̃e] ≡ Ei[R̃e]− E[R̃e] and Ei∗[R̃e
M] ≡ Ei[R̃e

M]− E[R̃e
M],

βC ≡ Var[E[R̃e]]M

Var[E[R̃e
M]]

and βD ≡ Var[Ei∗[R̃e]]M

Var[Ei∗[R̃e
M]]

. (41)

For any individual asset n, the coefficient βCn is the slope of a time-series regression of

consensus expected excess returns for asset n on those for the market. Thus, an asset with

a high βCn exhibits greater fluctuations in its consensus expected excess returns relative to

the market. For an individual asset n, the coefficient βDn is the slope of a cross-sectional

regression (across investors) of individual investors’ expected excess returns for asset n on

those for the market. Thus, an asset with a high βDn exhibits greater dispersion in beliefs

across investors about its returns relative to the market.

The following simple example illustrates the meaning of βD. Two investors, Bull and

Bear, hold different views about the future excess returns of asset n and of the market. Bull

expects the market (asset n) to over -perform by 1% (2%) relative to consensus beliefs. Bear,

on the other hand, expects the market (asset n) to under -perform by 1% (2%). Thus, in this

example βDn = 2. Note first that βDn is positive, because investors deviate from consensus

beliefs in the same direction both on the market and asset n. Second, βDn is larger than one,

because this deviation is larger on asset n than it is on the market. Thus βDn is a purely

cross-sectional measure which captures whether or not investors’ expectations on asset n and

on the market deviate from consensus in the same direction; and whether deviations from

consensus on asset n are inflated or deflated relative to those on the market.
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In our model, βC and βD can be computed explicitly.

Corollary 6.1. In the equilibrium of the model, βC and βD are given by

βC = β +

(
τσ2

M

Φ̄2
− 1

)
τεe1Φ̄2

τσ2
M + τεe1Φ̄2

(β − 1) (42)

βD = β +

(
τσ2

M

Φ̄2
− 1

)
(β − 1). (43)

Corollary 6.1 shows that both βC and βD are more dispersed than true betas and thus

contribute to the flattening of the SML: when true betas are larger than one, βC and βD

are both larger than β; conversely, when true betas are smaller than one, βC and βD are

both smaller than β. The extent of excess volatility in the market (τσ2
M/Φ̄

2−1) dictates the

magnitude of these effects. We also note that the coefficients of (β − 1) in Eqs. (42)-(43)

are identical to those of C2 and D2 in the definition of the distortion δ in Proposition 4.

The empirical challenge in testing our main theoretical argument is to measure the two

numbers C2 and D2 in Eq. (40), and to obtain the associated sets of betas, βC and βD, for

a cross section of stocks. This in turn involves finding proxies for consensus beliefs, E[R̃e],

and individual beliefs, Ei[R̃e]. A database that conveniently offers such a cross section of

expectations is the I/B/E/S database. Using data on analysts’ forecasts we estimate βC and

βD and assess their ability to price the cross-section of returns.

We first describe the data and how we construct βC and βD (Section 5.1). We then test

the model’s predictions through classical portfolio sorts along with model-implied versions

of the relation in Proposition 6; we also discuss plausible magnitudes for the distortion

parameter δ (Section 5.2). Finally, we provide evidence that our theory can help explain

abnormal returns on Betting Against Beta (Frazzini and Pedersen, 2014) (Section 5.3).

5.1 Data and construction of main variables

From Kenneth French’s data library, we obtain market excess returns and risk-free security

returns at the daily frequency. From the Center for Research in Security Prices (CRSP)

database, we select all stocks that are listed in the S&P 500 index, using the list of historical

constituents available from Compustat. For these stocks, we obtain excess returns and

market capitalizations at the daily frequency. From the AQR data library, we obtain excess

returns on “Betting Against Beta” (BAB) for the U.S. at the monthly frequency. Finally,

from the Institutional Brokers’ Estimate System database (I/B/E/S) we obtain unadjusted

data on price targets. I/B/E/S price targets data covers a period of 20 years, from 1999 to
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2019, and therefore dictates the sample period used for our tests.19

In a first step we obtain for each individual stock n and on the last trading day of each

month t: the stock’s 1-year past excess return; the stock’s 1-year future excess return; and

the stock’s 1-year expected excess return. Past and future excess returns are obtained directly

from the CRSP database and are unique for each stock-date observation. Expected excess

returns are constructed over a lookback window that spans the last 6 months that precede

and include date t. For a given stock n and date t, we record all 12-months price targets

issued by institution i (e.g., “Bear Stearns”) over this window; in case an institution issues

multiple targets over the window we select the most recent one (e.g., Engelberg, McLean,

and Pontiff, 2018). We then proxy for Ei[R̃e
n] using institution i’s expected excess return:

Ei[R̃e
n] =

Price Targetin,t+12 months − Pricen,t

Pricen,t
− RFt, (44)

where RFt denotes the risk-free rate at date t. Hence, for each stock-date observation there

are as many Ei[R̃e
n]’s as there are institutions issuing targets for this stock over the window.

In constructing a proxy for expected excess returns in Eq. (44) we make several choices.

First, we keep track of Ei[R̃e
n] at the institution level, as opposed to the analyst level, as an

institution covers many more stocks than an individual analyst does; this ensures that there

are multiple forecasters covering a given pair of stocks, which is critical for the computation

of dispersion betas, βD. Second, choosing the length of the lookback window is not trivial

but has little effect on our conclusions (see Appendix C). Third, targets that are announced

when the stock market is closed are shifted to the closest, preceding business day. An analyst

sometimes, although rarely, issues multiple targets for the same firm on the same day (likely

by mistake), in which case we select the most recent activation time. Finally, we remove all

firms that have less than median coverage, all nonpositive targets, and all expected returns

below the first and above the 99th percentile; other data-cleaning details follow closely the

strategy in Engelberg et al. (2018), and leave us with a total of 429,556 expected excess

return datapoints issued by 585 unique forecasters from December 1999 to September 2019.

In a second step, at each month t, we compute consensus 1-year expected excess returns

by taking the median across all forecasters for each individual stock n. This is the empirical

counterpart to consensus beliefs about stock n, E[R̃e
n]. To obtain consensus beliefs about

market excess returns, E[R̃e
M], we compute the value-weighted average of consensus beliefs

across the cross-section of stocks. At this stage, the dataset necessary to compute realized

19Appendix C provides a description of all datasets that we use in our empirical work, together with
details on all the operations we use to transform the data and obtain our main variables. We also discuss
the robustness of most of the choices we have made in this section.
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betas, β̂, consensus betas, βC, and dispersion betas, βD, is complete. From this dataset we

obtain realized and consensus betas directly: β̂n is the slope coefficient from regressing stock

n’s past excess returns on past market excess returns; similarly, βCn is the slope coefficient

from regressing stock n’s past consensus excess returns on past consensus excess market

returns. However, we cannot run standard regressions to compute dispersion betas, because

we do not directly observe investors’ beliefs about market returns. Instead, we reconstruct βD

directly using its definition in Proposition 6.

The central piece in obtaining βD is the matrix of “co-beliefs,” Var[Ei∗[R̃e]]. This matrix

is not the typical measure of dispersion in beliefs (e.g., Diether et al., 2002). Empiricists usu-

ally measure beliefs dispersion as cross-sectional variances, which correspond to all elements

along the diagonal of this matrix. But beta is all about measuring comovement between

stocks—off-diagonal terms of this matrix. We call these terms co-beliefs as they measure

how a pair of stocks covaries across beliefs. In practice, since all stocks have multiple an-

alysts covering them, computing cross-sectional variances is always possible. Computing

cross-sectional covariances, however, requires that a pair of stocks has at least two analysts

in common. We explain in Appendix C how to obtain the matrix of co-beliefs at each date

t using a 3-year rolling window of monthly data. We then obtain βD from the matrix of

co-beliefs and assets’ market weights, as defined in Eq. (41).20

For the three sets of betas (realized betas β̂, consensus betas βC, and dispersion betas

βD) we now have time series of 190 end-of-month observations, ranging from December 2002

to September 2018, across an average of 410 stocks.21 Table 1 presents summary statistics

for each set of betas β̂, βC, and βD, along with market excess returns, R̃e
M, and consensus

expected market excess returns, E[R̃e
M]. All numbers are at the 1-year horizon.

[INSERT TABLE 1 HERE]

Over the sample period, the average market excess return was 9.85% per year, with

volatility of 16.16%. As expected, consensus expected market excess returns, E[R̃e
M], are less

volatile than realized market excess return (second line of the table). The last three lines of

the table compute averages and standard deviations over the entire sample for the three sets

20There is a tradeoff in choosing the length of the rolling window used for these computations: using
a shorter window yields a sparse covariance matrix (there are not many pairs of stocks that have enough
forecasts to allow computation of covariances); using a longer window contaminates the cross-sectional

variation in Ei∗[R̃e] with stale observations. Nevertheless, our results are robust to varying the window from
two to four years.

21We lose 3 years of data at the beginning of the sample due to the initial window over which we estimate
betas; at the end of the sample we lose another year of data to annualize future returns. All betas are
winsorized at the 0.5% and 99.5% percentile levels (Bali, Engle, and Murray, 2016).
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of betas; all betas have averages close to one and high degrees of variation across stocks and

time, with standard deviations well above one.

In Section 2 we have stressed how central the two statistics, C2 and D2, were to our

main argument; together they account for the informational gap between investors and the

empiricist. We can now estimate their magnitude and find that on average C2 = 0.0400 and

D2 = 0.0563.22 The statistic C2, which measures how much variation in market returns is

explained by aggregate variation in expectations, has received considerable attention in the

literature. Our estimate is lower than what is typically found, which indicates that analysts’

forecasts likely exhibit less aggregate variation than other proxies for expected returns.23

Since variation is key to generate distortion in beta estimates, we regard this outcome as

keeping our subsequent results on the conservative side.

Most importantly, the other number D2 measures how much variation in market returns

is explained by dispersion in expectations, an estimate of which is missing in the litera-

ture. Recall that D2 is not a traditional measure of beliefs dispersion (e.g., Diether et al.,

2002). Applied to the market such a traditional measure would actually represent a value-

weighted average of cross-sectional variances along the diagonal of the matrix of co-beliefs,

i.e.,
∑N

n=1Mn Var[Ei∗[R̃e
n]]. In contrast, D2 takes a value-weighted average over the entire

matrix:

D2 ≡ Var[R̃e
M]−1

(
N∑
n=1

M2
n Var[Ei∗[R̃e

n]] +
∑
n6=m

∑
MnMm Cov[Ei∗[R̃e

n],Ei∗[R̃e
m]]

)
, (45)

and thus includes all co-beliefs about each pair of stocks, i.e., off-diagonal elements that

reflect the extent to which deviations from consensus beliefs on one stock tend to covary

with deviations on another, which is not the same as disagreement.

The magnitude of D2, which is higher than that of C2 in our sample, points to an impor-

tant source of variation in expected returns.

5.2 Empirical tests and a plausible magnitude for δ

We start by performing classical portfolio sorts, forming five (measured) beta-sorted port-

folios.24 Using these sorts we first confirm in our sample the well-known fact that the SML

looks “flat” (e.g., Black et al., 1972). Table 2 reports value-weighted averages for excess

22Just like betas these two numbers are computed over rolling windows and thus move over time.
23In Martin (2017), Table 1, C2 is close to 10%, depending on the horizon of option prices used for the

estimation. In Cochrane (2011), Table 1, C2 is approximatively 11%, using return-forecasting regressions.
24We work with five beta-sorted portfolios due to the relatively smaller number of stocks in our sample

(an average of 410 each month). Nevertheless, results are robust (but noisier) if we use ten portfolios instead.
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returns, µ, CAPM alphas, α̂, CAPM betas, β̂, consensus betas, βC, dispersion betas, βD,

volatilities, σ̂, and Sharpe ratios, SR, for each portfolio.25 In line with a vast literature,

portfolios with low average betas have significantly higher average alphas.

[INSERT TABLE 2 HERE]

However, lesser known in the literature is the fact that portfolios with higher average

betas also have higher consensus betas, βC, and higher dispersion betas, βD. An important

implication of Proposition 6 is that βC and βD command negative risk premia (an implication

that we confirm and discuss shortly). It is thus possible that high alphas on low-beta

portfolios are in fact the consequence of a relatively weaker exposure to βC and βD. We

test this conjecture in Table 3. Panel (a) shows results of time-series regressions of each

portfolio’s excess returns on the market (the CAPM), whereas panel (b) adds controls for

βC and βD for each portfolio (value weighted).

[INSERT TABLE 3 HERE]

Clearly, panel (a) confirms the results of Table 2: low-beta portfolios continue to have

high alphas, which remain statistically significant. But after adding controls for βC and βD

in panel (b), these results change substantially. Alphas on low-beta portfolios lose consider-

able statistical power (βC and βD fully eliminate statistical significance on P1, P2 and P3),

whereas the alpha of the high-beta portfolio P5 becomes positive and statistically significant.

Panel (b) also shows that coefficients on βC and βD are mainly negative, with some of them

statistically significant, suggesting that βC and βD earn a negative premium. We test this

implication next.

We first establish that the model implies a negative premium on βC and βD. Note that

the main prediction of the model is that true betas and empiricist’s betas satisfy the pro-

portionality relation in Proposition 3. Substituting this relation into the statistical relation

of Proposition 6 yields an affine relation between the three sets of beta:

β̂ =
δ(1− C2 −D2)

δ + C2 +D2
1 +

C2(1 + δ)

δ + C2 +D2
βC +

D2(1 + δ)

δ + C2 +D2
βD. (46)

Alternatively, we can express this relation in terms of expected returns, which gives:

E[R̃e] =
E[R̃e

M]

1− C2 −D2
β̂ − C2 E[R̃e

M]

1− C2 −D2
βC − D2 E[R̃e

M]

1− C2 −D2
βD. (47)

25To account for the impact of autocorrelation and heteroscedasticity, all standard errors are adjusted
using the Newey and West (1987) method with four lags (Greene, 2003, p. 267).
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To obtain this relation, multiply Eq. (40) by E[R̃e
M] and substitute the true CAPM relation

E[R̃e] = β E[R̃e
M]. Thus, βC and βD earn a negative premium in the model.

We test the two cross-sectional relations in Eqs. (46)–(47) following a two-step method.

Starting with the beta relation in Eq. (46) we estimate the cross-sectional regression of

β̂ on βC and βD at the end of each month; this yields a time series of 190 observations

for each regression coefficient. We then examine whether the average of each time series

differs from zero. This procedure is similar to Fama and MacBeth (1973, FM hereafter)

regression analysis, with the exception that the left-hand variable is taken to be realized

beta, as opposed to future excess return. We report the average coefficients in Table 4. Eq.

(46) predicts a positive relation between measured betas β̂ and the two sets of betas βC and

βD, which the positive and strongly statistically significant estimates support.

[INSERT TABLE 4 HERE]

In Table 5 we repeat the FM regressions for Eq. (47), according to which consensus

betas, βC, dispersion betas, βD, and realized betas, β̂, should explain the cross-section

of expected returns. In particular, this relation predicts that βC and βD earn a negative

premium, which the last row of the table strongly confirms, with negative and statistically

significant coefficients on βC or βD. This negative relation has key implications for betting

against beta (BAB), which we analyze in Section 5.3. The other rows of Table 5 present

estimates when only including βC or βD as explanatory variable, along with estimates for the

canonical CAPM specification. Remarkably, the CAPM slope strengthens both in magnitude

and statistical significance when βC and βD are included in the regression.

[INSERT TABLE 5 HERE]

Finally, the estimates of Table 4 allow us to perform a magnitude check of the distortion

coefficient, δ. Specifically, Table 4 shows that the intercept a0 belongs to the 90% confidence

interval a0 ∈ [0.78, 0.88]. Furthermore, from Eq. (46) we have:

δ =
a0(C2 +D2)

1− a0 − C2 −D2
, (48)

which in turn gives a 90% confidence interval for δ. In Figure 3 we plot this interval (shaded

area) as a function of the informational gap, C2 +D2.

[INSERT FIGURE 3 HERE]

The plot shows that the distortion is significant, ranging from 0.5 to 3 for the point

estimate, C2 + D2 = 9.63%, in our sample. By comparison, the Vasicek (1973) shrinkage
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proposed in finance textbooks (Bodie et al., 2007; Berk and DeMarzo, 2007) and adopted

by practitioners is δ = 0.5, compared to our point estimate of δ = 1.1. The 90% confidence

interval shows that the distortion can in fact be much larger. Levi and Welch (2017) is the

only reference we know that advocates for a larger shrinkage.

Another way of obtaining a rough estimate of the CAPM distortion involves computing

unconditional alphas, as is customary in the literature (e.g., Lewellen and Nagel, 2006).

Empiricist’s alpha satisfies α̂ ≡ δ(1− β)E[R̃e
M], which replaced in Eq. (32) yields:

α̂ =

(
τσ2

M

Φ̄2
− 1

)
C2 τεe1Φ̄2

τσ2
M + τεe1Φ̄2

(1− β)E[R̃e
M]︸ ︷︷ ︸

Consensus (C)

+

(
τσ2

M

Φ̄2
− 1

)
D2(1− β)E[R̃e

M]︸ ︷︷ ︸
Dispersed information (D)

. (49)

The first term in α̂ has been thoroughly discussed in the literature (Jagannathan and Wang,

1996; Lewellen and Nagel, 2006; Boguth et al., 2011), but the second term is new. To

determine how much of α̂ this new channel can explain, we assume that the first term is zero.

All components of the second term have empirical counterparts. In particular, (τσ2
M/Φ̄

2 −
1) represents excess market volatility. Based on realized excess market returns volatility,

16.16% (Table 1), and C2 + D2 = 9.63%, we obtain σ2
M = 0.16162(1 − 0.0963) = 0.0236.

Furthermore, τ/Φ̄2 is investors’ precision of information regarding fundamentals: setting

volatility of fundamentals at 3%, we obtain τ/Φ̄2 = 1111 (which likely is a conservative

estimate) and therefore (τσ2
M/Φ̄

2 − 1) = 25.22. Hence, combined with D2 = 5.63%, an

asset for which investors observe a beta of 0.5, for the empiricist has a positive alpha of

0.71× E[R̃e
M], i.e., almost 3/4 of the market risk premium.

5.3 Betting Against Beta

We now show how consensus beta βC and dispersion beta βD help explain the under-

performance of high-beta stocks relative to low-beta stocks (Friend and Blume, 1970; Black

et al., 1972). This well-known empirical anomaly is illustrated in Figure 4. This figure com-

pares mean excess returns for the five beta-sorted portfolios of Table 2 to CAPM-implied

excess returns. Clearly, high-beta stocks underperform relative to low-beta stocks.

[INSERT FIGURE 4 HERE]

Frazzini and Pedersen (2014), building on insights from Black (1972), explore the under-

performance of high-beta stocks by “Betting Against Beta,” and attribute the success of

this investment strategy to investors’ borrowing constraints. Although we do not dispute

the success of the BAB strategy, our interpretation differs: we claim that part of this success

is because “betting against measured beta is betting on true beta.”

29



To bet against beta, the empiricist builds two portfolios, a low-beta portfolio and a high-

beta portfolio. Denote the betas of these two portfolios, as measured by the empiricist, by

β̂L < 1 and β̂H > 1, respectively. The empiricist takes a long, leveraged position (1/β̂L) in

the low-beta portfolio and a short, de-leveraged position (−1/β̂H) in the high-beta portfolio.

This strategy has zero measured beta by construction, but a flat CAPM implies it has a

strictly positive alpha. Formally, Proposition 3 implies the unconditional alpha on BAB is:

α̂BAB =

(
1

β̂L
− 1

β̂H

)
δ

1 + δ
E[R̃e

M] > 0. (50)

We start with a magnitude check. Our empirical estimates, C2 + D2 = 9.63%, imply a

point estimate for δ of 1.1 (Figure 3). In our sample β̂L is 0.55 on average, whereas β̂H is

1.93.26 Average market excess return over the sample period is 9.9% (Table 1). Plugging

these numbers in Eq. (50) yields α̂BAB = 6.74%. In comparison, the monthly alpha on

BAB for the U.S. over the same period (using data downloaded from the AQR data library,

2002-2018) is 0.64% per month (or 7.6% per year). Thus, in our sample at least, 90% of the

alpha on BAB may result from beta mismeasurement. Alternatively, our claim is that alpha

on BAB is in fact reward for systematic risk. Thus, the true beta on the BAB strategy needs

to be as large as BAB’s alpha, 7.6%, divided by average market excess return, 9.9%, that

is 0.78. Eq. (50) and numbers above imply in turn a true beta of 0.68, which accounts for

90% of the beta (0.78) necessary to explain alpha on BAB.

To test whether beta mismeasurement can actually explain returns on BAB, the problem

we face is that AQR implements BAB for the U.S. on a sample that covers many more firms

than ours. As a result, we cannot control for βC and βD for all stocks on which BAB is

constructed. We address this problem with two sets of tests. The main idea of the first set

of tests is to construct factors associated with βC and βD. Eq. (47) says a BAB strategy

based only on β̂ has non-zero alpha, but that long-short portfolios (factors) based on βC and

βD explain this alpha. We thus build these two factors, C and D, and use their returns as

controls. In the second set of tests we replicate the BAB strategy within our sample instead,

which we refer to as “in-house BAB” and which allows us to control for βC and βD directly.

We construct the factors C and D mirroring the steps in Frazzini and Pedersen (2014)

in computing standard BAB returns. At the end of each month, we rank stocks according

to their beta (βC or βD) and form two portfolios, one with high-beta stocks and another

with low-beta stocks. When forming these portfolios, we follow the ranking and weighting

26We rank betas following Section 3.2 in Frazzini and Pedersen (2014) and compute averages using ranks
as portfolio weights, exactly as in the original paper; we further follow Frazzini and Pedersen (2014) and
apply the Vasicek (1973) shrinkage for betas, with w = 0.6.
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methodology in Frazzini and Pedersen (2014). We then build returns on each factor by going

long the high-beta portfolio and short the low-beta portfolio. The factor C provides long

exposure to consensus beta βC; the factor D provides long exposure to dispersion beta βD.

Before testing whether factors C and D can explain returns on BAB we first verify that

these factors cannot be explained by market risk. In Table 6, we regress realized excess

returns of the C and D factors on the excess returns of the market. Both factors have

negative and statistically significant alphas, in line with the results of Table 5. That is,

exposure to consensus (dispersion) beta earns a negative premium after controlling for market

risk. Although both factors have statistically significant betas, these betas are weak in

economic magnitude, and thus excess returns on these two factors are not entirely explained

by exposure to market risk.

[INSERT TABLE 6 HERE]

We report the first set of tests in panel (a) of Table 7. Specifically, we perform two

regressions, one regressing excess returns on AQR BAB on market excess returns, the other

adding to this specification excess returns on factors C and D. Although weaker in our

sample, the alpha on the AQR BAB strategy is positive and statistically significant, close to

4% per year. Yet both factors C and D fully eliminate this alpha, with a significant loading on

factor D, suggesting that dispersion in beliefs plays an important role in explaining abnormal

returns on BAB. Remarkably, the statistical significance of the loading on the market along

with the adjusted R2 rise considerably once we include factors C and D. This phenomenon

strongly suggests that both factors act as omitted variables, and that BAB in reality exposes

the empiricist to market risk due to beta mis-measurement.

[INSERT TABLE 7 HERE]

We now replicate the BAB strategy in our sample—“in-house.” We use our realized betas

at the end of each month and simply follow the guidelines in Frazzini and Pedersen (2014)

(Section 3.2), with the only exception that our realized betas and returns are at the one-

year horizon, as opposed to a one-month horizon. Nevertheless, our strategy does capture

the BAB factor: comparing its returns with those of the original monthly BAB strategy

(annualized) the correlation between the two is 0.80; regressing the returns of the AQR BAB

strategy on those of in-house BAB strategy yields an intercept of 0.009 (t-stat 0.85) and

a slope of 0.559 (t-stat 11.8). Further regressing in-house BAB returns on market returns

delivers a positive, significant alpha of 5.21% (t-stat 2.16), indicating that in-house BAB

yields abnormal returns, too (and actually performs better than AQR BAB in our sample).
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In panel (b) of Table 7 we repeat the two regressions of panel (a) but on the returns of

in-house BAB. Just like in our tests for BAB as implemented by AQR, the alpha on in-house

BAB in the first regression is positive and statistically significant, and vanishes as we control

for factors C and D. In this case, we can further control for βC and βD directly, since we

have these betas for every stock involved in the strategy. Panel (c) shows that controlling

for βCBAB and βDBAB eliminates abnormal returns on the strategy, confirming that returns on

BAB appear related to beta mis-measurement. Finally, going back to panel (b), we observe

an effect similar to that in panel (a): controlling for the C and D factors raises adjusted

R2 and market beta, both in magnitude and significance. Overall, we obtain qualitatively

identical results in both sets of tests suggesting that, without controlling for the C and D
factors, market beta (alpha) on BAB appear to be mistakenly weak (strong).

Of course these conclusions are dependent on our sample, and are thus subject to its lim-

itations. Achieving perfect inference requires observing expected returns for each individual

investor in the economy, along with the market portfolio. Yet with the data at hand we

cannot reject the theoretical possibility that BAB returns result from beta mismeasurement.

6 Extensions and robustness of assumptions

We discuss modeling assumptions and the generality of our results. We show that in the ab-

sence of dispersed information SML flattening always obtains in a noisy rational-expectations

framework, irrespective of modeling choices. We then extend our model to a market port-

folio with arbitrary weights and to multiple factors driving payoffs. Although none of these

features compromise the validity of the true CAPM, they complicate the empiricist’s task.

6.1 A more general proof of SML flattening

The equilibrium relation in Eq. (10) is not specific to our setup. In fact, the same relation

prevails in any noisy rational-expectations (NRE) model, irrespective of the structure of

assets’ payoffs, the type (public or private) of information investors observe, or the structure

of liquidity traders’ demand, m̃ (e.g., Admati, 1985); provided that investors’ risk aversion

and the precision of their information are constant over time, it also holds period by period,

Et[R̃e
t+1] = γΣ(M − m̃t), in a dynamic NRE. Furthermore, except for being expressed in

dollar excess returns, Eq. (10) also applies to more standard asset-pricing models in specific

cases—it is a special case of the ICAPM (Merton, 1973) or of a standard intertemporal
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asset-pricing model (Campbell, 1993) when hedging demands are absent.27

What is specific to our NRE model is the nature of investors’ covariance matrix, Σ, and

its relation to that of the empiricist, Σ̂ (Lemma 1); they both depend on the structure of

assets’ payoffs (Eq. 3) and the structure of investors’ signals. We now relax our assumptions

regarding the structure of payoffs (Eq. 3), and adopt the general payoff structure in Admati

(1985). Although we have shown in Section 4.2 that dispersed information amplifies CAPM

distortion, we are unable to show that this result carries over to a general structure of private

signals. We thus assume that all information is public, but allow for a general, Gaussian

structure of public signals. In this context we show that the empiricist always observes a

flattened SML, irrespective of the structure of payoffs or the structure of public information.

The proof builds on the observation that the slope of empiricist’s SML is the slope of a

regression of assets’ unconditional expected excess returns on empiricist’s betas. Using the

true CAPM relation of Definition 1, this slope is given by:

Cov[E[R̃e], β̂]

Var[β̂]
=

Cov[β, β̂]

Var[β̂]
E[R̃e

M], (51)

and thus empiricist’s SML is flatter than the true SML when Cov[β, β̂] < Var[β̂]. Proposition

7 says that this is always the case in an NRE model in which all information is public.

Proposition 7. Consider the model of Section 3 with the following two modifications: (i)

the structure of assets’ payoffs, D̃, is arbitrary (e.g., as in Admati (1985)), and (ii) all

information is public but of arbitrary structure. Then Cov[β, β̂] < Var[β̂] and the empiricist’s

SML is always flatter than that of investors.

Intuitively, the empiricist faces higher uncertainty compared to investors, which results

in greater dispersion in her betas relative to true betas, σβ̂ > σβ. More formally, consider

the eigenvalue decomposition, Σ ≡ QΛQ′, of investors’ covariance matrix, where Λ is a

diagonal matrix with all positive eigenvalues on its diagonal, and Q is an orthogonal matrix

of eigenvectors. Because all information is public the last term in Eq. (10) drops out; it

follows that the empiricist’s covariance matrix, Σ̂, and Σ share the same eigenvectors,

Σ̂ = QΛ(I + γ2/τmΛ)Q′, (52)

but not the same eigenvalues. All eigenvalues of Σ̂ are an inflated version of those of Σ; each

eigenvalue λ is inflated by a factor 1 + γ2/τmλ, where the ratio γ2/τm captures the extent of

27A more general form of Eq. (10), in which γ and Σ are time-varying, has been derived by Jensen (1972),
and further studied by Bollerslev, Engle, and Wooldridge (1988).
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aggregate variation in expected returns. The empiricist’s inflated covariance matrix results

in inflated dispersion in betas around their average (which is one), leading to a flattened

SML.

In the presence of dispersed information, Σ and Σ̂ no longer share the same eigenvectors,

and the effect of dispersed information on the SML is ambiguous. The ambiguity appears to

be tied to our assumption of residual uncertainty in payoffs (i.e., τε <∞).28 Without residual

uncertainty, and with our specification of private signals and an arbitrary specification of

payoffs, Σ and Σ̂ share again the same eigenvectors, and the eigenvalues of Σ̂ are now

inflated by a factor, 1 + γ2/τmλ+ τv. In other words, the effect of dispersed information, τv,

simply reinforces the effect of aggregate variation, and flattening obtains systematically.

We revisit our assumption about the structure of payoffs in Section 6.3, where we examine

the effect of generalizing it to multiple factors. We now relax another important assumption

of our model, that the market portfolio, M, is equally weighted. We show that relaxing

this assumption may cause the empiricist’s SML to be downward-sloping (in an economy in

which the market risk premium is always positive).

6.2 Size effects

Assuming that assets are assigned unequal weights in the market portfolio has other, inter-

esting effects on the empiricist’s SML. For instance, the empiricist may perceive a downward-

sloping SML, although the actual SML is always upward-sloping in this model; this situation

occurs when assets that have high measured beta simultaneously have low market supply

(and vice-versa).

In Section 4.1, we showed that the variance of the empiricist satisfies Lemma 1, a result

that still holds under unequal supplies. The following proposition builds on this result.

Proposition 8. In the context of Section 3 suppose the market portfolio, M, is arbitrary.

Then, expected returns on all assets in excess of the market satisfy the two-factor relation:

µ− µM1 =
µM

1 + δ
(β̂ − 1) +

δµM

1 + δ

(
M

‖M‖2
− 1

)
, (53)

where δ > 0 denotes the distortion coefficient associated with this new relation; this coefficient

is defined as in the baseline model, except that it accounts for heterogeneous market weights.

When the market portfolio is equally weighted, M = 1/N , the second “factor,” M/‖M‖2−
1, is 0 and we recover the result of Proposition 3; in contrast, when it is not, M 6= 1/N , and

28We thank a referee for drawing our attention to this aspect.

34



Eq. (53) incorporates an additional factor. The sign and magnitude of this factor depend

on the difference M/‖M‖2 − 1, which measures the relative size of assets. To see how this

second factor in Eq. (53) affects the measured slope of the SML, consider an asset that has

high measured beta (β̂n > 1) but earns negative returns in excess of the market portfolio. To

satisfy Eq. (53) this asset must be small, i.e., Mn/‖M‖2 < 1. Thus, an economy in which

high-beta assets are small can result in a downward-sloping SML, although the true CAPM

holds and the true SML is upward sloping. We formalize this result in Lemma 2.

Lemma 2. A necessary (but not sufficient) condition for empiricist’s SML to be downward-

sloping is that factor loadings and market weights covary negatively:

Cov[Φ,M] < 0. (54)

Intuitively, there is a conflicting relation between, on the one hand, how much variation in

an asset’s returns the market can explain (the asset’s beta) and, on the other, its weight in the

market portfolio. If this tension is sufficiently strong, the empiricist uncovers a downward-

sloping SML. On the contrary, if high-beta assets are large (i.e., if the covariance in Eq. (54)

is sufficiently large and positive) the empiricist uncovers an SML that is even steeper than

that of investors. In Figure 5 we illustrate the perplexing result of Lemma 2 whereby the

empiricist perceives a negative relation between beta and expected returns. In particular,

this figure depicts the investors’ and empiricist’s SML in an economy with three assets: assets

no longer plot on a straight line, and the empiricist sees the SML as downward-sloping.

[INSERT FIGURE 5 HERE]

Of course, this size effect is merely an illusion, since the true CAPM never ceases to hold.

Size appears as a priced factor because beta is mismeasured—because relative supplies in

Eq. (53) scale with the distortion δ, there can be no size effect without distortion in betas.

6.3 Large economy and multiple factors

We now allow payoffs to be driven by J ≥ 1 common factors, as opposed to just one.

Furthermore, we consider a “large economy” in which the number of stocks, N , and the

number of factors, J , both grow unboundedly but in a way that their relative size, J/N →
ψ ∈ [0, 1] remains finite (e.g., Martin and Nagel (2020)). In this context, we can provide

conditions under which factor multiplicity generates flattening, and an in-depth analysis of

how dispersed information contributes to the SML distortion, δ.

Denote a vector of J ≤ N independent factors by F̃ ≡ [F̃1 F̃2 . . . F̃J ]′, which we assume

to be normally distributed with mean 0 and covariance matrix (τFJ)−1IJ . Note that we
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scale prior precision on common factors by J to obtain meaningful limits subsequently.29 As

in the baseline model, realized asset payoffs have a common-factor structure:

D̃ = D1 + ΦF̃ + ε̃, (56)

where the j−th column of the vector Φ contains the loadings of each stock on the j−th

factor. We further assume that rank(Φ) = J and:

1

NJ
tr(Φ′Φ) = 1, (57)

which extends the normalization introduced in Section 3 to the multiple-factor case.

Each investor i observes a vector of private signals about the J factors:

Ṽi = F̃ + ṽi, ṽi ∼ N
(
0, (τvJ)−1 IJ

)
. (58)

We also scale the precision of private signals by J to ensure that their informational content is

preserved in the large-economy limit. Other than allowing multiple factors to affect payoffs,

we keep the structure of the model unchanged.

Our main results rely on the following eigenvalue decomposition:

1

N
Φ′Φ = QΛQ′, (59)

where Λ is a diagonal matrix with all eigenvalues λj > 0 for j = 1, ..., J on its diagonal, and

Q is an orthogonal matrix whose columns are eigenvectors. This decomposition is possible

because 1
N

Φ′Φ is symmetric. All eigenvalues of this matrix are strictly positive, and the

normalization of Eq. (57) implies that their sum equals 1.30 We follow Martin and Nagel

(2020)’s assumption that each eigenvalue satisfies λ > ε, for some uniform constant, ε, as

N →∞. This ensures that the columns of Φ never become collinear in the limit.

Following our baseline notation we write investors’ precision on the J factors as:

τ = Var
[
F̃
∣∣∣F i

]−1

= (τF + τv)JIJ + τPΦ′ΦτP , (60)

29This is because Var[ΦF̃] =
τ−1
F

J ΦΦ′, so that the average prior does not grow with J under Eq. (57):

τ−1F
NJ

N∑
n=1

(ΦΦ′)nn = τ−1F , (55)

30This is because the sum of eigenvalues of matrix equals its trace.
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where τP is a J × J−matrix, which is defined formally in the appendix. It will prove

convenient to rotate this matrix using the matrix of eigenvectors, Q, in Eq. (59) and to

work with the limiting behavior of Q′τ/NQ, as opposed to τ/N :

τ∞ ≡ lim
J→∞,N→∞,J/N→ψ

Q′τ/NQ. (61)

We characterize this matrix in the next lemma.

Lemma 3. The limiting precision matrix, τ∞, defined in Eq. (61) is a diagonal matrix; the

j−th element on its diagonal corresponds to the precision on the j−th factor and is uniquely

identified by the eigenvalue λ on this factor according to the cubic relation:

τ∞(λ) = ψ

(
τF + τv +

λτmτ
2
v τ

2
ε ψ

γ2(τ∞(λ) + λτε)2

)
. (62)

Remarkably, after rotating the precision matrix based on Eq. (59), the precision on

each factor is uniquely identified by its eigenvalue. Thus, the equilibrium computation in

this multiple-factor economy is not more complicated than solving the cubic equation of

Proposition 1 J times, each time for a different eigenvalue identifying a factor. Interestingly,

comparing Eqs. (62) and (60), shows that the ratio in Eq. (62) represents the contribution

of learning from prices to factor precision. Because the effect of learning from prices is

proportional to ψ2, if ψ is small, Eq. (61) simplifies to:

τ∞ = (τF + τv)ψI +O(ψ2), (63)

and thus all factors have identical precision, irrespective of their eigenvalue. That is, in a

large economy in which the relative number of factors is small we can ignore the effect of

learning from prices on precision, an observation that greatly helps for our main results.

We wish to characterize beta distortion with a single number, δ, as we did in the single-

factor case. In principle, there are as many such numbers as there are factors in the economy,

since factors affect the SML to different extents and in different directions. Rather, we

examine how factors collectively affect the SML, which can be captured with a single number.

Note that 1+δ is the slope coefficient obtained from regressing true betas on measured betas:

1 + δ = Cov[β, β̂]/Var[β]. (64)

Hence, when δ > 0 (δ < 0) the SML looks flatter (steeper) than it actually is.

The main difference relative to the single-factor case is that beta distortion can now

create steepening, or even cause the SML to be downward-sloping. To characterize under
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which conditions each of these situations occur, we introduce the following assumption, which

allows us to use results from random matrix theory.

Assumption 1. The matrix of loadings can be decomposed as Φ ≡ X′T1/2, where X is an

J ×N−matrix with IID entries with mean zero, variance one and finite fourth moment, and

T is a J × J positive-definite matrix and with tr(T) = J .

This means that loadings are on average zero (an assumption that can be relaxed) with

covariance matrix T. The relevance of this assumption is that it allows us to characterize

the SML distortion in terms of the limiting variance and skewness of eigenvalues in Eq. (59):

σ2
λ ≡ lim

J→∞

1

J

J∑
j=1

λ2
j − µ2

λ, (65)

sλ ≡ lim
J→∞

1

J

J∑
j=1

λ3
j − 3µλσ

2
λ − µ3

λ, (66)

where µλ ≡ limJ→∞
1
J

∑J
j=1 λj denotes the limiting mean of eigenvalues.

Proposition 9. (flattening of empiricist’s SML) Consider a large economy with a small

ratio, ψ, of factors (in the sense of Eq. (63)), in which eigenvalues are not too dispersed:

σ2
λ <

1

2

√∆ +
4sλ(µλτε + τ0)

τε
+ µ2

λ +
µλτ0(3− ψ)

τε
+
τ0ψτ1

γ2τ 2
ε

 , (67)

where τ0, τ1, ∆, are strictly positive coefficients defined in the appendix. Then, if either

eigenvalues are positively skewed (or exhibit little negative skewness) (Eq. (B.158)) or, on

the contrary, if they exhibit strictly negative (but limited) skewness (Eq. (B.159)) and if,

further, eigenvalues are not too concentrated (Eq. (B.160)), the SML will look flatter than

it actually is. If, further, skewness is strictly negative (Eq. (B.162)) and if eigenvalues are

sufficiently concentrated (Eq. (B.163)), the SML will be downward-sloping.

Suppose that eigenvalues are not too dispersed (in the sense of Eq. (67)), meaning

that factors have comparable predictive power. In this case, whether the distribution of

eigenvalues is positively skewed or, on the contrary, exhibits negative but moderate skewness

causes the SML to appear flatter than it actually is. More broadly, irrespective of skewness,

low dispersion of eigenvalues induces flattening. If this dispersion is sufficiently weak (factors

have sufficiently similar predictive power), the empiricist may even uncover a downward-

sloping SML. Conditions for a steeper SML follow as a corollary to Proposition 9.
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Corollary 9.1. (steepening of empiricist’s SML) Consider the framework of Proposition

9. If eigenvalues are sufficiently dispersed (inequality in Eq. (67) is violated) and exhibit

a negative but limited skew (first inequality in Eq. (B.159) holds) or if eigenvalues are

sufficiently concentrated (inequality in Eq. (B.160) is violated) and exhibit a strictly negative

skew (inequality in Eq. (B.158) is violated), the SML will look steeper than it actually is.

In conclusion, in an economy in which eigenvalues are positively skewed, heterogeneity in

predictive power across factors leads to a steeper SML, whereas homogeneity thereof leads

to a flatter SML. In contrast, if eigenvalues are negatively skewed, (limited) heterogeneity

across factors produces a flatter SML, whereas homogeneity thereof produces a steeper SML.

We take advantage of this large economy to investigate further how information aggrega-

tion contributes to the SML distortion. We do so through the following, simplified example.

Example 1. All entries in the loading matrix, Φ, have unit variance, T ≡ I.

In this case, eigenvalues follow the Pastur-Marchenko law, so that µλ = 1, σ2
λ = ψ and

sλ = ψ2. Proposition 9 implies that the SML looks always flatter than it really is and can

never be downward-sloping. Interestingly, however, we can examine in detail how information

dispersion affects SML distortion using the CIE of Section 4.2. In particular, we can write:

δ = ρ(C2 +D2) + (1− ρ)
γ2

τm
σ2

M,∞
(
1− C2 −D2

)
, (68)

where the ρ represents excess volatility and satisfies:

ρ ≡ τ∞σ
2
M,∞/ψ − 1 ≡ lim

ψ→0
δ, (69)

with τ∞ = (τF + τv)ψ denoting the limiting precision on any given factor and σ2
M,∞ =

limN→∞Nσ
2
M = τ−1

ε + (τF + τv)
−1 denoting the limiting variance of the market portfolio.

To examine how information dispersion contributes to the distortion, we write an analo-

gous relation between δCIE and C2
CIE in the CIE, albeit in the context of a large economy:

δCIE = ρC2
CIE + (1− ρ)

γ2

τm
σ2

M,∞
(
1− C2

CIE

)
. (70)

Importantly, the coefficient in front of the information gap is identical in the CIE and the

baseline economy (C2 + D2 and C2
CIE, respectively). Hence, a difference in δ across the two

economies is solely attributed to a difference in information gap across the two economies.

The difference in information gap across economies is never negative, D2 ≥ C2
CIE−C2 ≥ 0.

From Section 4.2, we know that, for precisions to be identical across economies, the difference
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CCIE − C must be positive. One would then perhaps expect this difference to be exactly

accounted for by dispersion in beliefs, D2. However, this is typically not the case:

D2 =
(

1 +
τm
γ2

σ2
M,∞

ψ/τ 2
∞ + σ4

M,∞︸ ︷︷ ︸
d≡information distortion

)
(CCIE − C). (71)

The only case in which we obtain this identity is when ψ ≡ 0, which corresponds to the

large-economy limit with finitely many factors. Eq. (71) says that the two numbers, D2

and C2
CIE − C2 do not add up, a distortion of the kind studied in Albagli et al. (2015). The

difference in information gap across economies directly results from this distortion, d:

D2 + C2
CIE − C2 = d(C2

CIE − C2). (72)

Finally, we can now show that the difference in beta distortion across economies entirely

results from beliefs distortion, d, by subtracting Eq. (70) from Eq. (68):

δ − δCIE = d

(
ρ+ (ρ− 1)

γ2

τm
σ2

M,∞

)
(C2

CIE − C2). (73)

Thus, dispersed information is associated with larger SML distortion if ψ > 0 (it creates

beliefs distortion, d > 0) and excess volatility, ρ, is large enough.

7 Conclusion

Why do empiricists keep rejecting the CAPM, which practitioners are not willing to aban-

don? We argue that the CAPM may hold from each investor’s perspective, but that varia-

tions across investors’ expectations causes empiricists to reject it. We thus provide a novel

explanation for the empirical failure of the CAPM despite widespread practical use.

Variation in expected returns over time and across investors both contribute to the in-

formational gap between investors and the empiricist. Whereas the literature has studied

extensively how time-series variation distorts CAPM tests (e.g., Jagannathan and Wang,

1996), to our knowledge this paper is first to draw attention to dispersed information as an

additional source of distortion. Based on analysts’ price targets we find that the effect of dis-

persed information is stronger than that of time-series variation. Together these two sources

of variation produce substantial CAPM distortion, sufficiently so to explain returns on BAB

(Frazzini and Pedersen, 2014). The traditional interpretation (Black, 1972) is that betting

against (measured) beta works because high-beta assets are overpriced; our interpretation is
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that betting against (measured) beta is betting on true beta.

The type of information investors observe matters. When public information dominates

(e.g., FOMC meetings), dispersion in information weakens and empiricist’s SML steepens.

This result can explain why the CAPM appears stronger on public announcement days (Savor

and Wilson, 2014), and why a compression in measured betas occurs on these occasions

(Andersen et al., 2020; Eriksen and Gronborg, 2020; Bodilsen, 2019). Extensions of our

model reveal puzzling situations whereby the empiricist’s SML is downward sloping, although

the market risk premium is always positive.

Our theory has implications for factor models in asset pricing. Some variables may ap-

pear to the empiricist as priced factors simply because betas are mis-measured. Rather

than being priced factors, these variables are instruments for the measurement error in betas

(Andrei, Cujean, and Fournier, 2019). Do there exist economic criteria that would allow

the empiricist to distinguish variables that are economically meaningful from those that are

not? This matter opens up fascinating directions for future research. Our empirical analysis

exploits variation across analysts’ forecasts, and demonstrates its relevance in explaining

CAPM failure. An alternative approach is to exploit investors’ actions (e.g., their invest-

ment decisions), which likely reveals greater variation. This approach based on “revealed

preference” has caught on recently (Barber et al., 2016; Berk and Van Binsbergen, 2016).
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A Tables and Figures

Variable Average St. Dev. P5% P25% Median P75% P95%

Mkt. ex. ret. 0.0985 0.1616 -0.2290 0.0353 0.1158 0.1837 0.3063
Exp. mkt. ex. ret. 0.1270 0.0281 0.0832 0.1088 0.1210 0.1445 0.1835
Realized betas 1.1826 1.2375 -0.5201 0.4631 1.0561 1.7479 3.2557
Consensus betas 1.0977 1.3389 -0.7952 0.2527 0.9886 1.7866 3.3490
Dispersion betas 0.9076 1.3842 -1.1510 0.1044 0.7913 1.6417 3.3599

Table 1: This table presents summary statistics for market excess returns R̃e
M, consensus

expected market excess returns E[R̃e
M], realized betas β̂, consensus betas βC, and dispersion

betas βD, from 2002/12/31 to 2018/9/28 (190 months). All the numbers are at 1-year
horizon.

µ α̂ β̂ βC βD σ̂ SR

P1 0.1009∗∗∗ 0.1587∗∗∗ -0.1789∗∗∗ 0.5605∗∗∗ 0.8447∗∗∗ 0.1348 0.75
(4.94) (8.44) (-2.68) (9.80) (20.56)

P2 0.0917∗∗∗ 0.0759∗∗∗ 0.5092∗∗∗ 0.7566∗∗∗ 0.9110∗∗∗ 0.1341 0.68
(4.56) (16.74) (12.48) (22.84) (36.66)

P3 0.1004∗∗∗ 0.0360∗∗∗ 0.9796∗∗∗ 1.0442∗∗∗ 0.9976∗∗∗ 0.1480 0.68
(4.60) (8.74) (27.59) (29.15) (26.30)

P4 0.1063∗∗∗ 0.0054 1.5374∗∗∗ 1.3381∗∗∗ 1.0757∗∗∗ 0.1856 0.57
(3.91) (0.49) (56.48) (24.27) (26.75)

P5 0.1267∗∗∗ 0.0167 2.7933∗∗∗ 1.7411∗∗∗ 1.3645∗∗∗ 0.2452 0.52
(3.53) (0.48) (33.97) (24.90) (29.44)

Table 2: This table presents value-weighted averages for excess returns µ, CAPM alphas α̂,
CAPM betas β̂, consensus betas βC, dispersion betas βD, volatilities σ̂, and Sharpe ratios
SR on five beta-sorted portfolios, from 2002/12/31 to 2018/9/28 (190 months). t-statistics,
presented in parentheses, are computed using the Newey and West (1987) adjustment with
4 lags. Statistical significance is denoted by ∗p < .1, ∗∗p < .05, or ∗∗∗p < .01.
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(a) R̃e
p,t = α̂p + β̂pR̃

e
M,t + εt

α̂p β̂p Adj.R2 N

P1 0.0255∗∗∗ 0.7647∗∗∗ 0.8404 190
(2.80) (13.48)

P2 0.0130∗ 0.7991∗∗∗ 0.9269 190
(1.89) (19.38)

P3 0.0136∗∗∗ 0.8805∗∗∗ 0.9240 190
(2.61) (23.34)

P4 -0.0016 1.0943∗∗∗ 0.9075 190
(-0.19) (15.82)

P5 -0.0106 1.3926∗∗∗ 0.8423 190
(-0.62) (11.32)

(b) R̃e
p,t = α̂p + β̂pR̃

e
M,t + aCβ

C
p,t + aDβ

D
p,t + εt

α̂p β̂p aC aD Adj.R2 N

P1 0.0160 0.7738∗∗∗ -0.0198 0.0234 0.8445 190
(0.71) (13.93) (-1.52) (0.96)

P2 0.0096 0.7974∗∗∗ -0.0029 0.0063 0.9262 190
(0.42) (19.21) (-0.13) (0.33)

P3 0.0335 0.8688∗∗∗ 0.0270 -0.0470∗∗∗ 0.9302 190
(1.46) (24.19) (1.30) (-3.37)

P4 -0.0074 1.0985∗∗∗ -0.0128 0.0209 0.9084 190
(-0.13) (15.63) (-0.64) (0.50)

P5 0.1608∗∗ 1.3856∗∗∗ -0.0539∗∗ -0.0563 0.8593 190
(2.56) (12.95) (-2.46) (-1.58)

Table 3: This table presents results from time-series regressions for five beta-sorted port-
folios. The regressions are given at the top of each panel. The data is from 2002/12/31
to 2018/9/28 (190 months). t-statistics, presented in parentheses, are computed using the
Newey and West (1987) adjustment with 4 lags. Statistical significance is denoted by ∗p < .1,
∗∗p < .05, or ∗∗∗p < .01.
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a0 aC aD Adj.R2 N

0.8292∗∗∗ 0.2606∗∗∗ 0.0531∗∗∗ 0.1083 410
(24.25) (11.29) (4.30)

Table 4: This table presents results from Fama and MacBeth (1973) regressions of realized

betas β̂ on consensus betas βC and dispersion betas βD, from 2002/12/31 to 2018/9/28
(190 months). a0 is the time-series average of the intercept coefficient. aC is the time-series
average of the coefficient on βC. aD is the time-series average of the coefficient on βD. The
last two columns compute time-series averages of the adjusted R2 and the number of firms
in cross-sectional regressions. t-statistics, presented in parentheses, are computed using the
Newey and West (1987) adjustment with 4 lags. Statistical significance is denoted by ∗p < .1,
∗∗p < .05, or ∗∗∗p < .01.

a0 aR aC aD Adj.R2 N

0.1204∗∗∗ 0.0182∗ 0.0225 410
(5.27) (1.75)

0.1266∗∗∗ 0.0217∗∗ -0.0098∗∗∗ 0.0307 410
(5.58) (2.11) (-2.96)

0.1251∗∗∗ 0.0190∗ -0.0063∗∗∗ 0.0255 410
(5.61) (1.85) (-2.93)

0.1311∗∗∗ 0.0224∗∗ -0.0095∗∗∗ -0.0063∗∗∗ 0.0336 410
(5.91) (2.20) (-2.87) (-2.92)

Table 5: This table presents results from Fama and MacBeth (1973) regressions of mean

excess returns E[R̃e] on realized betas β̂, consensus betas βC and dispersion betas βD,
from 2002/12/31 to 2018/9/28 (190 months). a0 is the time-series average of the intercept

coefficient. aR is the time-series average of the coefficient on β̂. aC is the time-series average
of the coefficient on βC. aD is the time-series average of the coefficient on βD. The last two
columns compute time-series averages of the adjusted R2 and the number of firms in cross-
sectional regressions. t-statistics, presented in parentheses, are computed using the Newey
and West (1987) adjustment with 4 lags. Statistical significance is denoted by ∗p < .1,
∗∗p < .05, or ∗∗∗p < .01.
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Const. Slope Adj.R2 N

-0.0354∗∗ 0.1792∗∗ 0.1274 190
(-2.22) (2.00)

-0.0286∗∗∗ 0.1525∗∗ 0.1960 190
(-4.04) (2.30)

Table 6: This table presents results from regressions of the excess returns of the C and
D factors on the excess returns of the market. We construct the factor C (D) by ranking
stocks according to their βC (βD) and taking a long position in high-beta stocks financed
by a short position in low-beta stocks. The data is from 2002/12/31 to 2018/9/28 (190
months). t-statistics, presented in parentheses, are computed using the Newey and West
(1987) adjustment with 4 lags. Statistical significance is denoted by ∗p < .1, ∗∗p < .05, or
∗∗∗p < .01.
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(a) AQR BAB:

R̃e
BAB,t = α̂BAB + β̂MR̃

e
M,t + β̂CR̃

e
C,t + β̂DR̃

e
D,t + εt

α̂BAB β̂M β̂C β̂D Adj.R2 N

0.0377∗ 0.4744∗∗∗ 0.3241 190
(1.71) (3.93)

-0.0028 0.6870∗∗∗ -0.3580∗∗ -0.9726∗∗∗ 0.5111 190
(-0.21) (9.31) (-2.20) (-4.14)

(b) In-house BAB:

R̃e
BAB,t = α̂BAB + β̂MR̃

e
M,t + β̂CR̃

e
C,t + β̂DR̃

e
D,t + εt

α̂BAB β̂M β̂C β̂D Adj.R2 N

0.0521∗∗ 0.9557∗∗∗ 0.5231 190
(2.16) (4.48)

-0.0185 1.3207∗∗∗ -1.1975∗∗∗ -0.9860∗∗∗ 0.7801 190
(-1.59) (14.03) (-7.28) (-2.90)

(c) In-house BAB:

R̃e
BAB,t = α̂BAB + β̂BABR̃

e
M,t + aCβ

C
BAB,t + aDβ

D
BAB,t + εt

α̂p β̂p aC aD Adj.R2 N

0.0521∗∗ 0.9557∗∗∗ 0.5231 190
(2.16) (4.48)
0.0367 0.9482∗∗∗ 0.0534 0.0004 0.5402 190
(0.66) (4.00) (1.14) (0.01)

Table 7: This table presents results from regressions of the excess returns of the AQR BAB
strategy (panel a) and of our in-house BAB strategy (panel b) on the excesss returns of the
market and the excess returns of the C and D factors. We construct the factor C (D) by
ranking stocks according to their βC (βD) and taking a long position in high-beta stocks
financed by a short position in low-beta stocks. In panel (c) we control for βCBAB and βDBAB

directly, since we have these betas for every stock involved in the strategy. The data is from
2002/12/31 to 2018/9/28 (190 months). t-statistics, presented in parentheses, are computed
using the Newey and West (1987) adjustment with 4 lags. Statistical significance is denoted
by ∗p < .1, ∗∗p < .05, or ∗∗∗p < .01.

51



0 σ2
M σ̂2

M

0

µẐ
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Figure 1: CAPM rejection. This figure compares the minimum-variance set under average
unconditional beliefs (solid line) with the minimum-variance set of the empiricist (dashed
line). For the average investor, the market portfolio is the tangency portfolio (M = T), but
for the empiricist M moves upward on the minimum-variance set and is not mean-variance
efficient. For the empiricist, Ẑ is the zero-beta portfolio that has zero systematic risk.
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Figure 2: CAPM distortion. This figure illustrates the main result of the paper. The
perceived SML is flatter than the actual SML in equilibrium. The dashed line and the solid
line show the true and perceived SML. M represents the unconditional market portfolio.
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Figure 3: This figure plots the empirically plausible range for the distortion δ. The shaded
area shows the 90 percent confidence region for δ based on Eq. (48) and a 90 percent
confidence range for the intercept a: a ∈ [0.78, 0.88]. The distortion is plotted as a function
of the informational distance between investors and the empiricist, C2 + D2. The data is
from 2002/12/31 to 2018/9/28 (190 months).
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Figure 4: This figure plots the CAPM-implied excess returns versus realized average excess
returns (value-weighted) on five beta-sorted portfolios, with the smallest beta stocks in port-
folio 1 and the largest beta stocks in portfolio 5. The data is from 2002/12/31 to 2018/9/28
(190 months).
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Figure 5: Size Effects. This figure illustrates the true SML (solid line) and observed SML
(dashed line) when stocks are in heterogeneous supplies. This illustrative economy has three
assets with factor loadings, φ1 > φ2 > φ3 > 0, and with supplies in the market portfolio,
0 < M1 < M2 < M3.
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B Appendix (Proofs)

B.1 Proof of Proposition 1

We start by conjecturing a linear price function of the form:

P̃ = 1D +


ξ0,11 ξ0,12 · · · ξ0,1N

ξ0,21 ξ0,22 · · · ξ0,2N
...

...
. . .

ξ0,N1 ξ0,N2 · · · ξ0,NN


︸ ︷︷ ︸

ξ0

M +


λ1

λ2
...
λN


︸ ︷︷ ︸

λ

F̃ +


ξ11 ξ12 · · · ξ1N

ξ21 ξ22 · · · ξ2N
...

...
. . .

ξN1 ξN2 · · · ξNN


︸ ︷︷ ︸

ξ

m̃, (B.1)

where the undetermined coefficients multiplying the variables M, F̃ , and m̃ will be determined by
the market clearing condition.

Any investor i has two sources of information gathered in F i: (i) one private signal Ṽ i about
F̃ and (ii) N public prices. We isolate the informational part of public prices:

P̃a ≡ P̃− 1D − ξ0M = λF̃ + ξm̃, (B.2)

and stack all information of investor i, both private and public, into a single vector[
P̃a

V i

]
=

[
λ
1

]
F̃ +

[
ξ 0N×1

01×N 1

] [
m̃
ṽi

]
≡ HF̃ + Θ

[
m̃
ṽi

]
, (B.3)

where the vector of noise in the signals, [m̃′ ṽi]′, is jointly Gaussian with covariance matrix:

C =

[
τ−1
m I 0N×1

01×N τ−1
v

]
. (B.4)

Applying standard projection techniques we define the precision of the last term in (B.3):

r ≡ (ΘCΘ′)−1 =

[
τm(ξξ′)−1 0N×1

01×N τv

]
, (B.5)

and obtain that an investor i’s total precision on the common factor satisfies

τ ≡ Var[F̃ |F i]−1 = τF + H′rH = τF + τv + τmλ
′(ξξ′)−1λ. (B.6)

The precision τ is the same across investors. Furthermore, an investor i’s expectation of F̃
satisfies (both P̃a and Ṽ i have zero unconditional means):

E[F̃ |F i] =
1

τ
H′r

[
P̃a

Ṽ i

]
=

1

τ

[
λ′(ξξ′)−1τm τv

] [P̃a

Ṽ i

]
(B.7)

=
1

τ

(
τmλ

′(ξξ′)−1λF̃ + τmλ
′(ξξ′)−1ξm̃ + τvF̃ + τvṽ

i
)
. (B.8)

Using the definition of the total precision (B.6), it follows that average market expectation of
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future dividends is

E[D̃] ≡
∫
i
E[D̃|F i]di = 1D + Φ

1

τ

[
(τ − τF )F̃ + τmλ

′(ξξ′)−1ξm̃
]
, (B.9)

and individual expectations are:

E[D̃|F i] = E[D̃] + Φ
τv
τ
ṽi. (B.10)

For each agent i, the uncertainty about future dividends is

Σ ≡ Var[D̃|F i] =
1

τ
ΦΦ′ +

1

τε
I. (B.11)

Because agents hold mean-variance portfolios, the market-clearing condition implies:

P̃ = E[D̃]− γΣ(M− m̃) (B.12)

= 1D − γ
(

1

τ
ΦΦ′ +

1

τε
I

)
M + Φ

τ − τF
τ

F̃ +

[
Φ
τm
τ

(ξ−1λ)′ + γ

(
1

τ
ΦΦ′ +

1

τε
I

)]
m̃, (B.13)

where we have used the simplification

λ′(ξξ′)−1ξ = (ξ−1λ)′. (B.14)

The initial price conjecture then yields the following fixed point solution:

ξ0 = −γ
(

1

τ
ΦΦ′ +

1

τε
I

)
(B.15)

λ = Φ
τ − τF
τ

(B.16)

ξ = Φ
τm
τ

(ξ−1λ)′ + γ

(
1

τ
ΦΦ′ +

1

τε
I

)
. (B.17)

Multiply both sides of the last equation by ξ−1λ (to the right):

λ = Φ
τm
τ

(ξ−1λ)′ξ−1λ+ γ

(
1

τ
ΦΦ′ +

1

τε
I

)
ξ−1λ, (B.18)

and recognize that τm(ξ−1λ)′ξ−1λ = τmλ
′(ξξ′)−1λ = τ − τF − τv (from Eq. B.6), which can be

replaced above, together with the solution for λ to obtain:

Φ
τv
τ

= γ

(
1

τ
ΦΦ′ +

1

τε
I

)
ξ−1λ, (B.19)

which leads to an equation for ξ−1λ:

ξ−1λ =
τv
γτ

(
1

τ
ΦΦ′ +

1

τε
I

)−1

Φ =
τvτε

γ(τ + τε)
Φ. (B.20)

The second equality results from the fact that Φ is an eigenvector of the matrix 1
τΦΦ′ + 1

τε
I,

and the corresponding eigenvalue of Φ is 1/τ + 1/τε. (The matrix ΦΦ′ + τ
τε

I has two distinct
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eigenvalues: 1/τ + 1/τε, of multiplicity 1; and 1/τε, of multiplicity N − 1.)
We adopt the following notation:

ξ−1λ =

√
τP√
τm

Φ, (B.21)

where τP is an unknown positive scalar such that
√
τP√
τm
≡ τvτε

γ(τ+τε)
. Replacing Eq. (B.21) in Eq.

(B.6) yields the total precision τ as a function of this scalar:

τ = τF + τv + τP , (B.22)

which leads to a cubic equation in τP :

τP (τF + τv + τP + τε)
2 =

τmτ
2
ε τ

2
v

γ2
. (B.23)

The discriminant of this cubic equation is strictly negative and thus the equation has a unique
real root. Since it cannot have a negative root (the right hand side is strictly positive), it follows
that τP is a unique positive scalar. Eq. (B.21) can now be replaced in the fixed point solution
(B.17) to obtain the undetermined coefficients ξ:

ξ =
γ +
√
τmτP
τ

ΦΦ′ +
γ

τε
I, (B.24)

which completes the proof of Proposition 1.

B.1.1 Proof of Corollary 1.1

From (B.11), we know that Σ = 1
τΦΦ′ + 1

τε
I. Thus we can write:

ΣM =
Φ̄

τ
Φ +

1

Nτε
1 and σ2

M = M′ΣM =
Φ̄2

τ
+

1

Nτε
, (B.25)

which yields

β =
ΣM

M′ΣM
=

Φ̄2

τ
Φ
Φ̄

+ 1
Nτε

1

σ2
M

. (B.26)

This is a weighted average between 1 and Φ/Φ̄. Subtracting 1 on both sides yields (18).

B.2 Proof of Proposition 2

For this proof we will make the following assumptions:

Assumption B.1. There is no ex-ante proportionality relation between the unconditional market
portfolio M and the vector of assets’ loadings on the common factor Φ.

Assumption B.2. M′Φ > 0.

Assumption B.1 ensures that we keep the setup as general as possible, excluding pathological
cases with an exogenous perfect relationship between stocks’ market capitalizations and their ex-
posure to the common factor. In our case, such an exogenous relation would occur when all the
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elements in the vector Φ are equal, and thus all assets are identical. Assumption B.2 eliminates
the uninteresting case M′Φ = 0 (zero market exposure to the common factor), and is without loss
of generality (if M′Φ < 0, one can simply switch the sign of the common factor). In our case, since
M = 1/N , M′Φ represents the mean of the vector Φ and equals Φ̄.

Setting x ≡ Σ̂1/2M and y ≡ Σ̂−1/2µ, we have σM = ‖x‖ and

√
µ′Σ̂−1µ = ‖y‖, where ‖ · ‖

denotes the norm. The Cauchy-Schwartz inequality states that

‖x‖‖y‖ ≥ x′y = M′Σ̂1/2Σ̂−1/2µ = µM, (B.27)

where we have used the properties of symmetric positive-definite matrices for Σ̂. Thus,

µM

σM
≤
√
µ′Σ̂−1µ. (B.28)

The relation (B.28) holds with equality if and only if x is proportional to y, or

µ ∝ Σ̂M. (B.29)

Starting from the law of total variance (20) and replacing individual expectations from (B.10),
we compute Σ̂, which also proves Lemma 1 in the text:

Σ̂ = Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
+
τv
τ2

ΦΦ′, (B.30)

where e1 is the unique largest eigenvalue of Σ:

e1 =
1

τ
+

1

τε
. (B.31)

By making use of Eq. (B.11), one can write Σ̂ in two equivalent forms:

Σ̂ = c1Σ + c2ΦΦ′ (B.32)

Σ̂ = c3Σ− c4I (B.33)

where c1, c2, c3, and c4 are positive scalars:

c1 = 1 +
γ2

τmτε
> 0, c2 =

γ2e1

τmτ
+
τv
τ2

> 0, (B.34)

and

c3 = 1 +
γ2

τmτε
+
γ2e1

τm
+
τv
τ
> 0, c4 =

γ2e1

τmτε
+

τv
τετ

> 0. (B.35)

Multiply Equations (B.32)-(B.33) with M:

Σ̂M = c1ΣM + c2Φ̄Φ (B.36)

Σ̂M = c3ΣM− c4M. (B.37)

Since µ ∝ ΣM (Definition 1), (B.29) and (B.36)-(B.37) imply that µ ∝ Φ and µ ∝M. This
implies M ∝ Φ, contradicting Assumption B.1. Thus, µ 6∝ Σ̂M and empiricist’s CAPM fails.
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B.3 Proof of Proposition 3

We prove first that M lies on empiricist’s minimum-variance set. From Roll (1977, Corollary 6), we
know that the betas of individual assets with respect to any portfolio are an exact linear function of
individual expected excess returns if and only if the portfolio is minimum-variance. We can write

Σ̂M =
1

γ
Σ̂Σ−1µ =

1

γ
(c3Σ− c4I)Σ−1µ =

c3

γ
µ− c4

N
1, (B.38)

where we have used the equilibrium relation µ = γΣM for the first equality, Eq. (B.33) for the
second equality, and M = 1/N for the third equality.

Using the definition of empiricist’s betas in (22), it follows that empiricist’s betas are an exact
linear function of expected excess returns:

σ̂2
Mβ̂ = − c4

N
1 +

c3

γ
µ, (B.39)

which implies that M must lie on empiricist’s minimum-variance set. One can further write

µ =
c4γ

Nc3
1 +

γσ̂2
M

c3
β̂, (B.40)

which is Eq. (23) in the text. Since c4γ/(Nc3) > 0, it follows that µ
Ẑ
> 0 and therefore M must

lie above T̂ on the upper limb of the minimum-variance set.

B.4 Proof of Proposition 4

The starting point for the proof is Lemma 1, Eq. (28):

Σ̂ = Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
︸ ︷︷ ︸

≡Var[E[R̃e]]

+
τv
τ2

ΦΦ′︸ ︷︷ ︸
≡Var[Ei[R̃e]−E[R̃e]]

, (B.41)

which we pre-multiply with M′ and post-multiply by M:

σ̂2
M = σ2

M +
γ2

τmτε
σ2

M +
γ2e1Φ̄2

τmτ
+
τvΦ̄

2

τ2
, (B.42)

from which we obtain C2 and D2 as defined in the text, Eqs. (30)-(31):

C2 ≡
Var[E[R̃eM]]

σ̂2
M

=
γ2

τmτετ σ̂2
M

(τσ2
M + τεe1Φ̄2) (B.43)

D2 ≡
Var[Ei[R̃eM]− E[R̃eM]]

σ̂2
M

=
τvΦ̄

2

τ2σ̂2
M

. (B.44)

Post-multiply (B.41) with M and divide by σ̂2
M to obtain β̂:

β̂ =

(
1 + γ2

τmτε

)
σ2

Mβ +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
Φ
Φ̄(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

, (B.45)
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which is a weighted average between β and Φ/Φ̄. Subtract 1 on both sides:

β̂ − 1 =

(
1 + γ2

τmτε

)
σ2

M(β − 1) +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
(Φ

Φ̄
− 1)(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

, (B.46)

and use the definition of true betas from Corollary 1.1:

β̂ − 1 =

(
1 + γ2

τmτε

)
σ2

M(β − 1) +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
τσ2

M

Φ̄2 (β − 1)(
1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

. (B.47)

Thus:

β̂ − 1 =

[
1 +

(
τσ2

M

Φ̄2
− 1

)(
γ2e1Φ̄2

τmτ σ̂2
M

+D2

)]
(β − 1). (B.48)

and thus the distortion δ is

δ =

(
τσ2

M

Φ̄2
− 1

)(
γ2e1Φ̄2

τmτ σ̂2
M

+D2

)
=

(
τσ2

M

Φ̄2
− 1

)(
C2 τεe1Φ̄2

τσ2
M + τεe1Φ̄2

+D2

)
. (B.49)

The last equality follows from (B.43). Since τσ2
M/Φ̄2 − 1 = τ/(NτεΦ̄

2) > 0, δ is strictly positive.
Table A1 provides the limiting cases that are discussed in the paper: no idiosyncratic shocks,

no risk aversion, infinitely precise private information, and no liquidity trades.

Variable Case τε →∞ Case γ → 0 Case τv →∞ Case τm →∞

τP
τmτ2v
γ2

∞ τmτ2ε
γ2

∞
τ τF + τv + τmτ2v

γ2
∞ ∞ ∞

Σ 1
τ
ΦΦ′ 1

τε
I 1

τε
I 1

τε
I

σ2
M

Φ̄2

τ
1
Nτε

1
Nτε

1
Nτε

e1
1
τ

1
τε

1
τε

1
τε

Σ̂
(

1
τ

+ γ2e1
τmτ

+ τv
τ2

)
ΦΦ′ 1

τε
I

(
1
τε

+ γ2

τmτ2ε

)
I 1

τε
I

σ̂2
M

(
1
τ

+ γ2e1
τmτ

+ τv
τ2

)
Φ̄2 1

Nτε
1
Nτε

+ γ2

Nτmτ2ε

1
Nτε

C2 γ2e1Φ̄2

τmτσ̂2
M

0 γ2

γ2+τmτε
0

D2 τvΦ̄2

τσ̂2
M

0 0 0

β Φ
Φ̄

1 1 1

β̂ Φ
Φ̄

1 1 1

δ 0 0 γ2

γ2+τmτε
0

Table A1: This table presents limiting cases for the distortion δ. In each case, we provide
the limits for several key parameters and components of δ.

The monotonicity of δ with respect to γ, τm, and τε can already be inferred from the limiting
case τv →∞. In this case, the distortion equals C2 and is strictly positive, although both true betas
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and empiricist’s betas equal 1. From Table A1, we notice that in the case τv → ∞ the distortion
δ increases with the risk aversion, with the noise in idiosyncratic shocks to payoffs, and with the
noise in assets’ supplies. Figure A1 provides an illustration for the case of finite τv.

We can also characterize the monotonicity of δ with respect to γ, τm, and τε for the case of
diffuse priors, τF ≡ 0. We first notice that the parameters γ and τm are not identified separately
but only up to the ratio h ≡ γ2/τm. We thus investigate the monotonicity of δ in this ratio. In
particular, we want to show that:

d

dh
δ > 0. (B.50)

Differentiating δ with respect to h, and using that by the implicit function theorem:

d

dh
τ = −τP (τF + τP + τv + τε)

h(τF + 3τP + τv + τε)
< 0, (B.51)

and simplifying using Eq. (17) whereby τv + τP + τε = τετv

τ
1/2
P h1/2

, we obtain:

d

dh
δ =

τ3
ε

(√
hτP − τv

)2
(hτP )3/2

y

h(3τP + τv + τε) (τεφ2(τε(h+ τP + 2τv) + 2h(τP + τv)) + (h+ τε)(τP + τv)2)2 ,

(B.52)

where

y ≡
(
h2τP τvτε

(
1− φ2

)
+ hτ2

P τvτε
(
5− φ2

)
+ 2(hτP )3/2τvτε

(
1− φ2

)
+2(hτP )3/2

(
(τv + τε)

2 − τ2
P

)
+ hτ2

v τ
2
ε + τP τ

2
v τ

2
ε

)
, (B.53)

and φ ≡ N1/2Φ̄. The numerator and the first ratio in Eq. (B.52) are positive, so we focus on the
sign of y. Substitute from Eq. (17):

τv + τε =
τετv

τ
1/2
P h1/2

− τP , (B.54)

into Eq. (B.53) to obtain:

y = τvτε

(
2
√
hτP + h+ τP

) (
hτP

(
1− φ2

)
+ τvτε

)
> 0. (B.55)

This expression is positive because, by Hölder’s inequality and the normalization Φ′Φ ≡ 1, φ ∈
(−1, 1).

B.4.1 Dollar returns vs rates of returns

The results bellow mirror the results of Banerjee (2010), who shows that the conditional CAPM
holds regardless how one compute returns (dollar returns or rates of returns). Our focus is on the
unconditional CAPM. Starting from

E[R̃e] = γΣM, (B.56)
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an decomposing the dollar returns as R̃e = D̃− P̃, we obtain

E[D̃]− E[P̃] = γΣM. (B.57)

Defining P ≡ E[P̃] and diag(P) as a diagonal matrix whose diagonal is P, the unconditional
expected rates of excess returns are given by:

µr = diag(P)−1(E[D̃]−P) = diag(P)−1γΣM. (B.58)

(N.B. The constant parameter D plays no role in our results if we work with dollar returns, but,
when working with rates of returns, a sufficiently large parameter D is necessary for preventing
prices from becoming negative.)

The market portfolio weights are:

w =
diag(P)M

M′P
. (B.59)

and thus the expected rate of excess returns on the market portfolio is:

w′µr =
M′diag(P)

M′P
diag(P)−1γΣM =

γ

M′P
M′ΣM. (B.60)

Dividing (B.58) by (B.60) yields

µr

w′µr
= M′Pdiag(P)−1β. (B.61)

We therefore recover the true unconditional CAPM, with betas modified according to the right
hand side of the above. We verify that indeed these new betas have an average of 1:

w′M′Pdiag(P)−1β =
M′diag(P)

M′P
M′Pdiag(P)−1β = M′β = 1. (B.62)

Moving now to the empiricist’s view, realized rates of returns are computed as

r̃e ≡ diag(P̃)−1(D̃− P̃), (B.63)

and thus are not normally distributed. Therefore, in order to obtain the CAPM as measured by the
empiricist, we have to resort to simulations. We illustrate in Figure A1 the results of simulations
for one particular calibration of the model (we have considered an extensive range of calibrations,
and consistently obtained similar results). Each panel takes this calibration as a starting point and
varies γ, τm, or τε.

The three panels of the figure compare the theoretical distortion (Proposition 4) with the
distortion obtained using rates of returns. The former is plotted with the solid line, and the latter
with the dashed line. For each point on the dashed lines, we perform 107 simulations, then estimate
the CAPM using realized returns and obtain δ by dividing the intercept by the slope, as dictated
by Eq. (26). All the panels show that distortion with rates of returns is consistently larger than
the distortion with dollar returns. These simulations therefore suggest that our main result does
not depend on the use of dollar returns instead of rates of returns.
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Figure A1: Distortion with dollar returns vs. rates of return. This figure illustrates
the distortion from Proposition 4 (solid lines) and empiricist’s distortion when using rates
of returns instead of dollar returns (dashed lines). We plot the distortion as a function of γ,
τm, and τε. To obtain the dashed lines, we perform simulations of an economy with N = 25,
D = 200, γ = 3, τF = 1, τε = 0.008, τm = 10, 000, M = 1/25, and Φ ∼ N (1, 1). For each
point on the dashed lines we perform 107 simulations.

B.4.2 Conditioning on public information

Empiricist’s rejection of the CAPM (Proposition 3) assumes the empiricist’s information is limited
to realized returns. In this appendix, we augment empiricist’s dataset with all relevant public
information (asset prices). Under this augmented information set, we show below that Proposition
3 still holds, but with a different coefficient of distortion, δ̆:

δ̆ =
τv

τε(τ − τv)
1

Nσ̆2
M

> 0, (B.64)

where σ̆2
M ≡M′Var[R̃e|P̃]M is the variance of excess returns on the market portfolio conditional

on observing all publicly available prices, and the conditional covariance matrix Var[R̃e|P̃] is

Var[R̃e|P̃] = Var[D̃|P̃] =
1

τ − τv
ΦΦ′ +

1

τε
I. (B.65)

Thus, we can write31

Var[R̃e|P̃] =
τ

τ − τv
Σ− τv

τε(τ − τv)
I. (B.66)

The empiricist obtains a new set of betas:

β̆ =
Var[R̃e|P̃]M

σ̆2
M

=
τ

τ − τv
σ̂2

M

σ̆2
M︸ ︷︷ ︸

≡(1+δ̆)

β − τv
τε(τ − τv)

M

σ̆2
M

. (B.67)

31Notice that it is not necessary to assume here that the empiricist knows the price coefficients of Proposi-
tion 1. This is because Var[R̃e|P̃] = Var[R̃e]−Var[E[R̃e|P̃]]. The empiricist can compute both terms on the
right hand side: the first term is the covariance matrix of realized returns; the second term is the covariance
matrix of expected returns obtained after regressing realized returns of each asset on the vector of prices P̃.
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Take average on both sides by multiplying with M′:

1 = (1 + δ̆)− τv
τε(τ − τv)

1

Nσ̆2
M

, (B.68)

and thus we obtain Eq. (B.64). Replacing δ̆ in (B.67) and subtracting 1 on both sides yields

β̆ − 1 = (1 + δ̆)(β − 1). (B.69)

Thus, the empiricist still observes distorted betas, even after controlling for all the available
public information. We note that the new distortion δ̆ in (B.64) clearly depends on the precision
of private information τv. Furthermore, it can be shown (through numerical examples) that the
distortion δ̆ may become larger than the initial distortion obtained without conditioning, δ. This
happens when the private information is sufficiently precise.

B.5 Proof of Proposition 5

We first solve for τ in the common information economy. Apply the projection theorem:

τ = τF +

(√
τP√
τm

Φ

)′
τg

(√
τP√
τm

Φ

)
= τF +

τg
τm
τP . (B.70)

Then, finding the equilibrium follows the same steps as in Appendix B.1, albeit much simpler
here since there is no learning from prices. To prove Proposition 5, compare the two sets of betas:

β̂ =

(
1 + γ2

τmτε

)
σ2

Mβ +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
Φ
Φ̄(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

(B.71)

β̂CIE =

(
1 + γ2

τmτε

)
σ2

Mβ + γ2e1Φ̄2

τmτ
Φ
Φ̄(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ

. (B.72)

Both β̂ and β̂CIE are weighted averages of β and Φ/Φ̄. In the common information economy,
the only variable that changes above is τv = 0 (σ2

M stays the same). Thus, the weighted average
gets closer to β: empiricist’s betas move closer to the true betas, which implies δCIE < δ.

B.6 Proof of Proposition 6

The proof starts from Eq. (27),

Σ̂ = Σ + Var[E[R̃e]] + Var[Ei∗[R̃e]], (B.73)

which we multiply with M to obtain

σ̂2
Mβ̂ = σ2

Mβ + Var[E[R̃eM]]βC + Var[Ei∗[R̃eM]]βD, (B.74)

and then divide by σ̂2
M to obtain Eq. (40).
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B.6.1 Proof of Corollary 6.1

Start from the definition of βC :

βC =

γ2σ2
M

τmτε
β + γ2e1Φ̄2

τmτ
Φ
Φ̄

γ2σ2
M

τmτε
+ γ2e1Φ̄2

τmτ

, (B.75)

and thus we obtain Eq. (42) in the text:

βC − β =

γ2e1Φ̄2

τmτ

γ2σ2
M

τmτε
+ γ2e1Φ̄2

τmτ

(
Φ

Φ̄
− β

)
=

(
τσ2

M

Φ̄2
− 1

)
τεe1Φ̄2

τσ2
M + τεe1Φ̄2

(β − 1), (B.76)

where we have used Corollary 1.1 under the form Φ/Φ̄− β = (τσ2
M/Φ̄2 − 1)(β − 1).

Regarding βD, in our model βD = Φ/Φ̄. Thus

βD − β =
Φ

Φ̄
− β =

(
τσ2

M

Φ̄2
− 1

)
(β − 1). (B.77)

which is Eq. (43) in the text.

B.7 Proof of Proposition 7

The proof starts from the definition of Cov[β, β̂] and Var[β̂]:

Cov[β, β̂] =
1

N

M′ΣΣ̂M

σ̂2
Mσ2

M

− βavgβ̂avg (B.78)

Var[β̂] =
1

N

M′Σ̂Σ̂M

σ̂2
Mσ̂2

M

− β̂2
avg, (B.79)

where βavg and β̂avg are arithmetic averages of true betas and empiricist’s betas across stocks. If
M = 1/N , these arithmetic averages coincide with market-weighted averages and thus are both 1.
It then follows that in the case M = 1/N , Cov[β, β̂] < Var[β̂] if and only if

M′ΣΣ̂M

M′ΣM
<

M′Σ̂Σ̂M

M′Σ̂M
. (B.80)

If we further assume that there is no dispersion in beliefs and investors’ information is common
knowledge, then the following relation results immediately from (10):

Σ̂ = Σ +
γ2

τm
ΣΣ. (B.81)

Considering now the eigenvalue decompositions of Σ and Σ̂ (it is easy to see that Σ and Σ̂
have the same eigenvectors, but not the same eigenvalues),

Σ = QΛQ′ (B.82)

Σ̂ = QΛ(I + hΛ)Q′, (B.83)
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where h ≡ γ2/τm > 0, and defining O ≡ Q′M, we need to prove that

O′ΛΛ(I + hΛ)O

O′ΛO
<

O′Λ(I + hΛ)Λ(I + hΛ)O

O′Λ(I + hΛ)O
, (B.84)

or ∑ O2
nΛn∑
O2
nΛn

Λn(1 + hΛn) <
∑ O2

nΛn(1 + hΛn)∑
O2
nΛn(1 + hΛn)

Λn(1 + hΛn). (B.85)

This is a comparison of two weighted averages with different weights:

Ω1n =
O2
nΛn∑
O2
nΛn

=
O2
nΛn
A

,
N∑
n=1

Ω1n = 1 (B.86)

Ω2n =
O2
nΛn(1 + hΛn)∑
O2
nΛn(1 + hΛn)

=
O2
nΛn(1 + hΛn)

A+ hB
,

N∑
n=1

Ω2n = 1, (B.87)

where A ≡
∑
O2
nΛn > 0 and B ≡

∑
O2
nΛ2

n > 0. The difference between the weights is:

Ω2n − Ω1n =
O2
nΛn(1 + hΛn)

A+ hB
− O2

nΛn
A

(B.88)

=

(
1

A+ hB
− 1

A

)
O2
nΛn +

h

A+ hB
O2
nΛ2

n (B.89)

= − hB

A(A+ hB)
O2
nΛn +

h

A+ hB
O2
nΛ2

n (B.90)

=
h

A+ hB
O2
nΛn

(
Λn −

B

A

)
. (B.91)

This is a quadratic function of Λn, with two real roots: Λn = 0 and Λn = B/A > 0. Importantly,
these roots do not depend on On. The function is strictly negative on the interval (0, B/A) and
strictly positive on (B/A,∞). We therefore have:{

Ω2n < Ω1n, if Λn ∈ (0, B/A)

Ω2n > Ω1n, if Λn > B/A,
(B.92)

Thus, the weighted average on the right hand side of (B.85) places higher weights on higher
values, and the inequality is now verified.

B.8 Proof of Proposition 8

The relation of Lemma 1 remains valid regardless the value of M. Using Eq. (B.11) we can write

Σ̂ = c3Σ− c4I, (B.93)

where c3, and c4 are positive scalars defined in (B.35). Multiplication with M yields

β̂ =
c3σ

2
M

σ̂2
M

β − c4

σ̂2
M

M (B.94)
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Multiply with M′ and use the fact that betas must average to 1:

1 =
c3σ

2
M

σ̂2
M

− c4

σ̂2
M

M′M. (B.95)

Both elements on the right hand side are positive, and the last element is the disortion δ,
generalized for an aribtrary vector M. To see this, write again Eq. (B.94) using (B.95):

β̂ =

(
1 +

c4M
′M

σ̂2
M

)
β − c4M

′M

σ̂2
M

M

M′M
= (1 + δ)β − δ M

M′M
, (B.96)

or

β − 1 =
1

1 + δ
(β̂ − 1) +

δ

1 + δ

(
M

M′M
− 1

)
. (B.97)

where

δ =
M′M

σ̂2
M

(
γ2e1

τmτε
+

τv
τετ

)
. (B.98)

Multiplying (B.97) with µM and using the true CAPM relation µ = βµM yields (53).

B.9 Proof of Lemma 2

For the SML to be downward-sloping we need that Cov[β, β̂] < 0. We first determine necessary
condition for this result to obtain. Write the covariance between β and β̂ as:

Cov[β, β̂] =
1

Nσ̂2
Mσ2

M

(
M′ΣΣ̂M− 1′ΣM1′Σ̂M/N

)
︸ ︷︷ ︸

≡∆

. (B.99)

The sign of this expression depends on the term in brackets. Tedious computations show that this
term can be written as:

∆ ≡ τ−2

(
1 +

γ2

τmτε
+
γ2e1

τm
+
τn
τ

)
M′Φ

(
1−N Φ̄2

)︸ ︷︷ ︸
≥0

+τ−2
ε

(
1 +

γ2

τmτε

)(
‖M‖2 − 1/N

)︸ ︷︷ ︸
≥0

+ τ−1τ−1
ε

(
2

(
1 +

γ2

τmτε

)
+
γ2e1

τm
+
τn
τ

)
M′Φ Cov[M,Φ]

(B.100)

The sign under the first curly bracket follows from the normalization, Φ′Φ ≡ 1, and Hölder’s
inequality, which together imply that Φ̄2N ≤ 1; similarly, the sign under the second curly follows
from that 1′M ≡ 1 and Hölder’s inequality, which together imply that ‖M‖2 ≥ 1/N . Hence, for
∆ < 0 a necessary condition is that Cov[M,Φ] < 0 and the lemma follows.
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B.10 Proof of Lemma 3

We start by repeating the steps of Appendix B.1 for the multiple-factor case. As is customary, we
conjecture that prices satisfy

P̃ = ξ0M + λF̃ + ξm̃, (B.101)

for which a sufficient statistic is P̃a ≡ P̃− ξ0M = λF̃ + ξm̃. The projection theorem implies that

τ ≡ Var
[
F̃
∣∣∣Fi

]−1
= (τF + τv)JIJ + λ′(ξξ′)−1λτm. (B.102)

and

E
[
F̃
∣∣∣Fi

]
= τ−1

(
(τ − τF IJ)F̃ + τmλ

′(ξξ′)−1ξm̃ + τvṽi

)
. (B.103)

It follows that average expectations of future payoffs satisfy

Ē[D̃] ≡
∫
i
E[D̃|Fi]di = D1 + Φτ−1

(
(τ − τF IJ)F̃ + τmλ

′(ξξ′)−1ξm̃
)
. (B.104)

and the conditional covariance matrix of future payoffs satisfies:

Σ ≡ Var
[
D̃
∣∣∣Fi

]
= Φτ−1Φ′ + τ−1

ε IN . (B.105)

The market-clearing condition then requires that P̃ = Ē[D̃]− γΣ(M + m̃), which yields

P̃ = D1 + Φτ−1
(

(τ − τF IJ)F̃ + τm(ξ−1λ)′m̃
)
− γΣ(M + m̃). (B.106)

Separating variables we obtain the following system of equations:

ξ0 = −γΣ, λ = Φτ−1(τ − τF IJ), (B.107)

and

ξ = τmΦτ−1(ξ−1λ)′ − γ
(
Φτ−1Φ′ + τ−1

ε IN
)
. (B.108)

To reduce the size of this system of equations, post-multiply both sides of the above by ξ−1λ:

λ = τmΦτ−1(ξ−1λ)′ξ−1λ− γ
(
Φτ−1Φ′ + τ−1

ε IN
)
ξ−1λ. (B.109)

Observing that τmΦτ−1(ξ−1λ)′ξ−1λ = Φτ−1 (τ − (τF + τv)IJ) ≡ λ− τvΦτ−1, we obtain

τvΦτ
−1 = −γ

(
Φτ−1Φ′ + τ−1

ε IN
)
ξ−1λ, (B.110)

which yields an equation for the vector of signal-to-noise ratios:

ξ−1λ = −τv
γ

(
Φτ−1Φ′ + τ−1

ε IN
)−1

Φτ−1. (B.111)
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Pre-multiply this equation by τ−1Φ′ and use Woodbury matrix identity to write:

τ−1Φ′
(
Φτ−1Φ′ + τ−1

ε IN
)−1

Φτ−1 = τ−1 − (τ + τεΦ
′Φ)−1 (B.112)

and to conclude that

τ−1Φ′ξ−1λ = −τv
γ

(
τ−1 − (τ + τεΦ

′Φ)−1
)
. (B.113)

Conjecture that ξ−1λ ≡ − 1√
τm

ΦτP , where τP is a J ×J symmetric matrix of J(J + 1)/2 unknown

coefficients. Replacing this conjecture in the expression for total precision in Eq. (B.102) to obtain
Eq. (60). Further replacing the conjecture in Eq. (B.113) produces a matrix equation for τP :

τ−1Φ′ΦτP =
√
τm
τv
γ

(
τ−1 − (τ + τεΦ

′Φ)−1
)
, (B.114)

which, premultiplying by τ , can be rewritten as

Φ′ΦτP =
√
τm
τv
γ

(
IJ − (IJ + τετ

−1Φ′Φ)−1
)
. (B.115)

We can simplify this equation further by premultiplying by (Φ′Φ)−1:

τP =
√
τm
τvJ

γ

(
(Φ′Φ)−1 − (Φ′Φ)−1

(
(Φ′Φ)−1 + τετ

−1
)−1

(Φ′Φ)−1
)
, (B.116)

and apply Woodbury matrix identity:

τP =
√
τm
τvJ

γ

(
Φ′Φ + τ−1

ε τ
)−1

. (B.117)

Now let us go back to Eq. (7), use Woodbury matrix identity, and substitute Eq. (B.117) in it:

τ−1 = (τF + τv)
−1J−1

(
I−

(
I + (τF + τv)Jτ

−1
P (Φ′Φ)−1τ−1

P

)−1
)

(B.118)

= (τF + τv)
−1J−1

(
I−

(
I +

(τF + τv)γ
2

τmτ2
v J

(
Φ′Φ + τ−1

ε τ
)

(Φ′Φ)−1
(
Φ′Φ + τ−1

ε τ
))−1

)
, (B.119)

which is an explicit matrix equation for τ . Further recall that, under Eq. (57), the average
eigenvalue of Φ′Φ is:

1

J
tr(Φ′Φ) = N. (B.120)

Hence, in the limit when N →∞, it is important to focus on 1
NΦ′Φ and rewrite this equation as:

(τ/N)−1 = ((τF + τv)J/N)−1I (B.121)

−

(
(τF + τv)J/NI +

(τF + τv)
2γ2

τmτ2
v

(
1

N
Φ′Φ + τ−1

ε τ/N

)(
1

N
Φ′Φ

)−1( 1

N
Φ′Φ + τ−1

ε τ/N

))−1

.

(B.122)
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Let us now introduce the eigendecomposition in Eq. (59), which further yields:

(τ/N)−1 = ((τF + τv)J/N)−1QQ′ (B.123)

−Q

(
(τF + τv)J/NI +

(τF + τv)
2γ2

τmτ2
v

(
Λ + τ−1

ε Q′τ/NQ
)
Λ−1

(
Λ + τ−1

ε Q′τ/NQ
))−1

Q′,

(B.124)

where we have used that QQ′ = I. Finally, post-multiplying by Q and pre-multiplying by Q′ on
both sides, and taking the limit when N →∞, J →∞, and J/N → ψ we obtain a matrix equation
for τ∞, as defined in Eq. (61):

τ−1
∞ = ((τF + τv)ψ)−1I−

(
(τF + τv)ψI +

(τF + τv)
2γ2

τmτ2
v

(
Λ + τ−1

ε τ∞
)
Λ−1

(
Λ + τ−1

ε τ∞
))−1

,

(B.125)

which, using once more Woodbury identity, simplifies into:

τ∞ = (τF + τv)ψI +
ψ2τmτ

2
v

γ2

(
Λ + τ−1

ε τ∞
)−1

Λ
(
Λ + τ−1

ε τ∞
)−1

. (B.126)

Since all matrices are diagonal, it is natural to conjecture (and verify) that τ∞ is diagonal, too, with
elements {τj,∞}Jj=1 on its diagonal. Substituting this conjecture in the matrix equation decouples
it into J algebraic equations for each diagonal element τj,∞, each of the form:

τj,∞ = ψ

(
τF + τv +

λjτmτ
2
v τ

2
ε ψ

γ2(τj,∞ + λjτε)2

)
, j = 1, ..., J. (B.127)

This is a cubic equation in each τj,∞ that has a unique solution, and which delivers the mapping
in Eq. (62).

B.11 Proof of Proposition 9

As in the single-factor case, we start from the law of total covariance to write:

Σ̂ = Σ +
γ2

τm
ΣΣ + τvJΦτ−1τ−1Φ′ (B.128)

=

(
1 +

γ2

τmτε

)
Σ + Φτ−1

(
γ2

τm

(
Φ′Φ + τ−1

ε τ
)

+ τvJI

)
τ−1Φ′. (B.129)

Let us now rescale by N and use the eigendecomposition in Eq. (59) and the definition of limiting
precision in Eq. (61) to rewrite this expression as:

NΣ̂ =

(
1 +

γ2

τmτε

)
NΣ + ΦQτ−1

∞

(
γ2

τm

(
Λ + τ−1

ε τ∞
)

+ τvψI

)
τ−1
∞ Q′Φ′. (B.130)
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We now want to use this expression to obtain an expression for δ in Eq. (64), which can be written
as:

1 + δ =
σ2

M

σ̂2
M

1
NM′ΣΣ̂M− σ2

Mσ̂2
M

1
NM′ΣΣM− σ4

M

=
Nσ2

M

Nσ̂2
M

NM′ΣΣ̂M−Nσ2
MNσ̂2

M

NM′ΣΣM−N2σ4
M

. (B.131)

We first define the following vector:

Z ≡ Q′Φ′M. (B.132)

Denoting its j−th element by zj , and using Eq. (B.105) and Eq. (B.130) we can write σ2
M and σ̂2

M

as:

Nσ2
M = τ−1

ε +
J∑
j=1

z2
j τ∞(λj)

−1, (B.133)

Nσ̂2
M =

(
1 +

γ2

τmτε

)
Nσ2

M +

J∑
j=1

z2
j τ∞(λj)

−2

(
γ2

τm
(λj + τ−1

ε τ∞(λj)) + τvψ

)
, (B.134)

where the function τ∞(·) is defined Lemma 3. After rearranging we can further write:

NM′ΣΣM = τ−1
ε Nσ2

M +
J∑
j=1

z2
j τ∞(λj)

−1
(
λjτ∞(λj)

−1 + τ−1
ε

)
(B.135)

and thus:

NM′ΣΣM−N2σ4
M =

J∑
j=1

z2
j τ∞(λj)

−1

(
τ∞(λj)

−1λj −
J∑
k=1

z2
kτ∞(λk)

−1

)
. (B.136)

Similarly,

NM′ΣΣ̂M =

(
1 +

γ2

τmτε

)
τ−1
ε Nσ2

M (B.137)

+
J∑
j=1

z2
j τ∞(λj)

−2
(
τ−1
ε τ∞(λj) + λj

)(
1 +

2γ2

τmτε
+ τ∞(λj)

−1

(
γ2

τm
λj + τvψ

))
, (B.138)

and thus

NM′ΣΣ̂M−Nσ2
MNσ̂2

M = (B.139)

J∑
j=1

z2
j τ∞(λj)

−2

(
γ2

τm
λj + τvψ +

(
1 +

2γ2

τmτε

)
τ∞(λj)

)(
λjτ∞(λj)

−1 −
J∑
k=1

z2
kτ∞(λk)

−1

)
. (B.140)

To obtain more transparent expressions we now use the approximation in Eq. (63) and Assumption
1. This assumption implies that XX′ → NI and thus

1

NJ
tr(Φ′Φ) =

1

NJ
tr(T1/2XX′T1/2)→ 1

J
tr(T) = 1, (B.141)
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so that Eq. (57) is satisfied in the limit. We now want to compute expressions of the form:

lim
J→∞

J∑
j=1

z2
j f(λj), (B.142)

for an arbitrary function f based on results in Bai, Miao, and Pan (2007) (among others). Un-
der Assumption 1, Q is asymptotically Haar distributed. The main idea, which originates from
Silverstein (1989), is to take any unit vector x and focus on Q′x ≡ y, so that y is Uniformly
distributed over {y ∈ RJ : ‖y‖ = 1}. We then obtain that expressions like

∑J
j=1 |yj |2f(λj) con-

verge to 1
J

∑J
j=1 f(λj) (Corollary 2 in Bai et al. (2007)). We would like our vector Z to share

this key property of y. However, although x is arbitrary, it must be nonrandom. We deal with
this issue as follows. Note that, as pointed out in Bai and Silverstein (1998), the two matrices
A1 ≡ Φ′Φ/N = T 1/2XX′T 1/2 and its companion A2 ≡ ΦΦ′/N = X′TX/N share the same non-
zero eigenvalues. Recalling our assumption that N ≥ J , the remaining N − J eigenvalues of A2

are zeroes. In particular, we can write the singular value decomposition of the vector N−1/2Φ′ as:

1

N1/2
Φ′ =

J∑
j=1

√
λjqjv

′
j , (B.143)

where qj is the j−th column of Q and vj is the j−th column of the eigenvectors of A2. We can
then write:

1

N1/2
Q′Φ′ =

J∑
j=1

√
λjejv

′
j , (B.144)

where ej is a J × 1−vector with j−th entry 1 and zeroes everywhere else. Choosing a nonrandom
unit vector x ≡ N−1/21 = N1/2M, we can rewrite Z as:

Z =

J∑
j=1

√
λjejv

′
jx, (B.145)

with j−th entry:

zj =
√
λjv

′
jx. (B.146)

Now, pick f(·) to be an arbitrary, bounded function. Since all last N − J eigenvalues of A2 are
zero, we can write:

J∑
j=1

z2
j f(λj) =

J∑
j=1

λj(v
′
jx)2f(λj) =

N∑
j=1

λj1j≤J(v′jx)2f(λj) (B.147)

We can then apply Theorem 1.5 in Xi, Yang, and Yin (2020) (see also Knowles and Yin (2017))

J∑
j=1

z2
j f(λj)→

1

N

N∑
j=1

λj1j≤Jf(λj) =

∫
f(λ)λdFA2(λ), (B.148)
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where FA2 denotes the empirical spectral density of A2. As noted in Bai and Silverstein (1998), it
satisfies:

FA2 = (1− ψ)1[0,∞) + ψFA1 . (B.149)

That is, the density dFA2 has an atom at 0 of size 1 − ψ, since a fraction = 1 − J/N of the
eigenvalues of A2 are zeroes. Since f is taken to be bounded, we eventually get:

J∑
j=1

z2
j f(λj)→ ψ

∫
f(λ)λdFA1(λ). (B.150)

This result allows us to characterize the distortion, δ, in terms of the two statistics defined in
Eq. (65). Using these definitions along with the approximation in Eq. (63), we obtain simpler
expressions for:

Nσ2
M ≈ τ−1

ε + µλ(τF + τv)
−1, (B.151)

NM′ΣΣM−N2σ4
M ≈ (τF + τv)

−2
(
(σ2
λ + µ2

λ)/ψ − µ2
λ

)
, (B.152)

and

Nσ̂2
M ≈

(
1 +

γ2

τmτε

)
Nσ2

M + (τF + τv)
−2

(
γ2

τm
(σ2
λ + µ2

λ)/ψ +

(
γ2

τmτε
(τF + τv) + τv

)
µλ

)
,

(B.153)

NM′ΣΣ̂M−Nσ2
MNσ̂2

M (B.154)

≈ (τF + τv)
−3

 (
γ2

τm

µ3λ+µλσ
2
λ

ψ +
(
τv +

(
1 + 2γ2

τmτε

)
(τv + τF )

)
µ2
λ

)
(1/ψ − 1)

+ γ2

τm

sλ+2µλσ
2
λ

ψ2 +
(
τv +

(
1 + 2γ2

τmτε

)
(τv + τF )

)
σ2
λ
ψ

 . (B.155)

Substituting these expressions in turn in Eq. (B.131) we can characterize δ in terms of the mean,
dispersion and skewness of eigenvalues:

δ =
γ2τε

(
σ2
λτε(µλ − σλ)(µλ + σλ) + µλsλτε + τ0

(
µ3
λ + 3µλσ

2
λ + sλ

))
+ τ0ψ

(
µ2
λ + σ2

λ

) (
τ1 − γ2µλτε

)
− µ2

λτ0ψ
2τ1(

µ2
λ(1− ψ) + σ2

λ

) (
τmτεψ

(
µλτε(τF + 2τv) + τ2

0

)
+ γ2

(
τ2
ε

(
µ2
λ + σ2

λ

)
+ τ0ψ(2µλτε + τ0)

)) ,

(B.156)

the denominator of which is strictly positive, and where, for convenience, we have definedτ0 = τF+τv
and τ1 = τ0γ

2 + τvτmτε, and

∆ = µ4
λ +

τ2
0

(
γ2µλτε(ψ − 3)− ψτ1

)2
γ4τ4

ε

+
2µ2

λτ0

(
γ2µλτε(5− 3ψ) + (3− 2ψ)ψτ1

)
γ2τ2

ε

. (B.157)

So whether or not the SML looks steeper to the econometrician depends only on the sign of the
numerator. Assume that the condition in Eq. (67) is satisfied. Then, if either the distribution of
eigenvalues is positively skewed (or exhibits little negative skewness):

sλ >
µ2
λτ0(ψ − 1)

(
γ2µλτε + ψτ1

)
γ2τε(µλτε + τ0)

(< 0), (B.158)
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or, on the contrary, if it exhibits strictly negative (but limited) skewness:

− τε
4(τ0 + µλτε)

∆ ≤ sλ <
µ2
λτ0(ψ − 1)

(
γ2µλτε + ψτ1

)
γ2τε(µλτε + τ0)

, (B.159)

and if, further, eigenvalues are not too concentrated:

σ2
λ >

1

2

−√∆ +
4sλ(µλτε + τ0)

τε
+ µ2

λ +
µλτ0(3− ψ)

τε
+
τ0ψτ1

γ2τ2
ε

 , (B.160)

the denominator is negative (the SML will look flatter than it actually is). Note that when ψ ≡ 0
we recover the limit we obtain in the single-factor case. Furthermore, to obtain the condition under
which the SML is downward-sloping, note that the slope of the SML is:

Cov(β̂,E[R̃e]) = Cov(β̂,β)E[R̃eM], (B.161)

where the covariance in the second inequality is given by Eq. (B.153). If skewness is strictly
negative:

sλ <
µ2
λ(ψ − 1)

(
γ2µλτε + τF τετmψ + 2ψτ1

)
γ2τε

, (B.162)

and if eigenvalues are sufficiently concentrated:

σ2
λ <

µ2
λ(ψ − 1)

(
γ2µλτε + τF τετmψ + 2ψτ1

)
− γ2sλτε

γ2µλτε(3− ψ) + ψ(τF τετm + 2τ1)
, (B.163)

then the covariance in the second inequality of Eq. (B.153) is negative (the SML is downward-
sloping).

C Appendix (Data)

We describe here the data and the empirical tests that we build in Section 5. We download
the market returns and the risk-free rate at daily frequency from Kenneth French’s data library
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html). We obtain daily
security returns for all the S&P 500 stocks from the Center for Research in Security Prices (CRSP)
database. First, we merge these two databases by date. Then, for each trading day of the sample,
we compute yearly excess returns using rolling windows of 252 trading days (both into the past and
into the future). Finally, to prepare the data for merging with IBES (see below), from the resulting
dataset we keep only the last trading day of each month.

We download the monthly excess returns of the Betting Against Beta strategy from the AQR
data library (https://www.aqr.com/Insights/Datasets). On the last trading day of each month, we
compute yearly excess returns using rolling windows of 12 months (both into the past and into the
future). We merge this dataset by date with the dataset of market and stock excess returns.

We download analyst forecast data from the Institutional Brokers’ Estimate System database
(I/B/E/S), and merge it with the excess returns database. Before merging, we clean the IBES
database as follows (see also Engelberg et al., 2018): (i) we keep only firms that have above median
coverage according to the field ESTIMID (in our sample, this median is 32); (ii) we select price
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targets with 12-month horizon; (iii) in case an institution issues multiple targets over the window
we select the most recent one; (iv) we remove the 1st and 99th percentiles of price target forecasts;
and (v) we compute expected excess returns as in Eq. (44). This results in a total of 429,556
expected excess return forecasts provided by 585 unique forecasters (“forecaster” is defined at the
institution level, ESTIMID) over the period December 1999 to September 2019. Next, on each
end-of-month date t, we go back in time 180 days and collect all the forecasts for each stock, which
we align in time as forecasts at date t. We compute the consensus forecast for each stock as the
median across forecasters. Using a simple regression of future excess returns on consensus excess
returns, we show that indeed forecasts are strongly and positively correlated with future excess
returns (slope coefficient 0.38 with Newey-West adjusted t-stat of 29.98).

To sum up, at the end of the above data-collection operations, we have 190 end-of-month dates
(from Dec. 2002 to Sept. 2018), and for each date we obtain an average of 410 stocks, with the
following data for each stock:

• past 1-year excess return;

• future 1-year excess return;

• expected 1-year excess return by forecaster;

• consensus expected 1-year excess return (median across forecasters).

At each end-of-month date t, we compute the value-weighted consensus expected 1-year excess
return for the market portfolio. We then use the above data to compute three types of betas for
each individual stock n: realized beta β̂n, consensus beta βCn, and dispersion beta βDn . We compute
these betas using a rolling window of 36 months, as follows:

1. For realized betas, we regress past excess returns of each individual stock on past excess
returns on the market;

2. For consensus betas, we regress past consensus expected returns of each individual stock on
past consensus expected returns on the market;

3. For dispersion betas, our starting point is to collect all individual stock/forecaster expected
excess return forecasts over the past 36 months. We then remove the consensus forecasts from
the individual forecasts and organize the data into a table that has forecasters (ESTIMID) as
rows and individual stocks (cusip) as columns. Very often, we have several ESTIMID/cusip
observations. In such cases, we take the last observation.

As explained in Footnote 20, there is a tradeoff in choosing the length of the rolling win-
dow used for these computations: using a shorter window yields a sparse covariance matrix
(there are not many pairs of stocks that have enough forecasts to allow computation of co-
variances); using a longer window contaminates the cross-sectional variation in Ei∗[R̃e] with
stale observations, e.g., observations that are more than 3 years old.

Once the table ESTIMID/cusip is built, we also compute average market capitalizations for
all the stocks in the table over the last 36 months. Then, for each pair of stocks in the
table, we compute the covariance among forecasts whenever we have at least two common
forecasters available (the minimum number of forecasts needed to compute a covariance). We
also compute the variance across forecasters for each individual stock. We then group all the
covariances and variances into the matrix of co-beliefs Var[Ei∗[R̃e]] from Eq. (41).
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To get an idea of the matrix of co-beliefs Var[Ei∗[R̃e]], we provide here a simplified example.
Consider an economy with 2 stocks, n ∈ {a, b} and 3 forecasters, i ∈ {1, 2, 3}. For this
economy, the matrix ESTIMID/cusip is made of two vectors:E1∗[R̃ea] E1∗[R̃eb]

E2∗[R̃ea] E2∗[R̃eb]

E3∗[R̃ea] E3∗[R̃eb]

 . (C.164)

The matrix of co-beliefs Var[Ei∗[R̃e]] is the covariance matrix of these two vectors:[
Var[Ei∗[R̃ea]] Cov[Ei∗[R̃ea],Ei∗[R̃eb]]

Cov[Ei∗[R̃ea],Ei∗[R̃eb]] Var[Ei∗[R̃eb]]

]
. (C.165)

(Notice that covariances—of-diagonal elements—can be computed only if the two stocks have
at least a pair of common forecasters.)

We keep only stocks for which we are able to measure covariance in beliefs with at least 100
other stocks (including itself).

Finally, using the average market capitalizations computed above we obtain the matrix of
asset-specific market weights M. Having obtained Var[Ei∗[R̃e]] and M, the data necessary
to compute βD at the end of each month (Eq. 41) is now complete.

We further winsorize our beta estimates at 0.5% (Bali et al., 2016). The regressions that we
perform in Section 5 are standard and self-explanatory and we do not further elaborate on them
here. Nevertheless, in building our data we have made several assumptions—most of them borrowed
from the existing literature—and it is important to discuss here the robustness of our results. The
results do not change significantly if:

1. We do not remove the 1st and 99th percentile of analyst forecasts;

2. We vary the past window of 180 calendar days over which we collect forecasts from 90 days
to 240 days;

3. We compute consensus forecasts as average instead of median;

4. We use a rolling window for beta computations (realized, consensus, and dispersion betas)
between 24 and 48 months (instead of 36 months);

5. We do not winsorize our beta estimates;

6. We use different approaches for computing dispersion betas over the same 36 month rolling
window. Dispersion betas are new to the literature, and we have experimented several ap-
proaches, always with similar results. In particular, results do not change substantially if:

(a) We change the threshold of 100 minimal covariances (see above) between 50 and 250.

(b) When dealing with duplicates (ESTIMID/cusip), we take an average instead of the last
observation, for forecasts or for market capitalization.

(c) We require more than two common forecasters when computing covariances for disper-
sion betas (that is, between 2 and 10 forecasters).
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D List of Symbols

0 N × 1 N -dimensional vector of zeros
1 N × 1 N -dimensional vector of ones
D Unconditional mean of assets’ payoffs

D̃ N × 1 ≡ 1D + ΦF̃ + ε̃, assets’ payoffs
e1 = 1/τ + 1/τε, largest eigenvalue of matrix Σ

F̃ Unobserved fundamental

F i {Ṽ i, P̃} Information set of investor i ∈ [0, 1]

G̃ N × 1 Public signals (Section 4.2)
g̃ N × 1 Noise in public signals (Section 4.2)
I N ×N Identity matrix of dimension N
m̃ N × 1 Liquidity shocks (demand or liquidity traders)
M N × 1 Market portfolio
N Number of risky assets
N Normal distribution

P̃ N × 1 ≡ 1D + ξ0M + λF̃ + ξm̃, equilibrium prices

R̃e N × 1 ≡ D̃− P̃, dollar excess returns
T N × 1 Investors’ tangency portfolio

T̂ N × 1 Empiricist’s tangency portfolio
ṽi Noise in the private signal of investor i ∈ [0, 1]

Ṽ i ≡ F̃ + ṽi, private signal of investor i ∈ [0, 1]

wi = Σ−1 Ei[R̃e]/γ, optimal portfolio of investor i ∈ [0, 1]

Ẑ N × 1 Empiricist’s zero-beta portfolio
β N × 1 True betas (Corollary 1.1)

β̂ N × 1 Empiricist’s betas (Eq. 22)
βC N × 1 Consensus betas (Proposition 6)
βD N × 1 Dispersion betas (Proposition 6)
C2 Fraction in the variation of realized returns of the market explained by variation

in consensus beliefs
D2 Fraction in the variation of realized returns of the market explained by disper-

sion in beliefs across investors
δ CAPM distortion
ε̃ N × 1 Idiosyncratic shocks to assets’ payoffs (residual uncertainty)

Φ N × 1 Vector of exposures of assets’ payoffs to the fundamental F̃
Φ̄ Average of Φ
γ Coefficient of absolute risk aversion

λ N × 1 Exposure of prices to the fundamental factor F̃

µ N × 1 ≡ E[R̃e], unconditional expected excess returns

µM ≡M′ E[R̃e], unconditional market expected excess return

µ
Ẑ

Unconditional expected excess return of empiricist’s zero-beta portfolio Ẑ
Σ N ×N = ΦΦ′/τ + I/τε, investors’ variance matrix of future excess returns (Eq. 8)
σ2

M = M′ΣM = Φ̄2/τ + 1/(Nτε), investors’ variance of market’s future excess
returns

Σ̂ N ×N Empiricist’s variance matrix of realized excess returns (Lemma 1)

σ̂2
M = M′Σ̂M, empiricist’s variance of the realized excess returns on the market
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ξ0 N ×N Exposure of prices to the market portfolio M
ξ N ×N Exposure of prices to liquidity shocks m̃

τF Precision of the fundamental F̃
τε Precision of the idiosyncratic shocks
τg Precision of noise in public signals
τv Precision of noise in private signals
τm Precision of the supply shocks

τ ≡ 1/Var[F̃ |F i], precision of F̃ conditional on the information set F i of investor
i ∈ [0, 1]

τP Price informativeness
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