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Abstract

We provide a novel explanation for the empirical failure of the CAPM despite its
widespread practical use. In a rational-expectations economy in which information is
dispersed, variation in expected returns over time and across investors creates an in-
formational gap between investors and the empiricist. The CAPM holds for investors,
but the Securities Market Line appears flat to the empiricist. Variation in expected
returns across investors accounts for the larger part of this distortion, which is empir-
ically substantial; it offers a new interpretation of why “Betting Against Beta” works:
BAB really bets on true beta. The empiricist retrieves a stronger CAPM on days when
public information reduces disagreement among investors.
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1 Introduction

There is a growing tension between the theory of financial economics and its application. The

Capital Asset Pricing Model, a theoretical pillar of modern finance, fails in empirical tests.1

The consensus among economists is that beta does not explain expected returns, largely

shaping the view that the CAPM does not hold. But a flagrant affront to this view is that

the CAPM remains to this day the model that investors and firms most widely use.2 Adding

to the controversy, the CAPM does hold on particular occasions, e.g., on announcement

days, or at night.3 Why do economists keep rejecting a theory that practitioners refuse to

abandon?

This paper explores the idea that traditional empirical tests reject the CAPM when in

fact it is the correct asset pricing model from investors’ perspective. Of course, there are

many reasons not to believe the CAPM is the correct canonical asset pricing model; and there

are as many ways it could fail empirically. However, in this paper, we present a situation

in which the CAPM holds from the perspective of investors, but it fails empirically in one

specific way: the empiricist perceives a “flat” Securities Market Line (SML), which becomes

steeper occasionally, e.g., when public information reduces disagreement among investors.

We build our argument in a rational-expectations model of informed trading in which a

continuum of mean-variance investors trade multiple assets (e.g., Admati, 1985). Investors

use their own private information and the information they infer from prices to predict future

excess returns. Even though returns are predictable from investors’ perspective, the opera-

tion of the law of iterated expectations ensures that they all observe the same unconditional

CAPM relation. Yet, return predictability leaves a mark on the CAPM relation that the

empiricist estimates: the operation of the law of total variance implies that the betas the

empiricist measures do depend on the extent to which returns are predictable. Critically,

expected returns vary across investors when their information is dispersed. Hence, variation

across investors leaves a mark on traditional CAPM tests, the main point of this paper.

Variation in investors’ expectations increases the dispersion in empiricist’s betas relative

to investors’ betas. Since all betas (correct or incorrect) must average one (market’s beta),

the empiricist inflates all betas above market’s beta and deflates all others. As a result, the

1See Fama and French (2004) for a comprehensive review.
2The CAPM is the most widely used model to make investment decisions (Berk and Van Binsbergen,

2016; Barber, Huang, and Odean, 2016) and to compute the cost of capital (Graham and Harvey, 2001).
3Savor and Wilson (2014) document a strong relationship between expected returns and betas on days

when news about inflation, unemployment, or FOMC interest rate decisions is scheduled to be announced.
Hendershott, Livdan, and Rösch (2018) document a strong relationship when the market is closed (at night).
Ben-Rephael, Carlin, Da, and Israelsen (2021) document that the CAPM performs better when institutions
demand more information. See also Chan and Marsh (2021) and Andrei, Friedman, and Ozel (2021).
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empiricist perceives risky (high-beta) assets as riskier than they really are, and safe (low-

beta) assets as safer than they really are. Although the empiricist and investors disagree

about betas (by the law of total variance), they agree on unconditional expected returns (by

the law of iterated expectations). Since market’s beta is the only beta on which they agree,

the empiricist’s SML rotates clockwise around the market portfolio, which flattens its slope

and creates a positive intercept—the SML looks “flat.”

We emphasize that our framework is not a standard CAPM environment—investors have

information that is dispersed among them (Lintner, 1969) and that the empiricist does not

observe (Hansen and Richard, 1987). Hence, the CAPM relation and the sense in which

it holds must be redefined. There is CAPM pricing in the sense that unconditional betas

depend on information that investors know, a result that goes back to Admati (1985).4

Thus, the argument that the CAPM is correctly rejected because it does not hold (e.g.,

Merton, 1987) does not apply. In this framework, the CAPM is incorrectly rejected because

the notion of beta that underlies it is not the traditional beta that empiricists commonly

compute.5

The informational distance between investors and the empiricist originates from two

sources of variation in investors’ expectations. First, there is aggregate (time) variation in

expected returns averaged across investors (consensus beliefs), of the kind studied in Jagan-

nathan and Wang (1996). However, time-series variation alone is often found insufficient

to explain asset-pricing anomalies (Lewellen and Nagel, 2006). Our focus is on the second

source of variation, which results from dispersion in investors’ information. Because in-

vestors’ information is dispersed, there is variation in expected returns across investors, too.

In this model, time-series and cross-sectional variation in investors’ information reinforce

each other, leading together to a flat SML. To our knowledge, variation across investors—as

opposed to variation over time—has been neglected in empirical tests of the CAPM. We

show that the impact of cross-sectional variation on these tests is substantial, stronger than

that of time-series variation.

An empirical and methodological contribution of this paper is to measure covariation in

investors’ expectations, which we refer to as co-beliefs. Co-beliefs measure how expected

returns on pairs of stocks covary across investors. We use this measure to correct beta

estimates according to our theory, which reveals a better-performing CAPM. We first obtain

proxies for consensus and individual expected returns for a large cross section of stocks.

I/B/E/S is one database that offers such a rich panel of individual expectations; it provides

4See Easley and O’Hara (2004), Fama and French (2007), Van Nieuwerburgh and Veldkamp (2010),
Banerjee (2010), and Biais, Bossaerts, and Spatt (2010).

5See Roll (1978) and Dybvig and Ross (1985).
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one-year price targets made by a large set of analysts for S&P500 firms (among others),

starting in 1999. From these price targets, we construct expected returns, which we use

to assess quantitatively how variation over time and across investors affect together and

separately beta mismeasurement. As the theory predicts, both channels contribute to SML

flattening, with variation across investors accounting for the larger part.

We propose a new form of beta based on co-beliefs, dispersion beta, which measures how

expected returns on a given stock and the market covary across investors. For instance,

consider an investor who systematically underestimates returns (on the stock and on the

market) relative to consensus and another investor who does just the opposite. Computed

across these two investors, dispersion beta is positive: although investors deviate from con-

sensus in opposite directions, their expectations on the stock and the market individually

deviate from consensus in the same direction. If, further, each investor’s deviation from

consensus is larger on the stock than on the market, dispersion beta will be larger than one.

Thus, just as traditional beta compares variation over time of realized returns on a stock to

those on the market, dispersion beta compares variation across investors of expected returns

on a stock to those on the market.

Our main result that investors’ betas shrink towards one relative to empiricist’s tradi-

tional betas is confirmed in the data. Interestingly, this result corresponds to how prac-

titioners adjust beta estimates (e.g., “ADJ BETA” on Bloomberg terminals). This ad-

justment in our model and in practice has different origins. Practitioners use it to re-

duce sampling biases (Vasicek, 1973) or to account for “regression towards the mean”

(Blume, 1971), features absent in our model; in this paper, adjustment results entirely

from the informational distance between investors and the empiricist. We can compare,

however, how much shrinkage our theory and empirical analysis imply with how much

shrinkage finance textbooks recommend (e.g., Berk and DeMarzo, 2007). The Bloomberg

adjustment is: True Beta = (2/3) × Raw Beta + (1/3) × 1. Our proposed adjustment is:

True Beta = (1/2)× Raw Beta + (1/2)× 1. Thus, the adjustment used in practice is likely

too conservative, as suggested by Levi and Welch (2017).

An alternative explanation is that CAPM flattening is caused by leverage constraints

(Black, 1972; Frazzini and Pedersen, 2014). We examine whether there is sufficient variation

in expected returns (both over time and across investors) to explain abnormal returns on

the “Betting Against Beta” (BAB) anomaly. In our data sample, we cannot reject the

theoretical possibility that returns on BAB result from beta mismeasurement, with variation

across investors playing a significant role in explaining returns on BAB. Although we do not

dispute the success of the BAB strategy, our interpretation differs: we claim that part of

this success is because betting against measured beta is betting on true beta.
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Variation across investors’ information (dispersed information) causes larger CAPM dis-

tortion than aggregate variation (public information) does, everything else being equal. For-

mally, consider two economies that reveal an equivalent amount of information to investors,

but one in which this information is dispersed and one in which it is public. Investors’ betas

and the unconditional risk premium are identical across the two economies. However, in the

economy where all information is public, the empiricist’s SML is steeper and closer to the

true SML. Because public information reduces disagreement among investors, empiricist’s

SML steepens through a compression in betas when public information dominates (e.g., on

days with FOMC press conferences). We provide evidence supporting this result (see also

Andersen, Thyrsgaard, and Todorov, 2021; Bodilsen, Eriksen, and Grønborg, 2021).

We also show that empiricist’s SML can be downward-sloping, although the risk premium

is always positive in this model. This puzzling outcome depends on the composition of

the market portfolio: it occurs when assets with high measured beta simultaneously have

little weight in the market portfolio. Finally, we study how our conclusions depend on

modeling assumptions. When information is entirely public and the market portfolio is

equally weighted, SML flattening always occurs, irrespective of modeling assumptions. When

information is dispersed, the structure of payoffs matters; however, under assumptions on

the structure of private signals, dispersed information always amplifies flattening. More

generally, the distribution of eigenvalues of investors’ covariance matrix dictates whether

flattening obtains, which occurs when eigenvalues exhibit little dispersion.

There are several established explanations for the finding that the SML is too flat, some of

which go back to the 1970s.6 None result from variation in expected returns across investors.

We believe that the fleeting appearance of the CAPM on announcement days (Savor and

Wilson, 2014)—let alone its pervasive application in practice—licenses a new look at the

finding that the SML is too flat. In addition to aggregate variation (Jagannathan and

Wang, 1996; Lewellen and Nagel, 2006), we argue that variation across investors creates

CAPM distortion. That CAPM tests fail when the market proxy is not mean-variance

efficient is certainly true (Roll, 1977; Stambaugh, 1982; Roll and Ross, 1994) and is not our

point. Assuming that the CAPM holds unconditionally, we argue that an empiricist may

incorrectly reject it using the correct market proxy. Finally, whereas Albagli, Hellwig, and

Tsyvinski (2022) emphasize that market aggregation of dispersed information makes prices

6These explanations include leverage constraints (Black, 1972; Frazzini and Pedersen, 2014), inflation
(Cohen, Polk, and Vuolteenaho, 2005), short-sale constraints and disagreement (Hong and Sraer, 2016),
preference for volatile, skewed returns (Kumar, 2009; Bali, Cakici, and Whitelaw, 2011), market sentiment
(Antoniou, Doukas, and Subrahmanyam, 2015), stochastic volatility (Campbell, Giglio, Polk, and Turley,
2012), and benchmarking of institutional investors (Baker, Bradley, and Wurgler, 2011; Buffa, Vayanos, and
Woolley, 2014).
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more sensitive to fundamental and noise trading shocks, how this mechanism affects the

validity of the CAPM remains unattended in the literature.

Section 2 defines the informational distance between an empiricist and investors in the

presence of dispersed information. In equilibrium this distance cannot be simply assumed,

but arises endogenously in a way we describe in Section 3. Section 4 presents our main result,

provides intuition into the distortion in beta estimates, and isolates the role of dispersed

information. Section 5 tests our theory, and reinterprets “betting against beta.” Finally,

Section 6 discusses and relaxes our modeling assumptions, and Section 7 concludes.

2 Background

Let R̃e be the vector of excess returns on an arbitrary cross section of N assets.7 It does not

matter here how these excess returns are computed (e.g., simple returns, log returns, or dollar

returns). Suppose an empiricist observes a dataset containing infinitely many realizations

of R̃e. We make the following assumptions (these assumptions hold in the main analysis;

whenever relevant, we explain how they matter for derivations and our results):

A There is a large population (a continuum) of rational investors, who have common

priors and update their beliefs using Bayes’ rule.

B All investors observe the empiricist’s dataset and private information about R̃e. Private

information is dispersed among investors, meaning that each investor i observes a

different information set. Her posterior beliefs, Ei[R̃e], are linear in a sufficient statistic

for her information. Thus, individual and average beliefs, E[R̃e] ≡
∫
Ei[R̃e]di, satisfy:

Ei[R̃e] = E[R̃e] + ε̃i. (1)

We assume that the law of large numbers applies to ε̃i across investors.8

C Investors work with the same conditional variance-covariance matrix of returns, Vari[R̃e],

which is assumed constant over time.

By Assumption B each investor i’s information set is a refinement of that of the empiricist.

Under rationality (Assumption A), the law of total variance implies the following decompo-

7Throughout the paper, we will adopt the following notation: we identify random variables with a tilde;
we use bold letters to indicate vectors and matrices, and letters in plain font to indicate univariate variables;
we use subscripts to indicate individual assets, and superscripts to indicate individual investors (agents). A
complete list of symbols is available in Appendix D.

8Appendix B.1 provides conditions under which Eq. (1) holds, and Sun (2006) provides the precise
construction of a probability space where the exact law of large numbers holds in a continuum setting.
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sition of the unconditional variance of R̃e the empiricist computes:

Var[R̃e] = E
[
Vari[R̃e]

]
+ Var

[
Ei[R̃e]

]
. (2)

The vector E[R̃e] ≡
∫
Ei[R̃e]di represents consensus beliefs about excess returns on

the cross section of assets. Because we do not exclude the possibility of time variation in

consensus beliefs, E[R̃e] should be considered a random variable. Assumption B implies that

individual noises in investors’ private information are independent of consensus beliefs. This

allows us to decompose the last term in (2) as:

Var
[
Ei[R̃e]

]
= Var

[
E[R̃e]

]
+ Var

[
Ei[R̃e]− E[R̃e]

]
. (3)

Assumption C, together with (2)-(3), leads to a decomposition of the empiricist’s variance-

covariance matrix of returns into three terms:

Var[R̃e] = Vari[R̃e] + Var
[
E[R̃e]

]
+ Var

[
Ei[R̃e]− E[R̃e]

]
. (4)

The first term captures investor i’s perception of uncertainty about R̃e; the second term

measures time variation in consensus beliefs; and the third term measures the dispersion in

beliefs across investors.

We know that the law of total variance (2) always applies to individual, rational beliefs.

When investors’ information is homogeneous, their beliefs are identical to consensus beliefs

and the last term in (4) drops out. But when information is dispersed, the law of total

variance must incorporate variation across individual beliefs, which consensus beliefs average

out. The relevance of variation across investors is perhaps unexpected, considering that the

empiricist is assumed to observe time variation only. However, what the right-hand side of

(4) shows is that cross-sectional variation hides in the variation the empiricist measures.

The last two terms in (4) create an informational distance between the empiricist and

investors. How do we measure this distance—how do we aggregate the matrix relation (4)

into a single number? In the theoretical framework that we construct in this paper, the

market portfolio plays exactly this role. Formally, denote by M the market portfolio for

the cross section of assets, which in our model is constant, and by R̃e
M ≡ M′R̃e its excess

return. Applying (4) to this portfolio, dividing by Var[R̃e
M] and shifting the first term to the

left-hand side yields:

1− Vari[R̃e
M]/Var[R̃e

M]︸ ︷︷ ︸
Informational distance

= Var[E[R̃e
M]]/Var[R̃e

M]︸ ︷︷ ︸
≡C2

+ Var[Ei[R̃e
M]− E[R̃e

M]]/Var[R̃e
M]︸ ︷︷ ︸

≡D2

. (5)
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The left-hand side of (5) represents the fraction of variation in market excess returns

explained by investor i’s information. This informational gap between the empiricist and

investor i has two origins. First, time variation in consensus beliefs contributes C2 to this

gap (C2 is the fraction of variation in market excess returns explained by variation in con-

sensus beliefs). Second, because information is dispersed, there is variation in beliefs across

investors, which accounts for the remaining distance, D2 (the fraction of variation in market

excess returns explained by variation in beliefs across agents).

The purpose of this paper is to understand how the two fractions C2 and D2 together and

separately distort the empiricist’s view of the CAPM relation. Distortions resulting from

time variation in consensus beliefs, C2, have been examined extensively in the literature

(e.g., Jagannathan and Wang, 1996; Lewellen and Nagel, 2006; Boguth, Carlson, Fisher,

and Simutin, 2011). Our paper focuses mainly on D2, an estimate of which is missing in

the literature and which has been neglected in CAPM tests. We will show that D2 is not

a typical measure of dispersion in beliefs (e.g., Diether, Malloy, and Scherbina, 2002): D2

measures how expected returns on each pair of stocks covary across investors, for a large

cross section of assets. In contrast, typical measures of dispersion in beliefs consider only

variation across investors on single stocks but ignore covariation across stocks.

Equation (5) is a statistical decomposition of the informational distance between investors

and the empiricist. It does not say how this informational distance distorts tests of the

CAPM. To place economic restrictions on the resulting distortion, we build a model of how

investors form expectations, imposing an equilibrium structure on excess returns.

3 Model

Consider a one-period economy in which the market consists of one risk-free asset with gross

return normalized to 1 and N risky stocks indexed by n = 1, ..., N . Suppose the risky stocks

have random payoffs, D̃ ≡ [D̃1 . . . D̃N ]′, realized at the liquidation date (time 1). These

payoffs are unobservable at the trading date (time 0) and have a common factor structure:

D̃ =


D

D
...

D

+


φ1

φ2

...

φN

 F̃ +


ε̃1

ε̃2
...

ε̃N

 = 1D + ΦF̃ + ε̃, (6)

where D is a strictly positive scalar and 1 is a N × 1 vector of ones. The common factor, F̃ ,

and each stock-specific component, ε̃n, are independently normally distributed with means
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zero and precisions τF and τε. We assume, without loss of generality, that the vector of

loadings of assets’ payoffs on the common factor is a unit vector, ‖Φ‖ = 1; this normalization

is equivalent to scaling τF . We further define the mean of this vector, Φ̄ ≡ 1′Φ/N .

The economy is populated with a continuum of investors indexed by i ∈ [0, 1], who choose

their portfolios at time 0 and derive utility from terminal wealth with constant absolute

risk aversion coefficient γ. Investors know the structure of realized payoffs in (6), but do

not observe the common factor, F̃ , nor stock-specific shocks, ε̃. Each investor i forms

expectations about F̃ based on information inferred from prices and information from a

private signal, Ṽ i:

Ṽ i = F̃ + ṽi. (7)

Signal noises, ṽi, are unbiased and independently normally distributed with precision τv.

In this economy equilibrium prices do not fully reveal investors’ private information

about the common factor, F̃ . Prices change to reflect new information about final payoffs,

but they also change for reasons unrelated to information. To model uninformative price

changes, we assume that an unmodeled group of agents trades for liquidity needs and/or

non-informational reasons. Liquidity trading prevents prices from revealing F̃ (Grossman

and Stiglitz, 1980) and investors from refusing to trade (Milgrom and Stokey, 1982).9

We fix the total number of shares for all assets to M (hereafter the market portfolio),

a vector whose elements are all equal to 1/N . Liquidity traders have inelastic demands of

m̃ shares, where m̃ is normally and independently distributed across stocks with precision

τm, and unobservable by investors; the remainder, M− m̃, is available for trade to informed

investors. This assumption is consistent with the usual noise trading story commonly adopted

in the literature (e.g., He and Wang, 1995). Formally, letting 0 be a vector of zeros of

dimension N and I denote the identity matrix of dimension N , M ≡ [1/N . . . 1/N ]′ and

m̃ ∼ N (0, τ−1
m I).

This economy relies on several simplifying assumptions. We have assumed that payoffs

in (6) are driven by a single factor, as opposed to multiple factors; that stocks only differ

according to their loading, Φ, on this common factor; and that stocks have equal weights

in the market portfolio M, and equal precisions across assets for the supply shocks and the

idiosyncratic noises. These simplifications serve our purpose of isolating the main result in

the clearest and simplest possible terms. We further discuss the generality of our results in

Section 6, where we relax some of these assumptions.

9There are different ways to endogenize liquidity trading: private investment opportunities (Wang, 1994),
investor specific endowment shocks, or income shocks (Farboodi and Veldkamp, 2017). These alternatives
would unnecessarily complicate the analysis without bringing additional economic insights.
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We solve for a linear equilibrium of the economy in which prices satisfy:

P̃ = 1D + ξ0M + λF̃ + ξm̃, (8)

where λ is an N × 1 vector and ξ0 and ξ are a N ×N matrices, all of which are determined

in equilibrium by imposing market clearing. Because in this framework rates of return are

not normally distributed, a convention in the literature is to work with dollar excess returns.

We follow this convention and refer to R̃e ≡ D̃− P̃, as excess returns.

Each investor i forms expectations about excess returns based on her information set:

F i = {Ṽ i, P̃}. (9)

Because private signals, Ṽ i, have identical precision, and prices, P̃, are public, each investor

forecasts the common factor, F̃ , with identical precision:

τ ≡ Var[F̃ |F i]−1 = τF + τv + τP . (10)

The last coefficient in (10), τP , is the sum of squared signal-to-noise ratios over all prices; it

is a scalar (to be determined in equilibrium) that measures price informativeness.

Defining Ei[R̃e] ≡ E[R̃e|F i] as investor i’s vector of expected returns and Σ ≡ Var[R̃e|F i]

as her conditional covariance matrix of returns (which in this model is constant and identical

across investors—see Assumption C), investor i’s optimal portfolio choice is

wi =
1

γ
Σ−1 Ei[R̃e], where Σ =

1

τ
ΦΦ′ +

1

τε
I. (11)

All investors in this model are mean-variance maximizers. However, each investor operates

under a different information set. In particular, since each investor i forms conditional

views on future asset returns based her own information F i, this information determines

the parameters of the conditional mean-variance set, Ei[R̃e] and Σ, that are the inputs of

the standard Markowitz (1952) recipe.

Market clearing requires that the demand in (11) aggregated across informed investors

and the demand of liquidity traders sum up to the market portfolio, M:∫ 1

0

widi+ m̃ = M. (12)

Let consensus beliefs of investors be E[R̃e] ≡
∫ 1

0
Ei[R̃e]di. Substituting individual portfolios

9



in (11) into the market-clearing condition implies

E[R̃e] = γΣ(M− m̃), (13)

which represents the expected rate of return that every particular asset must pay for informed

investors to be willing to hold the supplies of the N assets, net of liquidity traders’ demand.

The central departure from the traditional CAPM framework is that individual investors

do not find it optimal conditionally to hold the market portfolio, M. Each investor instead

uses the market portfolio as a starting point, departing from it according to her own views:

wi = M +
1

γ
Σ−1

(
Ei[R̃e]− E[R̃e]

)
︸ ︷︷ ︸
Investor i ’s private views

, (14)

which follows from (11) and the unconditional version of (13), where E[R̃e] ≡ E[E[R̃e]]. This

method of constructing portfolios, which combines a natural starting point (the market port-

folio, M) with investors’ private views, is reminiscent of the portfolio construction approach

advocated by Black and Litterman (1990, 1992). Eq. (14) also implies that the investor who

has average unconditional beliefs, E[R̃e] and Σ, holds the market portfolio, M.

Our framework is not a standard CAPM environment—investors have information that is

dispersed among them (Lintner, 1969) and that the empiricist does not observe (Hansen and

Richard, 1987). Although standard assumptions on CAPM fail, an unconditional version of

CAPM holds if one appropriately defines expected returns and the market portfolio. Propo-

sition 1 shows that unconditional expected returns E[R̃e] are proportional to the market risk

premium and to a new notion of beta, β, which is based on investors’ covariance matrix Σ

and on the market portfolio M.

Proposition 1. In this economy, the following linear relation holds:

E[R̃e] =
ΣM

σ2
M

E[R̃e
M] = β E[R̃e

M], (15)

where E[R̃e
M] ≡M′ E[R̃e] is the unconditional expected excess return on the market, and

σ2
M ≡M′ΣM =

Φ̄2

τ
+

1

Nτε
(16)

is the variance of excess returns on the market portfolio conditional on the information set

of any investor i ∈ [0, 1].

Proof. Condition (13) down, pre-multiply by M′, solve for γ, and substitute back.
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Eq. (15) is the true unconditional CAPM relation that holds in this economy. Note

that one can also write a conditional CAPM relation (Easley and O’Hara, 2004; Fama and

French, 2007; Van Nieuwerburgh and Veldkamp, 2010; Banerjee, 2010; Biais et al., 2010),

which holds with respect to consensus beliefs, E[R̃e], and the market defined as informed

investors’ holdings, M−m̃. Yet, no investor observes nor agrees on this conditional relation,

as the investor with consensus beliefs is only a theoretical construct. Additionally, both

E[R̃e] and M− m̃ are unobservable to an empiricist, and thus this relation is not testable.

In contrast, the two advantages of the unconditional relation (15) are that all investors agree

on it and it is testable because the market portfolio M is observable.

The crux of our argument is that the notion of true beta, β, that underlies the CAPM

representation in (15) is not that of an unconditional beta as empiricists commonly compute,

β̂n =
Cov[R̃e

n, R̃
e
M]

Var[R̃e
M]

, (17)

i.e., the slope of a regression of realized excess returns of asset n on realized excess returns

of the market portfolio, M. The origin of the difference between true betas and empiricist’s

betas becomes apparent once we take the perspective of an investor i. She perceives the

cross-section of excess returns conditional on her own information as:

Ei[R̃e] = β E[R̃e
M] + ε̃i, where ε̃i ≡ γΣ(wi −M) ∼ N (0,Var[Ei[R̃e]]). (18)

An investor i views expected returns as a noisy perturbation around the CAPM relation of

Proposition 1. This perturbation arises because returns are predictable from her perspective.

The more predictable returns are, as measured by Var[Ei[R̃e]], the larger this perturbation

is. However, even though there is predictability at the investor level, the operation of the

law of iterated expectations ensures that this perturbation vanishes on average. Thus, after

conditioning down (18) investor i retrieves the CAPM relation of Proposition 1. Yet, the

perturbation leaves a mark on the CAPM relation that the empiricist estimates: the typical

betas in (17)—computed using the covariance matrix of realized returns—do depend on the

extent to which returns are predictable (as we will demonstrate formally in Section 4).

Proposition 2 provides an explicit solution to the functional form of equilibrium prices.

Proposition 2. (Equilibrium) There exists a unique linear equilibrium in which prices

take the linear form in (8) and are explicitly given by

P̃ = 1D − γ
(

1

τ
ΦΦ′ +

1

τε
I

)
M + Φ

τ − τF
τ

F̃ +

(
γ +
√
τmτP
τ

ΦΦ′ +
γ

τε
I

)
m̃, (19)
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and the scalar τP is the unique positive root of the cubic equation:

τP (τF + τv + τP + τε)
2γ2 = τmτ

2
ε τ

2
v . (20)

Corollary 2.1 delivers a simple expression for the true betas, β, implied by the model.

Corollary 2.1. The vector of true betas, β, in this economy is

β = 1 +
Φ̄2

τσ2
M

(
Φ

Φ̄
− 1

)
. (21)

True betas in (21) are a weighted average of two vectors, 1 and Φ/Φ̄. Thus, the whole

cross-section of stocks is spanned by just two vectors in equilibrium. This observation will

prove useful for analyzing the empiricist’s view of this economy.

4 The empiricist’s view

We now examine how an empiricist views this economy. The empiricist observes a dataset

containing a large number of realizations of R̃e, and computes market excess returns using

the market portfolio M, R̃e
M = M′R̃e. Proposition 1 implies this portfolio is mean-variance

efficient for the “average investor,” the investor who holds average unconditional beliefs,

E[R̃e] and Σ. That is, it commands the highest Sharpe ratio in the economy (Roll, 1977):

µM

σM

=
√
µ′Σ−1µ, (22)

where we define µ ≡ E[R̃e] as the vector of unconditional expected excess returns on all assets

and µM ≡M′ E[R̃e] as the unconditional expected excess return on the market portfolio.

The difference between the empiricist and investors is that the empiricist only observes

realized returns, but does not observe investors’ information.10 To distinguish the view of

the average investor from that of the empiricist, we denote all variables as measured by the

empiricist with a hat. Unlike investors, the empiricist rejects the unconditional CAPM.

Proposition 3. (CAPM rejection) For the empiricist, who observes the economy ex post,

10In Appendix B.6.1, we reduce the informational distance between investors and the empiricist by allow-
ing the empiricist to control for all publicly available information—i.e., public prices. Because the empiricist
cannot possibly control for private information, the results that follow continue to hold and are actually
stronger when investors’ private information is sufficiently precise.
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the market portfolio, M, is not mean-variance efficient:

µM

σ̂M

<

√
µΣ̂−1µ, (23)

where Σ̂ ≡ Var[R̃e] and σ̂M ≡
√

M′Σ̂M.

This follows directly from arguments of Section 2. The law of iterated expectations

ensures that the empiricist correctly measures µ and µM. The law of total variance (2),

however, implies that due to return predictability, the empiricist obtains variances and co-

variances of asset returns that differ from investors’ own estimates. Therefore, for the em-

piricist, all assets have the correct unconditional expected returns but display systematically

larger unconditional variances. Figure 1 illustrates this: although M is the correct mar-

ket portfolio, it is not the tangency portfolio for the empiricist, T̂, nor is it mean-variance

efficient and she rejects the CAPM, the result of Proposition 3.

[INSERT FIGURE 1 HERE]

Because the empiricist uses different covariances and variances, she obtains different

betas—empiricist’s betas in (17) are mismeasured. As a result, although the empiricist finds

a linear relation between expected excess returns and betas, this relation has a positive

intercept.11 This intercept is the expected excess return, µẐ, of the empiricist’s zero-beta

portfolio Ẑ, the unique minimum-variance portfolio that is uncorrelated with M. Figure 1

shows that Ẑ lies on the lower limb of the minimum-variance set, where µẐ corresponds to

the intercept of the line that is tangent to the minimum-variance set at M. Proposition 4

describes the linear relation between betas and expected returns that the empiricist measures.

Proposition 4. (CAPM tests based on realized returns) The empiricist observes a

zero-beta CAPM (Black, 1972):

µ = 1µẐ + β̂(µM − µẐ), (24)

in which the empiricist’s vector of betas, β̂ = Σ̂M/σ̂2
M, satisfies the proportionality relation:

β̂ − 1 = (1 + δ)(β − 1), (25)

11The empiricist’s relation remains linear because the market portfolio, although not mean-variance effi-
cient, remains minimum-variance (Roll, 1977, Corollary 6). Two assumptions jointly lead to this outcome:
(i) the market portfolio, M, is equally weighted, and (ii) asset payoffs are driven by a single common factor,

F̃ . Relaxing one (or both) of these assumptions would cause M to move inside the minimum-variance set of

the empiricist, and possibly below T̂. We study these distorting effects in Section 6.
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where the coefficient δ measures the magnitude of the empiricist’s distortion of the CAPM:

δ =
µẐ

µM − µẐ

≥ 0. (26)

The coefficient δ measures the distortion of the CAPM relation, as estimated by the em-

piricist, relative to the true CAPM in (15). In our model, the zero-beta portfolio always has

positive expected excess returns. Thus the empiricist perceives a flat Securities Market Line

(SML) with a positive intercept. Notably, Black (1972) writes that dispersed information

“does not change the structure of capital asset prices in any significant way.”12 But in the

context of our model, this argument is incorrect since Proposition 4 shows that dispersed

information, in fact, has precisely the same effect as that of borrowing constraints.

Further replacing µẐ in (24) produces the following relation:

µ = 1
δ

1 + δ
µM + β̂

1

1 + δ
µM, (27)

which describes the biggest failure of the CAPM (e.g., Black, Jensen, and Scholes, 1972, and

the literature that followed)—the high returns enjoyed by many apparently low-beta assets

and the high intercept of the SML. The proportionality relation between betas in (25) means

that the empiricist inflates all betas above the market’s beta, which is 1, and deflates all

others. Hence, the empiricist perceives risky (high-beta) assets as riskier than they really

are, and safe (low-beta) assets as safer than they really are. As illustrated in Figure 2, the

empiricist’s SML rotates clockwise around the market portfolio, which flattens its slope and

creates a positive intercept.

[INSERT FIGURE 2 HERE]

In equilibrium, true betas are shrunk towards one relative to empiricist’s betas.13 The

degree of shrinkage is determined by δ, which adjusts the empiricist’s betas towards true

betas. Interestingly, (25) is identical to the Bayesian estimator proposed by Vasicek (1973),

an estimator that is popular in the financial industry (“ADJ BETA” on Bloomberg termi-

nals).14 We emphasize, however, that the result of Theorem 4 is not due to sampling error.

12He refers specifically to the work of Lintner (1969).
13Shrinkage towards one follows from the assumption that the market portfolio M is minimum-variance

(because we assume it is equally weighted). If this were not the case, the beta of each asset would shrink
towards a number determined by its relative size in the market portfolio (see Section 6.2).

14This linear adjustment was first proposed by Blume (1971) (due to mean reversion of betas over time)
and then by Vasicek (1973) (due to measurement error). See Bodie, Kane, and Marcus (2007), Berk and
DeMarzo (2007) among others. Levi and Welch (2017) give best-practice advice for beta-shrinkage.
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Nor is this result a standard attenuation bias, which commonly plagues cross-sectional re-

gressions in the Fama and MacBeth (1973) method.15 Rather, in equilibrium shrinkage in

betas is due to the informational distance between investors and the empiricist.

We are interested in measuring the coefficient δ in terms of the informational distance

between investors and the empiricist, a matter to which we turn next.

4.1 Aggregate versus cross-sectional variation

Eq. (4) in Section 2 shows that two sources of variation together lead to the empiricist’s

rejection of the CAPM. First, there is aggregate (time-series) variation in consensus expected

returns, E[R̃e], as can be seen from Eq. (13). Second, dispersed information generates

cross-sectional dispersion in expected returns across investors, Var[Ei[R̃e] − E[R̃e]]. In our

equilibrium framework, the statistical relation (4) becomes an endogenous relation.

Lemma 1. The empiricist’s covariance matrix of realized excess returns satisfies

Σ̂ = Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
︸ ︷︷ ︸
Consensus covariance matrix

+
τv
τ 2

ΦΦ′︸ ︷︷ ︸
Matrix of co-beliefs

, (28)

where e1 is the unique largest eigenvalue of Σ:

e1 = τ−1 + τ−1
ε > 0. (29)

The consensus covariance matrix measures aggregate variation in consensus expected

returns, Var[E[R̃e]], whereas the matrix of co-beliefs measures dispersion in beliefs across

investors, Var[Ei[R̃e] − E[R̃e]]. The diagonal elements of this latter matrix have the tra-

ditional meaning of disagreement. However, its off-diagonal elements reflect the extent to

which expected returns on pairs of stocks covary across investors, which is different from

disagreement. Lemma 1 further shows that a unique, endogenous scalar, e1, determines the

informational distance between Σ̂ and Σ. This scalar represents the largest eigenvalue of Σ

(the other eigenvalues, of multiplicity N − 1, being 1/τε).
16

Section 2 shows how to summarize all elements of the consensus covariance and co-beliefs

matrices with just two numbers, C2 and D2. They are fractions of variation in market excess

15In Vasicek (1973), the degree of adjustment depends on the sample size and converges to zero as the
sample size increases. Similarly, Shanken (1992) shows that the attenuation bias becomes negligible as the
length of the sample period grows indefinitely (see also Jagannathan and Wang, 1998; Shanken and Zhou,
2007; Kan, Robotti, and Shanken, 2013). In our case, the adjustment is necessary even in infinite samples.

16This uniqueness result follows from our assumption of a single common factor in payoffs, which implies
that Σ has two distinct eigenvalues.
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returns explained by, respectively, variation in consensus beliefs and dispersion in beliefs:

C2 ≡ Var[E[R̃e
M]]

σ̂2
M

=
γ2

τmτετ σ̂2
M

(τσ2
M + τεe1Φ̄2), (30)

D2 ≡ Var[Ei[R̃e
M]− E[R̃e

M]]

σ̂2
M

=
τvΦ̄

2

τ 2σ̂2
M

. (31)

Together, C2 and D2 account for the informational distance between the empiricist and

investors. We now map this distance into the coefficient of CAPM distortion, δ.

Proposition 5. In equilibrium, the distortion in the CAPM relation to the empiricist is:

δ =

(
τσ2

M

Φ̄2
− 1

)
︸ ︷︷ ︸
Excess variance

(
C2 τεe1Φ̄2

τσ2
M + τεe1Φ̄2︸ ︷︷ ︸
∈(0,1)

+D2
)
≥ 0. (32)

Excess market variance is key to generating distortion in beta. From investors’ perspec-

tive, the ratio of market variance, σ2
M, to fundamental variance, Vari[Φ̄F̃ ] = Φ̄2/τ , minus 1

represents market excess variance, similar to the definition of excess volatility (Shiller, 1981).

There can be no distortion without excess market variance. Furthermore, both C2 and D2

unambiguously increase beta distortion. The impact of aggregate variation in expected re-

turns (C2 in this model) has been examined extensively in the literature (e.g., Jagannathan

and Wang, 1996; Lewellen and Nagel, 2006). Yet, to our knowledge, the impact of dispersion

in beliefs has been neglected in CAPM tests. To the extent that C2 is given a weight lower

than one, (32) shows that the impact of D2 is potentially stronger than that of C2.

In terms of comparative statics, we show in Appendix B.6 (for the case of diffuse priors)

that the flattening coefficient, δ, increases with investors’ risk aversion, γ, and with the

amount of noise in assets’ supplies, 1/τm. This result is perhaps not surprising if one considers

that the ratio of the two, γ2/τm, captures aggregate variation in expected returns, which

always increases δ (see Section 6.1). Further discussion of mathematical properties of δ may

be found in Appendix B.6, and an analysis of δ in a large economy in Section 6.3.

4.2 Public versus private information

We now investigate whether the type of information investors receive (public or private)

matters for the distortion and, if so, how. We compare our model to an otherwise identical

economy in which all information is public and there is no disagreement among investors.
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We call this economy the Common Information Economy (CIE).17 We adopt the following

notation: we add “CIE” as a subscript to variables whose value differs in the common

information economy. All variables without a “CIE” subscript have identical values to that

in the baseline model.

We want to ensure that investors’ precisions on the common factor are identical across the

two economies. In our baseline economy, prices act as endogenous, public signals. Formally,

all investors observe N endogenous public signals with the following structure:

ξ−1P̃a =
√
τP/τmΦF̃ + m̃, (33)

where P̃a ≡ P̃−1D−ξ0M. To map the information structure of the main model, we assume

that investors in the CIE observe a vector G̃ of N exogenous, public signals:

G̃ ≡
√
τP/τmΦF̃ + g̃, where g̃ ∼ N (0, τ−1

g I). (34)

To maintain identical informational content about the common factor, F̃ , in the CIE and

the baseline economy, we choose τg such that the precision τ is identical in both economies;

the following equation determines τg (Appendix B.7 provides analytical details):

τF + τv + τP = τF +
τg
τm
τP . (35)

For τ to be identical across the two economies, τg must be larger than τm, meaning that

public information must be more informative in the CIE than prices are in the baseline model.

Intuitively, unlike investors in the CIE, investors in the baseline model observe information

from private signals. Thus, for identical posterior precision τ to obtain, the precision on

the exogenous, public information in the CIE, G̃, must be higher than that on endogenous,

public information in the baseline model, ξ−1P̃a.

Because τ is identical in both economies, investors’ conditional covariance matrix of

future expected returns, Σ, is identical in the CIE and the baseline model. As a result, the

vector of true betas, β, is the same as in the baseline model. Thus investors in the CIE also

observe the unconditional CAPM relation in Proposition 1. But the view of the empiricist

does change—the empiricist observes a stronger CAPM relation in the CIE.

17Bacchetta and Wincoop (2006) and Albagli et al. (2022) perform a similar exercise as we do here, with
the same goal of isolating the role of dispersed information. It is perhaps tempting to create a benchmark
economy with dispersion but no aggregate variation in beliefs (D2 > 0 and C2 = 0). However, in our setup
this requires eliminating noise in supply (the only source of aggregate variation in expected returns). Since
prices would be fully informative in that case, cross-sectional variation would only persist under additional
behavioral assumptions (e.g., investors “agree to disagree”).
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Proposition 6. The distortion of the SML is lower in the common information economy:

δCIE =

(
τσ2

M

Φ̄2
− 1

)
C2

CIE

τεe1Φ̄2

τσ2
M + τεe1Φ̄2

< δ. (36)

In the CIE the informational gap resulting from aggregate variation is always larger,

C2
CIE > C2 (see Appendix B.7), but dispersion in investors’ information is absent, D2

CIE = 0.

On balance reduced dispersion leads to lower SML distortion, δCIE < δ. Thus, empiricist’s

betas get closer to true betas. This result is a form of over-reaction of the kind studied in

Albagli et al. (2022). Since we have concluded from (35) that the public signals G̃ must be

more informative that market prices are in the baseline model (τg > τm), it follows that in

the model with dispersed information investors act as if they were treating market (public)

information as more informative than it truly is, exacerbating price sensitivity to funda-

mental shocks. This excess price sensitivity, or information updating wedge (Albagli et al.,

2022), increases variation measured by the empiricist and further distorts beta estimates (see

Appendix B.7).

Reduced disagreement among investors causes a compression in empiricist’s betas. Given

that in the CIE investors do not disagree and δCIE < δ, beta compression follows from

Proposition 4, which links the cross-sectional dispersion in β̂CIE to that in β:

σβ̂CIE
= (1 + δCIE)σβ. (37)

Since σβ is identical in the CIE (true betas remain unchanged), for the empiricist δCIE < δ

translates into a beta compression. A stronger CAPM in the CIE arises solely from this

compression (investors face, by construction, the same risk and the unconditional market risk

premium remains the same across economies). Our prediction is that days on which public

information crowds out private information and resolves disagreement are accompanied by

a beta compression. We provide evidence supporting this result in Section 5.4.

5 Empirical Tests

In this section we assess quantitatively the theoretical predictions of our model. Note that

these predictions are based on dollar returns, as in CARA-normal models dollar returns

are normally distributed and deliver analytical expressions. However, the empirical analysis

of this section uses rates of return, under which our theoretical results are intractable. We

discuss this matter in Appendix B.13, where we show by means of numerical simulations and

first-order approximations that all our theoretical predictions may be considered to apply
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equally to rates of return.

We start by defining two sets of betas (βC and βD) that measure aggregate and cross-

sectional variation in expected returns. The following proposition shows that these two sets

of betas are linearly related to investors’ betas, β, and empiricist’s betas, β̂.

Proposition 7. The empiricist’s betas are a weighted average of three types of beta:

β̂ = (1− C2 −D2)β + C2βC +D2βD, (38)

where, after defining Ei∗[R̃e] ≡ Ei[R̃e]− E[R̃e] and Ei∗[R̃e
M] ≡ Ei[R̃e

M]− E[R̃e
M],

βC ≡ Var[E[R̃e]]M

Var[E[R̃e
M]]

and βD ≡ Var[Ei∗[R̃e]]M

Var[Ei∗[R̃e
M]]

. (39)

For any individual asset n, the coefficient βCn is the slope of a time-series regression of

consensus expected excess returns for asset n on those for the market. Thus, an asset with a

high βCn exhibits greater fluctuations in its consensus expected excess returns relative to the

market. The coefficient βDn is the slope of a cross-sectional regression (across investors) of

individual investors’ expected excess returns for asset n on those for the market. Thus, an

asset with a high βDn exhibits greater dispersion in beliefs across investors about its returns

relative to the market.

The following example illustrates the meaning of βDn . Two investors, Bull and Bear, hold

different views about the future excess returns of asset n and of the market. Bull expects

the market (asset n) to over -perform by 1% (2%) relative to consensus beliefs. Bear, on

the other hand, expects the market (asset n) to under -perform by 1% (2%). Thus, in this

example βDn = 2.18 Note first that βDn is positive because investors deviate from consensus

beliefs in the same direction both on the market and asset n. Second, βDn is larger than

one because this deviation is larger on asset n than it is on the market. Thus βDn is a

purely cross-sectional measure that captures whether or not investors’ expectations on asset

n and the market deviate from consensus in the same direction; and whether deviations from

consensus on asset n are inflated or deflated relative to those on the market.

Corollary 7.1. In the equilibrium of the model, βC and βD are given by

βC = β +

(
τσ2

M

Φ̄2
− 1

)
τεe1Φ̄2

τσ2
M + τεe1Φ̄2

(β − 1) (40)

18Formally, βD = Cov[Ei∗[R̃e
n],Ei∗[R̃e

M]]/Var[Ei∗[R̃e
M]] = 2, where the covariance in the numerator and

the variance in the denominator are computed across investors.
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βD = β +

(
τσ2

M

Φ̄2
− 1

)
(β − 1). (41)

The coefficients of (β−1) in (40)-(41) are identical to those of C2 and D2 in the definition

of the distortion δ in Proposition 5, and thus feature the excess variance term τσ2
M/Φ̄

2 − 1.

Corollary 7.1 shows that both βC and βD are more dispersed than true betas: when true

betas are larger (smaller) than one, βC and βD are both larger (smaller) than β. The extent

of excess variance in the market dictates the magnitude of these effects.

The empirical challenge in testing our theory is to measure C2 and D2 and their associated

betas, βC and βD, for a cross-section of stocks. This, in turn, involves finding proxies for

consensus beliefs, E[R̃e], and individual beliefs, Ei[R̃e]. The objective of the next section is

to use the I/B/E/S database on analysts’ forecasts to estimate βC and βD and assess their

ability to price the cross-section of returns.

5.1 Variable definitions and summary statistics

We obtain daily market excess returns and risk-free security returns from Kenneth French’s

data library. The Center for Research in Security Prices (CRSP) database provides daily

excess returns and market capitalizations for all stocks listed in the S&P 500 index. The

list of historical constituents is available from Compustat. The AQR data library provides

monthly excess returns on “Betting Against Beta” (BAB). Finally, the Institutional Brokers’

Estimate System database (I/B/E/S) provides unadjusted data on price targets from 1999

to 2019, which is the sample period we use for our tests.19

Using these databases, we obtain for each individual stock n and on the last trading

day of each month t: the stock’s 1-year past excess return; 1-year future excess return; and

1-year expected excess return. Past and future excess returns are unique for each stock-date

observation. We construct expected excess returns over a lookback window of 6 months that

precede and include date t. For a given stock n and date t, we record all 12-months price

targets issued by institution i (e.g., “Bear Stearns”) over this window. We then proxy for

Ei[R̃e
n] using institution i’s expected excess return:

Ei[R̃e
n] =

Price Targetin,t+12 months − Pricen,t

Pricen,t
− RFt, (42)

where RFt denotes the risk-free rate at date t. Hence, for each stock-date observation there

19Appendix C describes all datasets that we use in our empirical work, together with details on all the
operations we use to transform the data and obtain our main variables. We also discuss the robustness of
most of our choices in this section.
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are as many Ei[R̃e
n]’s as there are institutions issuing targets for this stock over the window.

In constructing the proxy for expected excess returns (42), we make several choices, which

we outline in Appendix C, together with other data-cleaning details that closely follow the

strategy in Engelberg, McLean, and Pontiff (2018). We obtain a total of 429,556 expected

excess return data points issued by 585 unique forecasters from December 1999 to September

2019. Then, at the end of each month t, we compute consensus 1-year expected excess returns

by taking the median across all forecasters for each individual stock n. This is the empirical

counterpart to consensus beliefs about stock n, E[R̃e
n]. To obtain consensus beliefs about

market excess returns, E[R̃e
M], we compute the value-weighted average of consensus beliefs

across the cross-section of stocks.

We first verify whether the following inequality holds for each individual stock:

Var[R̃e
n] > Var

[
E[R̃e

n]
]

+ Var
[
Ei[R̃e

n]− E[R̃e
n]
]
. (43)

If (43) fails, the data for stock n violates at least one of the assumptions made in Section

2. This situation can arise, for instance, when there is a high level of forecast dispersion,

and the last term in (43) dominates. One such case is when the common prior assumption

A does not hold, i.e., analysts just add noise, rather than removing, to the common prior

forecast. We find that (43) fails for 8 stocks out of 555, or 1.4% of them. Removing these 8

individual stocks has a negligible impact on our empirical analysis.

Our initial assumptions also imply that analysts’ forecasts must be positively related

to future excess returns (the opposite would violate assumption A, which relies on Bayes’

rule). Therefore, we also examine this matter in the data: regressing future excess returns

on analysts’ forecasts yields positive and statistically significant coefficients for individual

analyst forecasts (0.1027, p < 0.01) and consensus forecasts (0.3896, p < 0.01). These tests

suggest that the assumptions made in Section 2 hold reasonably well in our data.

At this stage, the dataset necessary to compute realized betas, β̂, consensus betas, βC,

and dispersion betas, βD, is complete. We compute β̂n as the slope coefficient from regressing

stock n’s past excess returns on past market excess returns. Similarly, βCn is the slope

coefficient from regressing stock n’s past consensus excess returns on past consensus excess

market returns. However, we cannot run standard regressions to compute βDn (we do not

directly observe investors’ beliefs about market returns). We thus reconstruct βD directly

using its definition in Proposition 7. The central piece in obtaining βD is the matrix of

“co-beliefs,” Var[Ei∗[R̃e]], or the covariation in investors expectations for each pair of stocks.

We explain in Appendix C how to obtain the matrix of co-beliefs at each date t. We then

obtain βD from the matrix of co-beliefs and assets’ market weights, as defined in (39).
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For the three sets of betas (realized betas β̂, consensus betas βC, and dispersion betas

βD), we now have time series of 190 end-of-month observations, ranging from December 2002

to September 2018, across an average of 410 stocks.20 Table 1 presents summary statistics

for each set of betas β̂, βC, and βD, along with market excess returns, R̃e
M, and consensus

expected market excess returns, E[R̃e
M]. All numbers are at the 1-year horizon.

[INSERT TABLE 1 HERE]

Over the sample period, the average market excess return was 9.85% per year, with a

volatility of 16.16%. As expected, consensus expected market excess returns, E[R̃e
M], are less

volatile than realized market excess return (second line of the table). The last three lines of

the table compute averages and standard deviations over the entire sample for the three sets

of betas; all betas have averages close to one and high degrees of variation across stocks and

time, with standard deviations well above one.

The average magnitudes of C2 and D2 in our sample are C2 = 0.0400 and D2 = 0.0563.21

Our estimate of C2 is lower than what is typically found in the literature, which indicates

that analysts’ forecasts likely exhibit less aggregate variation than other proxies for expected

returns.22 An estimate of D2, which measures how much variation in market returns is

explained by dispersion in expectations, is missing in the literature. The magnitude of D2,

higher than that of C2 in our sample, points to an important source of variation in expected

returns that has been neglected in CAPM tests.

Recall that D2 is not a traditional measure of beliefs dispersion (e.g., Diether et al.,

2002). Applied to the market such a traditional measure would actually represent a value-

weighted average of cross-sectional variances along the diagonal of the matrix of co-beliefs,

i.e.,
∑N

n=1Mn Var[Ei∗[R̃e
n]]. In contrast, D2 also includes off-diagonal elements that reflect

the extent to which expected returns on pairs of stocks covary across investors, which is not

the same as disagreement:

D2 ≡ Var[R̃e
M]−1

(
N∑
n=1

M2
n Var[Ei∗[R̃e

n]] +
∑
n6=m

∑
MnMm Cov[Ei∗[R̃e

n],Ei∗[R̃e
m]]

)
. (44)

20We lose 3 years of data at the beginning of the sample due to the initial window over which we estimate
betas, and one year at the end of the sample to obtain future 1-year returns. All betas are winsorized at the
0.5% and 99.5% percentile levels (Bali, Engle, and Murray, 2016).

21Just like betas, these two numbers are computed over rolling windows thus move over time.
22C2 represents variation in expected returns on the market divided by variation in realized returns.

Several estimates of this ratio exist in the literature. In Martin (2017), Table 1, C2 is close to 10%, depending
on the horizon of option prices used for the estimation. In Cochrane (2011), Table 1, C2 is approximately
11%, using return-forecasting regressions.
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Does our estimate of D2 imply empirically plausible primitive parameters for our model?

To examine this matter, we write (31) as

D2 =
τv
τ

Φ̄2

τ σ̂2
M

. (45)

The last term is a ratio of fundamental variance, Vari[Φ̄F̃ ] = Φ̄2/τ , to market variance, σ̂2
M,

for which a rough estimate is simple to obtain: given a realized market return volatility of

16% (Table 1) and a fundamental volatility between 3% and 6%, one obtains Φ̄2/(τ σ̂2
M) ∈

(0.035, 0.141). On the other hand, we obtain an estimate of τv/τ directly from our data:

writing the law of total variance (2) for an individual asset and assuming that all variation

in expectations on the right-hand side is due to private information implies τ−1
F = (τF +

τv)
−1 + Var[Ei[R̃e

n]], or τv/τ = τF Var[Ei[R̃e
n]] = Var[Ei[R̃e

n]]/Var[R̃e
n]. For 90% of firms in

our sample, we obtain τv/τ ∈ (0.07, 0.52), with an overall average of 0.24.23 Going back

to estimated values for Φ̄2/(τ σ̂2
M) in (45), our model needs a ratio of at least τv/τ = 0.4

to match the empirical value of D2 = 0.0563. This number seems plausible and within the

range above.

5.2 Empirical tests and a plausible magnitude for δ

Our analysis starts with classical portfolio sorts. We form five (measured) beta-sorted port-

folios,24 which we use to confirm in our sample the well-known fact that the SML looks

“flat” (e.g., Black et al., 1972). Table 2 reports value-weighted averages for excess returns,

µ, CAPM alphas, α̂, CAPM betas, β̂, consensus betas, βC, dispersion betas, βD, volatilities,

σ̂, and Sharpe ratios, SR, for each portfolio.25 In line with a vast literature, portfolios with

low average betas have significantly higher average alphas.

[INSERT TABLE 2 HERE]

However, less known in the literature is that portfolios with higher average betas also

have higher consensus betas, βC, and higher dispersion betas, βD. Can this explain the

23Alternatively, in the literature, Cho and Krishnan (2000) have estimated the primitive parameters of
the Hellwig (1980) single-asset noisy rational-expectations model: the standard deviation of the prior (our
τ−2F ) is 5.495, and the standard deviation of the private signal (our τ−2v ) ranges from 10.067 to 23.358 (see
their Table 2). Assuming τ = τF + τv, we obtain τv/τ ∈ (0.05, 0.23). These are upper bounds for τv/τ , since
τ may be higher than τF + τv (due to learning from public signals such as prices). The estimate we find is
slightly higher, perhaps due to the longer horizon of our data.

24We work with five beta-sorted portfolios due to the relatively smaller number of stocks in our sample
(an average of 410 each month). Nevertheless, results are robust (but noisier) if we use ten portfolios instead.

25To account for the impact of autocorrelation and heteroscedasticity, all standard errors are adjusted
using the Newey and West (1987) method with four lags (Greene, 2003, p. 267).
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high alphas on low-beta portfolios? We address this question in Table 3. Panel (a) shows

the results of time-series regressions of each portfolio’s excess returns on the market (the

CAPM), whereas panel (b) adds controls for βC and βD for each portfolio.

[INSERT TABLE 3 HERE]

Panel (a) confirms the results of Table 2: low-beta portfolios continue to have high alphas,

which remain statistically significant. But after adding controls for βC and βD in panel (b),

alphas on low-beta portfolios lose statistical power (on P1, P2, and P3), whereas the alpha

of the high-beta portfolio P5 becomes positive and statistically significant. Panel (b) also

shows that coefficients on βC and βD are mainly negative, with some of them statistically

significant, suggesting that βC and βD earn a negative premium.

The negative premium earned by βC and βD is in fact a prediction of our model. This

can be seen by substituting the relation (25) into the statistical relation of Proposition 7:

β̂ =
δ(1− C2 −D2)

δ + C2 +D2
1 +

C2(1 + δ)

δ + C2 +D2
βC +

D2(1 + δ)

δ + C2 +D2
βD. (46)

We can express this relation in terms of expected returns:26

E[R̃e] =
E[R̃e

M]

1− C2 −D2
β̂ − C2 E[R̃e

M]

1− C2 −D2
βC − D2 E[R̃e

M]

1− C2 −D2
βD. (47)

Thus, βC and βD earn a negative premium in the model, in line with panel (b) of Table 2.

We now test the two cross-sectional relations (46) and (47) following a two-step method.

For the beta relation (46), we estimate the cross-sectional regression of β̂ on βC and βD

at the end of each month; this yields a time series of 190 observations for each regression

coefficient. We then examine whether the average of each time series differs from zero. This

procedure follows Fama and MacBeth (1973, FM hereafter), with the exception that the

left-hand variable is realized beta, as opposed to future excess return. Table 4 reports the

average coefficients and provides empirical support for (46).

[INSERT TABLE 4 HERE]

In Table 5 we repeat the FM regressions for (47), according to which consensus betas,

dispersion betas, and realized betas should explain the cross-section of expected returns.

This relation also predicts that βC and βD earn a negative premium, which the first row

of the table confirms, with negative and statistically significant coefficients on βC and βD.

26To obtain (47), multiply (38) by E[R̃e
M] and substitute the true CAPM relation E[R̃e] = β E[R̃e

M].
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The other rows of Table 5 present estimates when only including βC or βD as explanatory

variables, along with estimates for the canonical CAPM. The CAPM slope strengthens in

magnitude and statistical significance when βC and βD are added to the regression.

[INSERT TABLE 5 HERE]

The estimates of Table 4 allow us to perform a magnitude check of δ. Specifically, Table

4 shows that the intercept a0 belongs to the 90% confidence interval a0 ∈ [0.78, 0.88]. One

can thus obtain a 90% confidence interval for δ using (46), which implies:

δ =
a0(C2 +D2)

1− a0 − (C2 +D2)
. (48)

In Figure 3 we plot this interval (shaded area) as a function of the informational gap, C2+D2.

[INSERT FIGURE 3 HERE]

The plot shows that δ ranges from 0.5 to 3 for C2 + D2 = 9.63% in our sample. By

comparison, the Vasicek (1973) shrinkage proposed in finance textbooks (Bodie et al., 2007;

Berk and DeMarzo, 2007) and adopted by practitioners is δ = 0.5, compared to our point

estimate, δ = 1.1. The 90% confidence interval shows that the distortion can be larger. Levi

and Welch (2017) is the only reference we know that advocates for a larger shrinkage.

Another way of obtaining a rough estimate of the CAPM distortion involves computing

unconditional alphas, as is customary in the literature (e.g., Lewellen and Nagel, 2006).

Empiricist’s alpha satisfies α̂ ≡ δ(1− β)E[R̃e
M], which replaced in (32) yields:

α̂ =

(
τσ2

M

Φ̄2
− 1

)
C2 τεe1Φ̄2

τσ2
M + τεe1Φ̄2

(1− β)E[R̃e
M]︸ ︷︷ ︸

Consensus (C)

+

(
τσ2

M

Φ̄2
− 1

)
D2(1− β)E[R̃e

M]︸ ︷︷ ︸
Dispersed information (D)

. (49)

The first term in α̂ has been discussed in the literature.27 The second term is new. To

determine how much of α̂ this new channel can explain, we assume that the first term is zero.

All components of the second term have empirical counterparts. In particular, (τσ2
M/Φ̄

2−1)

represents excess market variance. Based on realized market returns volatility, 16.16% (Table

1), and C2+D2 = 9.63%, we obtain σ2
M = 0.16162(1−0.0963) = 0.0236. Furthermore, τ/Φ̄2 is

investors’ precision of information regarding fundamentals: setting volatility of fundamentals

at 3%, we obtain τ/Φ̄2 = 1111 and therefore (τσ2
M/Φ̄

2 − 1) = 25.22. Combined with

D2 = 5.63%, an asset for which investors observe a beta of 0.5, for the empiricist has a

positive alpha of 0.71× E[R̃e
M], i.e., almost 3/4 of the market risk premium.

27See, e.g., Jagannathan and Wang (1996); Lewellen and Nagel (2006); Boguth et al. (2011).
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5.3 Betting Against Beta

We now show how consensus beta and dispersion beta help explain the under-performance

of high-beta stocks relative to low-beta stocks (Friend and Blume, 1970; Black et al., 1972).

This empirical anomaly is illustrated in Figure 4, which compares mean excess returns for

the five beta-sorted portfolios of Table 2 to their CAPM-implied excess returns.

[INSERT FIGURE 4 HERE]

Frazzini and Pedersen (2014), building on insights from Black (1972), explore the under-

performance of high-beta stocks by “Betting Against Beta,” and attribute the success of this

investment strategy to investors’ borrowing constraints. To bet against beta, the empiricist

builds two portfolios, a low-beta portfolio and a high-beta portfolio. Denote the betas of

these two portfolios, as measured by the empiricist, by β̂L < 1 and β̂H > 1, respectively.

The empiricist takes a long, leveraged position (1/β̂L) in the low-beta portfolio and a short,

de-leveraged position (−1/β̂H) in the high-beta portfolio. This strategy has zero measured

beta by construction, but a flat CAPM implies it has a strictly positive alpha. Formally,

Proposition 4 implies the unconditional alpha on BAB is:

α̂BAB =

(
1

β̂L
− 1

β̂H

)
δ

1 + δ
E[R̃e

M] > 0. (50)

Although we do not dispute the success of the BAB strategy, our interpretation differs:

we claim that part of this success is because betting against measured beta is betting on true

beta. We start our analysis with a magnitude check. Our empirical estimates, C2 + D2 =

9.63%, imply a point estimate for δ of 1.1 (Figure 3). In our sample β̂L is 0.55 on average,

whereas β̂H is 1.93.28 Average market excess return over the sample period is 9.9% (Table 1).

Plugging these numbers in (50) yields α̂BAB = 6.74%. In comparison, the monthly alpha on

BAB for the U.S. over the same period (using data downloaded from the AQR data library,

2002-2018) is 0.64% per month (or 7.7% per year). Thus, at least in our sample, almost 90%

of the alpha on BAB may result from beta mismeasurement. Alternatively, we claim that

alpha on BAB is partly a reward for systematic risk: the true beta on the BAB strategy

needs to be as large as BAB’s alpha, 7.7%, divided by average market excess return, 9.9%,

that is 0.78. With δ = 1.1, we obtain true betas of βL = 0.79 and βH = 1.44, which implies,

in turn, a true beta for the BAB strategy of 0.68, which accounts for 90% of the beta (0.78)

necessary to explain alpha on BAB.

28We rank betas following Section 3.2 in Frazzini and Pedersen (2014) and compute averages using ranks
as portfolio weights, exactly as in the original paper; we further follow Frazzini and Pedersen (2014) and
apply the Vasicek (1973) shrinkage for betas, with w = 0.6.
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To test whether beta mismeasurement can explain returns on BAB, the problem we face

is that AQR implements BAB for the U.S. on a sample that covers many more firms than

ours. As a result, we cannot control for βC and βD for all stocks on which BAB is constructed.

We address this problem with two tests. The first test constructs factors associated with

βC and βD. Eq. (47) says a BAB strategy based only on β̂ has non-zero alpha, but that

long-short portfolios (factors) based on βC and βD may explain this alpha. We thus build

these two factors, C and D, and use their realized returns (R̃e
C,t and R̃e

D,t) as controls.

We construct realized returns R̃e
C,t and R̃e

D,t mirroring the steps in Frazzini and Pedersen

(2014) in computing standard BAB returns. At the end of each month, we rank stocks

according to their βC for the C factor (or βD for the D factor) and form two portfolios,

one with high-βC (βD) stocks and another with low-βC (βD) stocks. When forming these

portfolios, we follow the ranking and weighting methodology in Frazzini and Pedersen (2014).

We then obtain returns on each factor by going long the high-βC (βD) stocks and short the

low-βC (βD) stocks. Accordingly, the factor C provides long exposure to consensus beta βC,

and the factor D provides long exposure to dispersion beta βD.

Before testing whether factors C and D can explain returns on BAB, we first verify

that these factors cannot be explained by market risk. In Table 6, we regress realized

excess returns of the C and D factors (R̃e
C,t and R̃e

D,t) on the excess returns of the market.

Both factors have negative and statistically significant alphas, in line with Table 5. That

is, exposure to consensus (dispersion) beta earns a negative premium after controlling for

market risk. Although both factors have statistically significant betas, these betas are weak in

economic magnitude, and thus excess returns on these two factors are not entirely explained

by exposure to market risk.

[INSERT TABLE 6 HERE]

We report our first BAB test results in panel (a) of Table 7. We perform two regressions,

one regressing excess returns on AQR BAB on market excess returns, the other adding to

this specification excess returns on factors C and D. Although weaker in our sample, the

alpha on the AQR BAB strategy is positive and statistically significant, close to 4% per year.

Yet both factors C and D weaken this alpha, with significant loadings on R̃e
C,t (-0.3580, t-stat

-2.20) and particularly on R̃e
D,t (-0.9726, t-stat -4.14), suggesting that dispersion in beliefs

plays an important role in explaining abnormal returns on BAB. The statistical significance

of the loading on the market and the adjusted R2 rise once we include returns on factors C
and D. This suggests that R̃e

C,t and R̃e
D,t act as omitted variables and that BAB may expose

the empiricist to market risk due to beta mismeasurement.

[INSERT TABLE 7 HERE]
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In a second test, we replicate the BAB strategy within our sample (“in-house BAB”),

which allows us to control for βC and βD directly. We use our realized betas at the end

of each month and follow the guidelines in Frazzini and Pedersen (2014), with the only

exception that our realized betas and returns are at the one-year horizon, as opposed to a

one-month horizon. We first verify that our strategy captures the BAB factor: comparing

its returns with those of the original BAB strategy (annualized), the correlation between the

two is 0.80; regressing the returns of the AQR BAB strategy on those of the in-house BAB

strategy yields an intercept of 0.009 (t-stat 0.85) and a slope of 0.559 (t-stat 11.8).

In panel (b) of Table 7 we repeat the two regressions of panel (a) but using the in-house

BAB returns. Just like in our tests for AQR BAB, the alpha on in-house BAB in the first

regression is positive and statistically significant. However, it loses statistical significance

once we control for R̃e
C,t and R̃e

D,t. We also observe an effect similar to that in panel (a):

controlling for the C and D factors raises adjusted R2 and market beta, both in magnitude

and significance. Finally, we can now directly control for βC and βD, since we have these

betas for every stock involved in the strategy. We therefore compute the value-weighted βC

and βD of our in-house BAB factor, denoted hereafter βCBAB and βDBAB. Panel (c) shows that

controlling for βCBAB and βDBAB weakens abnormal returns on the strategy. Overall, Table

7 suggests that without controlling for the C and D factors, market alpha (beta) on BAB

appears to be too strong (weak). With the data at hand, we cannot reject the theoretical

possibility that BAB returns result from beta mismeasurement.

5.4 The crowding-out effect of public information

We conclude our empirical analysis with evidence of beta compression on days when public

information “crowds out” private information (Section 4.2, Proposition 6). In testing this

implication, the main difficulty is identifying days during which public information likely

dominates private information. Our choice is guided by recent empirical work showing that

market betas are compressed on FOMC announcement days (Andersen et al., 2021) and

on days when the FOMC holds press conferences (Bodilsen et al., 2021).29 The FOMC

holds press conferences in an effort to increase public communication and provide additional

transparency. Thus, press conference (PC) days are times when public information likely

reduces disagreement and offer a reasonable setting for our test.

There are 38 PC days in our dataset (from Apr. 27, 2011, to Sep. 18, 2019). Following

the procedure in Bodilsen et al. (2021), we form ten value-weighted portfolios sorted on

betas, then separately estimate the CAPM on all days or PC days. Panel (a) of Figure 5

29Before 2019, not every FOMC announcement was followed by a press conference. See Boguth, Grégoire,
and Martineau (2019), who show evidence of increased investor attention on PC days.
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shows CAPM on each type of days. The estimated market risk premium is much higher. A

significant beta compression occurs on PC days, extending evidence in Bodilsen et al. (2021)

to a longer sample period. Panel (b) further confirms the beta compression effect by plotting

betas on PC days versus betas on other days.

[INSERT FIGURE 5 HERE]

Table 8 shows results from a regression in which the intercept and portfolio beta are

allowed to vary conditional on the type of day:

rej,t = αOther,j + αPC,j1PC + βOther,jr
e
M,t + β∆PC,j(1PC × reM,t) + εt, (51)

where 1PC is a dummy variable for PC days, reM,t is the excess return on the market, rej,t is

the portfolio excess return, βOther,j is the beta on other days, and β∆PC,j measures the change

in the portfolio’s beta on PC days. The table demonstrates that portfolio betas compress

on PC days, and that most of the differences in beta on PC days versus other days are

statistically significant.

[INSERT TABLE 8 HERE]

Figure 5 also shows that all portfolios (including the market) earn higher returns on PC

days. This risk-premium channel is not present in our static model. However, we conjecture

that in a dynamic extension the risk premium rises with the uncertainty investors face ahead

of public announcements.30 Finally, we view our evidence of the beta-compression channel as

suggestive; additional empirical work based on high-frequency returns (e.g., Andersen et al.,

2021) is perhaps needed to further confirm the validity of this result.31

6 Extensions and robustness of assumptions

We discuss modeling assumptions and the generality of our results. In the absence of dis-

persed information, SML flattening always obtains in a noisy rational-expectations frame-

work, irrespective of modeling choices. We also extend our model to a market portfolio

with arbitrary weights and multiple factors driving payoffs. Although none of these features

compromise the validity of the true CAPM, they may worsen the empiricist’s view.

30Recent theories propose various mechanisms for this channel (Savor and Wilson, 2013; Ai and Bansal,
2018; Wachter and Zhu, 2018; Hu, Pan, Wang, and Zhu, 2021; Andrei et al., 2021; Andrei, Cujean, and
Jaeger, 2022).

31In untabulated analysis, we confirm that beta dispersion decreases on PC days using the 25 size- and
book-to-market sorted portfolios and using 10 industry portfolios. New studies add to evidence that the
CAPM performs better when investors are more attentive to publicly available information (Ben-Rephael
et al., 2021; Chan and Marsh, 2021).
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6.1 A more general proof of SML flattening

The equilibrium relation (13) is not specific to our setup. In fact, the same relation pre-

vails in any noisy rational-expectations (NRE) model, irrespective of the structure of assets’

payoffs, the type of information investors observe (public or private), or the structure of

liquidity traders’ demand, m̃ (e.g., Admati, 1985); provided that investors’ risk aversion

and the precision of their information are constant over time, it also holds period by pe-

riod, Et[R̃e
t+1] = γΣ(M− m̃t), in a dynamic NRE. Furthermore, except for being expressed

in dollar excess returns, (13) also applies to more standard asset-pricing models in specific

cases—it is a special case of the ICAPM (Merton, 1973) or of a standard intertemporal

asset-pricing model (Campbell, 1993) when hedging demands are absent.32

What is specific to our NRE model is the nature of investors’ covariance matrix, Σ, and

its relation to that of the empiricist, Σ̂ (Lemma 1); they both depend on the structure of

assets’ payoffs (Eq. 6) and the structure of investors’ signals. We now relax our assumptions

regarding the structure of payoffs (Eq. 6) and adopt the general payoff structure in Admati

(1985). Although we have shown in Section 4.2 that dispersed information amplifies CAPM

distortion, we are unable to show that this result carries over to a general structure of private

signals. We thus assume that all information is public, but allow for a general, Gaussian

structure of public signals. In this context, we show that the empiricist always observes a

flattened SML, irrespective of the structure of payoffs or the structure of public information.

The slope of empiricist’s SML is the slope of a regression of assets’ unconditional expected

excess returns on empiricist’s betas. Proposition 1 then implies:

Cov[E[R̃e], β̂]

Var[β̂]
=

Cov[β, β̂]

Var[β̂]
E[R̃e

M], (52)

and thus empiricist’s SML is flatter than the true SML when Cov[β, β̂] < Var[β̂]. This is

always the case in an NRE model in which all information is public.

Proposition 8. Consider the model of Section 3 with the following two modifications: (i) the

structure of assets’ payoffs, D̃, is arbitrary (e.g, as in Admati, 1985), and (ii) all information

is public but of arbitrary structure. Then Cov[β, β̂] < Var[β̂] and the empiricist’s SML is

always flatter than that of investors.

The proof starts from the eigenvalue decomposition of investors’ covariance matrix, Σ ≡
QΛQ′, where Λ is a diagonal matrix with positive eigenvalues on its diagonal, and Q is an

32A more general form of (13), in which γ and Σ are time-varying, has been derived by Jensen (1972),
and further studied by Bollerslev, Engle, and Wooldridge (1988).
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orthogonal matrix of eigenvectors. Because all information is public, the last term in (13)

drops out, and the empiricist’s covariance matrix, Σ̂, and Σ share the same eigenvectors,

Σ̂ = QΛ(I + γ2/τmΛ)Q′, (53)

but not the same eigenvalues. Each eigenvalue λ of Σ̂ is an inflated version of that of Σ

by a factor 1 + γ2/τmλ, where γ2/τm captures aggregate variation in expected returns. This

increases the dispersion in empiricist’s betas, leading to a flattened SML.

In the presence of dispersed information, Σ and Σ̂ no longer share the same eigenvectors,

and the effect of dispersed information on the SML is ambiguous. The ambiguity appears to

be tied to our assumption of residual uncertainty in payoffs (i.e., τε <∞).33 Without residual

uncertainty, and with our specification of private signals and an arbitrary specification of

payoffs, Σ and Σ̂ share again the same eigenvectors, and the eigenvalues of Σ̂ are now

inflated by a factor, 1 + γ2/τmλ+ τv. In other words, the effect of dispersed information, τv,

simply reinforces the effect of aggregate variation and flattening obtains systematically.

6.2 Size effects

We now assume that assets have unequal weights in the market portfolio. In Section 4.1, we

showed that the variance of the empiricist satisfies Lemma 1, a result that still holds under

unequal supplies. The following proposition builds on this result.

Proposition 9. In the context of Section 3 suppose the market portfolio, M, is arbitrary.

Then, expected returns on all assets in excess of the market satisfy the two-factor relation:

µ− µM1 =
µM

1 + δ
(β̂ − 1) +

δµM

1 + δ

(
M

‖M‖2
− 1

)
, (54)

where δ > 0 denotes the distortion coefficient, defined as in the baseline model, except that

it accounts for heterogeneous market weights.

When the market portfolio is equally weighted, M = 1/N , the second “factor,” M/‖M‖2−
1, is 0 and we recover the result of Proposition 4; in contrast, when it is not, M 6= 1/N and

(54) incorporates an additional factor, whose sign and magnitude depend on the difference

M/‖M‖2 − 1 (i.e., the relative size of assets). To see how this second factor affects the

measured slope of the SML, consider an asset that has a high measured beta (β̂n > 1) but

earns negative returns in excess of the market portfolio. To satisfy (54) this asset must

be small, i.e., Mn/‖M‖2 < 1. Thus, an economy in which high-beta assets are small can

33We thank a referee for drawing our attention to this aspect.
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result in a downward-sloping SML—although the true CAPM holds and the true SML is

upward-sloping. A necessary condition for a downward-sloping SML is then (see Appendix

B.11):

Cov[Φ,M] < 0. (55)

Figure 6 depicts the investors’ and empiricist’s SML in an economy with three assets.

The empiricist perceives a negative relation between beta and expected returns. Assets no

longer plot on a straight line, while the true SML is always upward-sloping.

[INSERT FIGURE 6 HERE]

6.3 Large economy and multiple factors

A final extension is to allow payoffs to be driven by multiple (J ≥ 1) common factors;

we consider a “large economy” in which the number of stocks, N , and factors, J , both

grow unboundedly but in a way that their relative size, J/N → ψ ∈ [0, 1] remains finite

(e.g., Martin and Nagel, 2020). We provide here conditions under which factor multiplicity

generates flattening of the SML (for technical details, see Appendix B.12).

Denote a vector of J ≤ N independent factors by F̃ ≡ [F̃1 F̃2 . . . F̃J ]′, which is normally

distributed with mean 0 and covariance (τFJ)−1IJ . We scale prior precisions on common

factors by J so that average prior 1/N
∑N

n=1 Var[ΦF̃]nn = τ−1
F does not grow with J (see

(57) below). As in the baseline model, realized asset payoffs have a common-factor structure:

D̃ = D1 + ΦF̃ + ε̃, (56)

where the j−th column of the vector Φ contains the loadings of each stock on the j−th

factor. We further assume that rank(Φ) = J and that

1

NJ
tr(Φ′Φ) = 1, (57)

which extends the normalization introduced in Section 3 to the multiple-factor case.

Each investor i observes a vector of private signals about the J factors:

Ṽi = F̃ + ṽi, ṽi ∼ N
(
0, (τvJ)−1 IJ

)
. (58)

We also scale the precision of private signals by J to ensure that their informational content

is preserved in the large-economy limit.
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Our main result relies on the following eigenvalue decomposition:

1

N
Φ′Φ = QΛQ′, (59)

where Λ is a diagonal matrix with all eigenvalues λj > 0 for j = 1, ..., J on its diagonal, and

Q is an orthogonal matrix whose columns are eigenvectors. This decomposition is possible

because 1
N

Φ′Φ is symmetric. All eigenvalues of this matrix are strictly positive, and the

normalization in (57) implies that their sum equals 1. We follow Martin and Nagel (2020)’s

assumption that each eigenvalue satisfies λ > ε, for some uniform constant, ε, as N → ∞
(i.e., the columns of Φ never become collinear in the limit). Finally, we make the following

assumption, allowing us to use random matrix theory results.

Assumption 1. The matrix of loadings can be decomposed as Φ ≡ X′T1/2, where X is a

J ×N−matrix with IID entries with mean zero, variance one and finite fourth moment, and

T is a J × J positive-definite, symmetric, nonrandom matrix and with tr(T) = J .

This means that loadings are on average zero with covariance matrix T, and allows us

to write SML distortion in terms of the limiting variance and skewness of eigenvalues in

(59), σ2
λ ≡ limJ→∞

1
J

∑J
j=1 λ

2
j − µ2

λ and sλ ≡ limJ→∞
1
J

∑J
j=1 λ

3
j − 3µλσ

2
λ − µ3

λ, and where

µλ ≡ limJ→∞
1
J

∑J
j=1 λj denotes the limiting mean of eigenvalues.

Proposition 10. (Flattening of empiricist’s SML) Consider a large economy with a

small ratio of factors, ψ ∈ (0, 1), in which eigenvalues are not too dispersed:

σ2
λ <

1

2

√∆ +
4sλ(µλτε + τ0)

τε
+ µ2

λ +
µλτ0(3− ψ)

τε
+
τ0ψτ1

γ2τ 2
ε

 , (60)

where τ0, τ1, ∆, are strictly positive coefficients defined in Appendix B.12. Then, if eigen-

values are positively skewed (or exhibit little negative skewness) or, on the contrary, if they

exhibit strictly negative (but limited) skewness and if, further, eigenvalues are not too concen-

trated, the SML will look flatter than it actually is. If, further, skewness is strictly negative

and if eigenvalues are sufficiently concentrated, the SML will be downward-sloping.

The distribution of eigenvalues in (59) determines whether the empiricist’s SML looks

steep, flat, or even downward-sloping. Suppose that eigenvalues are not too dispersed in

the sense of (60), meaning that factors have comparable predictive power. Low dispersion

of eigenvalues induces flattening (whereas high dispersion creates steepening—see Appendix

B.12, Corollary 10.1). Sufficiently low dispersion may lead to a downward-sloping SML. The

distribution of eigenvalues associated with factors and the many implications it may have

for asset-pricing tests opens up fascinating avenues for future research.
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7 Conclusion

Why do empiricists keep rejecting the CAPM, which practitioners are unwilling to abandon?

We argue that the CAPM may hold from each investor’s perspective, but that variation across

investors’ expectations causes empiricists to reject it. We thus provide a novel explanation

for the empirical failure of the CAPM despite widespread practical use.

Variation in expected returns over time and across investors both contribute to the infor-

mational gap between investors and the empiricist. While the literature has studied exten-

sively how time variation distorts CAPM tests (e.g., Jagannathan and Wang, 1996; Lewellen

and Nagel, 2006), this paper emphasizes dispersed information as an additional source of

distortion. Our empirical analysis shows that the effect of dispersed information is stronger

than that of time variation. Together these two sources of variation produce substantial

CAPM distortion and imply a zero-beta CAPM. Black (1972) obtains this relation in an

economy with restricted borrowing. Notably, in our model it is variation in expected returns

over time and across investors, as opposed to restricted borrowing, that causes the measured

CAPM to appear flat. It would be interesting to explore how these two mechanisms interact.

Our theory implies that some variables may appear to the empiricist as priced factors

simply because betas are mismeasured. However, rather than being priced factors, these

variables are instruments for measurement error in betas (Andrei, Cujean, and Fournier,

2019). More generally, the fact that investors’ information is dispersed requires careful

consideration of how to measure betas correctly.
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A Tables and Figures

Variable Average St. Dev. P5% P25% Median P75% P95%

Mkt. ex. ret. 0.0985 0.1616 -0.2290 0.0353 0.1158 0.1837 0.3063
Exp. mkt. ex. ret. 0.1270 0.0281 0.0832 0.1088 0.1210 0.1445 0.1835
Realized betas 1.1826 1.2375 -0.5201 0.4631 1.0561 1.7479 3.2557
Consensus betas 1.0977 1.3389 -0.7952 0.2527 0.9886 1.7866 3.3490
Dispersion betas 0.9076 1.3842 -1.1510 0.1044 0.7913 1.6417 3.3599

Table 1: This table presents summary statistics for market excess returns R̃e
M, consensus

expected market excess returns E[R̃e
M], realized betas β̂, consensus betas βC, and dispersion

betas βD, from 2002/12/31 to 2018/9/28 (190 months). All the numbers are at a 1-year
horizon.

µ α̂ β̂ βC βD σ̂ SR

P1 0.1009∗∗∗ 0.1587∗∗∗ -0.1789∗∗∗ 0.5605∗∗∗ 0.8447∗∗∗ 0.1348 0.75
(4.94) (8.44) (-2.68) (9.80) (20.56)

P2 0.0917∗∗∗ 0.0759∗∗∗ 0.5092∗∗∗ 0.7566∗∗∗ 0.9110∗∗∗ 0.1341 0.68
(4.56) (16.74) (12.48) (22.84) (36.66)

P3 0.1004∗∗∗ 0.0360∗∗∗ 0.9796∗∗∗ 1.0442∗∗∗ 0.9976∗∗∗ 0.1480 0.68
(4.60) (8.74) (27.59) (29.15) (26.30)

P4 0.1063∗∗∗ 0.0054 1.5374∗∗∗ 1.3381∗∗∗ 1.0757∗∗∗ 0.1856 0.57
(3.91) (0.49) (56.48) (24.27) (26.75)

P5 0.1267∗∗∗ 0.0167 2.7933∗∗∗ 1.7411∗∗∗ 1.3645∗∗∗ 0.2452 0.52
(3.53) (0.48) (33.97) (24.90) (29.44)

Table 2: This table presents value-weighted averages for annual excess returns µ, CAPM al-
phas α̂, CAPM betas β̂, consensus betas βC, dispersion betas βD, volatilities σ̂, and Sharpe
ratios SR on five beta-sorted portfolios, from 2002/12/31 to 2018/9/28 (190 months). t-
statistics, presented in parentheses, are computed using the Newey and West (1987) adjust-
ment with 4 lags. Statistical significance is denoted by ∗p < .1, ∗∗p < .05, or ∗∗∗p < .01.
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(a) R̃e
p,t = α̂p + β̂pR̃

e
M,t + εt

α̂p β̂p Adj.R2 N

P1 0.0255∗∗∗ 0.7647∗∗∗ 0.8404 190
(2.80) (13.48)

P2 0.0130∗ 0.7991∗∗∗ 0.9269 190
(1.89) (19.38)

P3 0.0136∗∗∗ 0.8805∗∗∗ 0.9240 190
(2.61) (23.34)

P4 -0.0016 1.0943∗∗∗ 0.9075 190
(-0.19) (15.82)

P5 -0.0106 1.3926∗∗∗ 0.8423 190
(-0.62) (11.32)

(b) R̃e
p,t = α̂p + β̂pR̃

e
M,t + aCβ

C
p,t + aDβ

D
p,t + εt

α̂p β̂p aC aD Adj.R2 N

P1 0.0160 0.7738∗∗∗ -0.0198 0.0234 0.8445 190
(0.71) (13.93) (-1.52) (0.96)

P2 0.0096 0.7974∗∗∗ -0.0029 0.0063 0.9262 190
(0.42) (19.21) (-0.13) (0.33)

P3 0.0335 0.8688∗∗∗ 0.0270 -0.0470∗∗∗ 0.9302 190
(1.46) (24.19) (1.30) (-3.37)

P4 -0.0074 1.0985∗∗∗ -0.0128 0.0209 0.9084 190
(-0.13) (15.63) (-0.64) (0.50)

P5 0.1608∗∗ 1.3856∗∗∗ -0.0539∗∗ -0.0563 0.8593 190
(2.56) (12.95) (-2.46) (-1.58)

Table 3: This table presents results from time-series regressions for five beta-sorted port-
folios. The regressions are given at the top of each panel. The data is from 2002/12/31
to 2018/9/28 (190 months). t-statistics, presented in parentheses, are computed using the
Newey and West (1987) adjustment with 4 lags. Statistical significance is denoted by ∗p < .1,
∗∗p < .05, or ∗∗∗p < .01.
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a0 aC aD Adj.R2 N

0.8292∗∗∗ 0.2606∗∗∗ 0.0531∗∗∗ 0.1083 410
(24.25) (11.29) (4.30)

Table 4: This table presents results from Fama and MacBeth (1973) regressions of realized

betas β̂ on consensus betas βC and dispersion betas βD, from 2002/12/31 to 2018/9/28
(190 months). a0 is the time-series average of the intercept coefficient. aC is the time-series
average of the coefficient on βC. aD is the time-series average of the coefficient on βD. The
last two columns compute time-series averages of the adjusted R2 and the number of firms
in cross-sectional regressions. t-statistics, presented in parentheses, are computed using the
Newey and West (1987) adjustment with 4 lags. Statistical significance is denoted by ∗p < .1,
∗∗p < .05, or ∗∗∗p < .01.

a0 aR aC aD Adj.R2 N

0.1311∗∗∗ 0.0224∗∗ -0.0095∗∗∗ -0.0063∗∗∗ 0.0336 410
(5.91) (2.20) (-2.87) (-2.92)

0.1204∗∗∗ 0.0182∗ 0.0225 410
(5.27) (1.75)

0.1266∗∗∗ 0.0217∗∗ -0.0098∗∗∗ 0.0307 410
(5.58) (2.11) (-2.96)

0.1251∗∗∗ 0.0190∗ -0.0063∗∗∗ 0.0255 410
(5.61) (1.85) (-2.93)

Table 5: This table presents results from Fama and MacBeth (1973) regressions of mean

excess returns E[R̃e] on realized betas β̂, consensus betas βC and dispersion betas βD,
from 2002/12/31 to 2018/9/28 (190 months). a0 is the time-series average of the intercept

coefficient. aR is the time-series average of the coefficient on β̂. aC is the time-series average
of the coefficient on βC. aD is the time-series average of the coefficient on βD. The last two
columns compute time-series averages of the adjusted R2 and the number of firms in cross-
sectional regressions. t-statistics, presented in parentheses, are computed using the Newey
and West (1987) adjustment with 4 lags. Statistical significance is denoted by ∗p < .1,
∗∗p < .05, or ∗∗∗p < .01.
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Const. Slope Adj.R2 N

-0.0354∗∗ 0.1792∗∗ 0.1274 190
(-2.22) (2.00)

-0.0286∗∗∗ 0.1525∗∗ 0.1960 190
(-4.04) (2.30)

Table 6: This table presents results from time-series regressions of the excess returns of the
C and D factors on the excess returns of the market:

R̃e
C,t(R̃

e
D,t) = α + βR̃e

M,t + εt.

We obtain excess returns R̃e
C,t(R̃

e
D,t) on the factor C (D) by ranking stocks according to their

βC (βD) and taking a long position in high-βC (βD) stocks financed by a short position in
low-βC (βD) stocks. The data is from 2002/12/31 to 2018/9/28 (190 months). t-statistics,
presented in parentheses, are computed using the Newey and West (1987) adjustment with
4 lags. Statistical significance is denoted by ∗p < .1, ∗∗p < .05, or ∗∗∗p < .01.
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(a) Regression using the AQR BAB factor:

R̃e
BAB,t = α̂BAB + β̂BABR̃

e
M,t + β̂CBABR̃

e
C,t + β̂DBABR̃

e
D,t + εt

α̂BAB β̂BAB β̂CBAB β̂DBAB Adj.R2 N

0.0377∗ 0.4744∗∗∗ 0.3241 190
(1.71) (3.93)

-0.0028 0.6870∗∗∗ -0.3580∗∗ -0.9726∗∗∗ 0.5111 190
(-0.21) (9.31) (-2.20) (-4.14)

(b) Regression using the in-house BAB factor:

R̃e
BAB,t = α̂BAB + β̂BABR̃

e
M,t + β̂CBABR̃

e
C,t + β̂DBABR̃

e
D,t + εt

α̂BAB β̂BAB β̂CBAB β̂DBAB Adj.R2 N

0.0521∗∗ 0.9557∗∗∗ 0.5231 190
(2.16) (4.48)

-0.0185 1.3207∗∗∗ -1.1975∗∗∗ -0.9860∗∗∗ 0.7801 190
(-1.59) (14.03) (-7.28) (-2.90)

(c) Regression using the in-house BAB factor:

R̃e
BAB,t = α̂BAB + β̂BABR̃

e
M,t + aCβ

C
BAB,t + aDβ

D
BAB,t + εt

α̂BAB β̂BAB aC aD Adj.R2 N

0.0521∗∗ 0.9557∗∗∗ 0.5231 190
(2.16) (4.48)
0.0367 0.9482∗∗∗ 0.0534 0.0004 0.5402 190
(0.66) (4.00) (1.14) (0.01)

Table 7: Panels (a) and (b) present results from time-series regressions of the excess returns
of the AQR BAB strategy (panel a) and of our in-house BAB strategy (panel b) on the

excesss returns of the market and the excess returns of the C and D factors, R̃e
C,t and R̃e

D,t.

We obtain the excess returns R̃e
C,t (R̃e

D,t) by ranking stocks according to their βC (βD) and
taking a long position in high-βC (βD) stocks financed by a short position in low-βC (βD)
stocks. In panel (c), instead of using excess returns on the C and D factors, we directly
control for βCBAB and βDBAB (βCBAB and βDBAB represent the value-weighted βC and βD of our
in-house BAB factor). The data is from 2002/12/31 to 2018/9/28 (190 months). t-statistics,
presented in parentheses, are computed using the Newey and West (1987) adjustment with
4 lags. Statistical significance is denoted by ∗p < .1, ∗∗p < .05, or ∗∗∗p < .01.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

βOther 0.43∗∗∗ 0.66∗∗∗ 0.83∗∗∗ 0.94∗∗∗ 1.02∗∗∗ 1.11∗∗∗ 1.22∗∗∗ 1.30∗∗∗ 1.43∗∗∗ 1.66∗∗∗

(36.06) (75.88) (121.52) (156.48) (158.59) (163.82) (166.89) (149.53) (137.16) (103.85)
β∆PC 0.40∗∗∗ 0.21∗∗∗ -0.07 -0.04 -0.07 -0.08 -0.17∗∗∗ -0.18∗∗∗ -0.17∗∗ -0.22∗

(4.27) (3.12) (-1.25) (-0.84) (-1.30) (-1.58) (-2.93) (-2.69) (-2.12) (-1.76)

Table 8: This table reports estimates from the regression (51). The returns of ten value-
weighted beta-sorted portfolio are computed following the approach in Bodilsen et al. (2021).
The sample period is January 2011 to September 2019 (2200 trading days, of which 38 are
scheduled PC days). t-statistics are presented in parentheses. Statistical significance is
denoted by ∗p < .1, ∗∗p < .05, or ∗∗∗p < .01.
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Figure 1: CAPM rejection. This figure compares the minimum-variance set under average
unconditional beliefs (solid line) with the minimum-variance set of the empiricist (dashed
line). For the average investor, the market portfolio is the tangency portfolio (M = T), but
for the empiricist M moves upward on the minimum-variance set and is not mean-variance
efficient. For the empiricist, Ẑ is the zero-beta portfolio that has zero systematic risk.
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Figure 2: CAPM distortion. This figure illustrates the main result of the paper. The
perceived SML is flatter than the actual SML in equilibrium. The dashed line and the solid
line show the true and perceived SML. M represents the unconditional market portfolio.
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Figure 3: This figure plots the empirically plausible range for the distortion δ. The shaded
area shows the 90 percent confidence region for δ based on (48) and a 90 percent confidence
range for the intercept a: a ∈ [0.78, 0.88]. The distortion is plotted as a function of the
informational distance between investors and the empiricist, C2 + D2. The data is from
2002/12/31 to 2018/9/28 (190 months).
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Figure 4: This figure plots the CAPM-implied excess returns versus realized average excess
returns (value-weighted) on five beta-sorted portfolios, with the smallest beta stocks in port-
folio 1 and the largest beta stocks in portfolio 5. The data is from 2002/12/31 to 2018/9/28
(190 months).
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Figure 5: The crowding-out effect of public information. This figure provides evidence
of beta compression on days when public information dominates private information. Panel
(a) plots average daily excess returns in basis points (bps) against full-sample betas for ten
value-weighted beta-sorted portfolios separately for all days (blue dots) and press conference
(PC) days (red triangles). The lines represent the day-specific CAPM relations. Panel (b)
plots betas on PC days against betas on non-PC days, along with a 45-degree line. Beta
estimates are provided in Table 8. The sample period is January 2011 to September 2019
(2200 trading days, of which 38 are scheduled PC days).
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Figure 6: Size Effects. This figure illustrates the true SML (solid line) and observed SML
(dashed line) when stocks are in heterogeneous supplies. This illustrative economy has three
assets with factor loadings, φ1 > φ2 > φ3 > 0, and with supplies in the market portfolio,
0 < M1 < M2 < M3.
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B Appendix (Proofs)

B.1 Discussion of Assumption B in Section 2

In this appendix we discuss specific conditions under which (1) holds. Consider for analytical
convenience excess return on a single asset, R̃en, and let each investor i observe K signals, xi ≡
(xi1, ..., x

i
K), about R̃en. Assumption C requires that each investor has an identical number of signals

and that signals have identical distribution, p(xi|R̃e), so that investors’ information is identically
precise. Each investor i forms a posterior distribution p(R̃en|xi) via Bayes’ rule (Assumption A):

p(R̃en|xi) =
p(xi|R̃en)p(R̃en)

p(xi)
. (B.1)

Assuming that distributions belong to the exponential family, Kaas, Dannenburg, and Goovaerts
(1997) show that investor i’s posterior expectation, Ei[R̃en] ≡ E[R̃en|xi], is a linear, convex combi-
nation of the prior expectation and a sufficient statistic for her signals, xi, if the prior distribution,
p(R̃en), is a conjugate prior of the likelihood p(xi|R̃en). A prior distribution, p(R̃en), is a conju-
gate prior for p(xi|R̃en) if it belongs to the same probability distribution family as the posterior
distribution, p(R̃en|xi).

The exponential family is a broad set of distributions, which includes, for instance, the Bernoulli,
Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta distributions, among others (see, e.g.,
Breon-Drish, 2015, and two specific examples below). The likelihood takes the following form:

p(xik|R̃en) = exp

[
xikR̃

e
n − b(R̃en)

a/wk
+ c(xik, a/wk)

]
, (B.2)

where a/wk are known parameters and b(·) and c(·) are known functions. Then, p(R̃en) is a conjugate
prior if it has the same functional form and the R̃en-dependent part is the same as in (B.2):

p(R̃en) = exp

[
R̃enx0 − b(R̃en)

a/w0
+ d(x0, a/w0)

]
, (B.3)

where x0, a/w0 are parameters and the function d(x0, a/w0) is chosen in such a way that the density,
which ranges over some R̃en-interval, integrates to 1. Assume further that, conditional on R̃en, the
random signals xi1, ..., x

i
K are independent drawings from (B.2). Then the posterior distribution

p(R̃en|xi) follows from (B.1):

p(R̃en|xi) = C exp

[
R̃enx0 − b(R̃en)

a/w0

]
K∏
k=1

exp

[
xikR̃

e
n − b(R̃en)

a/wk

]
= C exp

[
R̃enx

i
• − b(R̃en)

a/w•

]
, (B.4)

where C is a normalizing constant, and

w• ≡
K∑
k=0

wk and x• ≡
K∑
k=0

wk
w•
xik. (B.5)

Thus, the posterior and prior distributions, p(R̃en|xi) and p(R̃en), are of the same type, but with
x0 and w0 replaced respectively by xi• and w•.

49



The consequence of the above result is that investor i’s posterior expectation, Ei[R̃en] ≡ E[R̃en|xi],
is a linear, convex combination of the prior expectation and a sufficient statistic for her signals, xi.
This is Theorem 2.1 in Kaas et al. (1997), whose proof we reproduce here using our notation. We
must prove that this expression is linear in xi1, ..., x

i
K :

Ei[R̃en] =

∫
E[R̃en]C exp

[
R̃enx

i
• − b(R̃en)

a/w•

]
dR̃en, (B.6)

where E[R̃en] = b′(R̃en) is the mean under the likelihood (B.2) (Eq. (4) in Kaas et al. (1997)).
Replacing in the above yields:

Ei[R̃en] = x•

∫
C exp

[
R̃enx

i
• − b(R̃en)

a/w•

]
dR̃en +

Ca

w•

∫
d exp

[
R̃enx

i
• − b(R̃en)

a/w•

]
. (B.7)

The first term integrates a probability density function and thus equals x•, whereas the second
term is 0 (in the exponential family, the probability density function equals 0 at endpoints). Thus:

Ei[R̃en] = x• =
w0

w•
x0 +

(
1− w0

w•

) ∑K
k=1wkx

i
k∑K

k=1wk
, (B.8)

which is a linear, convex combination between x0 and a sufficient statistic for investor’s signals
(which in this case is a weighted average of all the signals). This, together with the common prior
assumption (i.e., all investors observe the same x0), justifies the linear form in (1).

The normal-normal specification of the main model in Section 3 is a particular case of the
exponential family in which (1) holds. However, we provide here two examples that go beyond the
normal distribution assumption. The first example assumes that the gross return R̃en is Gamma
distributed with parameters α1 and α2 (an application in finance can be found in Vanden, 2008).
Suppose further that signals are independent, Poisson with intensity R̃en (for instance, these signals
are the number of analysts’ buy recommendations). Eq. (B.1) implies that the prior-to-posterior
update involves adding the sufficient statistic

∑K
k=1 x

i
k to the parameter α1 and adding the number

of signals K to the parameter α2. As in (B.8), the posterior mean is linear in signals:

E[R̃en|xi1, ..., xiK ] =
α2

K + α2

α1

α2
+

(
1− α2

K + α2

)
1

K

K∑
k=1

xik. (B.9)

A second example that suggests we can go in fact quite far from the normal case is the beta
distribution as a prior for R̃en/z, Be(α1, α2), α1, α2 > 0 (z > 1 is a scaling constant such that
R̃en/z belongs to the unit interval). This distribution may have multiple modes and may be skewed,
among other properties that indeed make it distinct from the normal distribution. If signals are
independent and Bernoulli distributed with probability R̃en/z, the posterior mean is linear in signals:

E[R̃en/z|xi1, ..., xiK ] =
α1 + α2

K + α1 + α2

α1

α1 + α2
+

(
1− α1 + α2

K + α1 + α2

)
1

K

K∑
k=1

xik. (B.10)

These are two examples in which investor i’s posterior beliefs are linear in a sufficient statistic
for her information set, as in (1).
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B.2 Proof of Proposition 2

We start by conjecturing a linear price function of the form:

P̃ = 1D +


ξ0,11 ξ0,12 · · · ξ0,1N

ξ0,21 ξ0,22 · · · ξ0,2N
...

...
. . .

ξ0,N1 ξ0,N2 · · · ξ0,NN


︸ ︷︷ ︸

ξ0

M +


λ1

λ2
...
λN


︸ ︷︷ ︸

λ

F̃ +


ξ11 ξ12 · · · ξ1N

ξ21 ξ22 · · · ξ2N
...

...
. . .

ξN1 ξN2 · · · ξNN


︸ ︷︷ ︸

ξ

m̃, (B.11)

where the undetermined coefficients multiplying the variables M, F̃ , and m̃ will be determined by
the market clearing condition.

Any investor i has two sources of information gathered in F i: (i) one private signal Ṽ i about
F̃ and (ii) N public prices. We isolate the informational part of public prices:

P̃a ≡ P̃− 1D − ξ0M = λF̃ + ξm̃, (B.12)

and stack all information of investor i, both private and public, into a single vector[
P̃a

V i

]
=

[
λ
1

]
F̃ +

[
ξ 0N×1

01×N 1

] [
m̃
ṽi

]
≡ HF̃ + Θ

[
m̃
ṽi

]
, (B.13)

where the vector of noise in the signals, [m̃′ ṽi]′, is jointly Gaussian with covariance matrix:

C =

[
τ−1
m I 0N×1

01×N τ−1
v

]
. (B.14)

Applying standard projection techniques we define the precision of the last term in (B.13):

r ≡ (ΘCΘ′)−1 =

[
τm(ξξ′)−1 0N×1

01×N τv

]
, (B.15)

and obtain that an investor i’s total precision on the common factor satisfies

τ ≡ Var[F̃ |F i]−1 = τF + H′rH = τF + τv + τmλ
′(ξξ′)−1λ. (B.16)

The precision τ is the same across investors. Furthermore, an investor i’s expectation of F̃
satisfies (both P̃a and Ṽ i have zero unconditional means):

E[F̃ |F i] =
1

τ
H′r

[
P̃a

Ṽ i

]
=

1

τ

[
λ′(ξξ′)−1τm τv

] [P̃a

Ṽ i

]
(B.17)

=
1

τ

(
τmλ

′(ξξ′)−1λF̃ + τmλ
′(ξξ′)−1ξm̃ + τvF̃ + τvṽ

i
)
. (B.18)

Using the definition of the total precision (B.16), it follows that average market expectation of
future dividends is

E[D̃] ≡
∫
i
E[D̃|F i]di = 1D + Φ

1

τ

[
(τ − τF )F̃ + τmλ

′(ξξ′)−1ξm̃
]
, (B.19)
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and individual expectations are:

E[D̃|F i] = E[D̃] + Φ
τv
τ
ṽi. (B.20)

For each agent i, the uncertainty about future dividends is

Σ ≡ Var[D̃|F i] =
1

τ
ΦΦ′ +

1

τε
I. (B.21)

Because agents hold mean-variance portfolios, the market-clearing condition implies:

P̃ = E[D̃]− γΣ(M− m̃) (B.22)

= 1D − γ
(

1

τ
ΦΦ′ +

1

τε
I

)
M + Φ

τ − τF
τ

F̃ +

[
Φ
τm
τ

(ξ−1λ)′ + γ

(
1

τ
ΦΦ′ +

1

τε
I

)]
m̃, (B.23)

where we have used the simplification

λ′(ξξ′)−1ξ = (ξ−1λ)′. (B.24)

The initial price conjecture then yields the following fixed-point solution:

ξ0 = −γ
(

1

τ
ΦΦ′ +

1

τε
I

)
(B.25)

λ = Φ
τ − τF
τ

(B.26)

ξ = Φ
τm
τ

(ξ−1λ)′ + γ

(
1

τ
ΦΦ′ +

1

τε
I

)
. (B.27)

Multiply both sides of the last equation by ξ−1λ (to the right):

λ = Φ
τm
τ

(ξ−1λ)′ξ−1λ+ γ

(
1

τ
ΦΦ′ +

1

τε
I

)
ξ−1λ, (B.28)

and recognize that τm(ξ−1λ)′ξ−1λ = τmλ
′(ξξ′)−1λ = τ − τF − τv (from Eq. B.16), which can be

replaced above, together with the solution (B.26) for λ to obtain:

Φ
τv
τ

= γ

(
1

τ
ΦΦ′ +

1

τε
I

)
ξ−1λ, (B.29)

which leads to an equation for ξ−1λ:

ξ−1λ =
τv
γτ

(
1

τ
ΦΦ′ +

1

τε
I

)−1

Φ =
τvτε

γ(τ + τε)
Φ. (B.30)

The second equality results from the fact that Φ is an eigenvector of the matrix 1
τΦΦ′ + 1

τε
I,

and the corresponding eigenvalue of Φ is 1/τ + 1/τε. (The matrix 1
τΦΦ′ + τ

τε
I has two distinct

eigenvalues: 1/τ + 1/τε, of multiplicity 1; and 1/τε, of multiplicity N − 1.)
We adopt the following notation:

ξ−1λ =

√
τP√
τm

Φ, (B.31)
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where τP is an unknown positive scalar such that
√
τP√
τm
≡ τvτε

γ(τ+τε)
. Replacing (B.31) in (B.16) yields

the total precision τ as a function of this scalar:

τ = τF + τv + τP , (B.32)

which, together with
√
τP√
τm

= τvτε
γ(τ+τε)

, leads to a cubic equation in τP :

τP (τF + τv + τP + τε)
2 =

τmτ
2
ε τ

2
v

γ2
. (B.33)

The discriminant of this cubic equation is strictly negative and thus the equation has a unique
real root. Since it cannot have a negative root (the right hand side is strictly positive), it follows
that τP is a unique positive scalar. Eq. (B.31) can now be replaced in the fixed point solution
(B.27) to obtain the undetermined coefficients ξ:

ξ =
γ +
√
τmτP
τ

ΦΦ′ +
γ

τε
I, (B.34)

which completes the proof of Proposition 2.

B.2.1 Proof of Corollary 2.1

From (B.21), we know that Σ = 1
τΦΦ′ + 1

τε
I. Thus,

ΣM =
Φ̄

τ
Φ +

1

Nτε
1 and σ2

M = M′ΣM =
Φ̄2

τ
+

1

Nτε
, (B.35)

which yields

β =
ΣM

M′ΣM
=

Φ̄2

τ
Φ
Φ̄

+ 1
Nτε

1

σ2
M

. (B.36)

This is a weighted average between 1 and Φ/Φ̄. Subtracting 1 on both sides yields (21).

B.3 Proof of Proposition 3

For this proof we will make the following assumptions:

Assumption B.1. There is no ex-ante proportionality relation between the unconditional market
portfolio M and the vector of assets’ loadings on the common factor Φ.

Assumption B.2. M′Φ > 0.

Assumption B.1 ensures that we keep the setup as general as possible, excluding pathological
cases with an exogenous perfect relationship between stocks’ market capitalizations and their ex-
posure to the common factor. In our case, such an exogenous relation would occur when all the
elements in the vector Φ are equal, and thus all assets are identical. Assumption B.2 eliminates
the uninteresting case M′Φ = 0 (zero market exposure to the common factor), and is without loss
of generality (if M′Φ < 0, one can simply switch the sign of the common factor). In our case, since
M = 1/N , M′Φ represents the mean of the vector Φ and equals Φ̄.
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Setting x ≡ Σ̂1/2M and y ≡ Σ̂−1/2µ, we have σM = ‖x‖ and

√
µ′Σ̂−1µ = ‖y‖, where ‖ · ‖

denotes the norm. The Cauchy-Schwartz inequality states that

‖x‖‖y‖ ≥ x′y = M′Σ̂1/2Σ̂−1/2µ = µM, (B.37)

where we have used the properties of symmetric positive-definite matrices for Σ̂. Thus,

µM

σM
≤
√
µ′Σ̂−1µ. (B.38)

The relation (B.38) holds with equality if and only if x is proportional to y, or

µ ∝ Σ̂M. (B.39)

Starting from the law of total variance (2) and replacing individual expectations from (B.20),
we compute Σ̂, which is Lemma 1 in the text (see Appendix B.5 for a proof):

Σ̂ = Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
+
τv
τ2

ΦΦ′, (B.40)

where e1 is the unique largest eigenvalue of Σ:

e1 =
1

τ
+

1

τε
. (B.41)

By making use of (B.21), one can write Σ̂ in two equivalent forms:

Σ̂ = c1Σ + c2ΦΦ′ (B.42)

Σ̂ = c3Σ− c4I (B.43)

where c1, c2, c3, and c4 are positive scalars:

c1 = 1 +
γ2

τmτε
> 0, c2 =

γ2e1

τmτ
+
τv
τ2

> 0, (B.44)

and

c3 = 1 +
γ2

τmτε
+
γ2e1

τm
+
τv
τ
> 0, c4 =

γ2e1

τmτε
+

τv
τετ

> 0. (B.45)

Multiply Equations (B.42)-(B.43) with M:

Σ̂M = c1ΣM + c2Φ̄Φ (B.46)

Σ̂M = c3ΣM− c4M. (B.47)

Since µ ∝ ΣM (Proposition 1), (B.39) and (B.46)-(B.47) imply that µ ∝ Φ and µ ∝M. This
implies M ∝ Φ, contradicting Assumption B.1. Thus, µ 6∝ Σ̂M and empiricist’s CAPM fails.
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B.4 Proof of Proposition 4

We prove first that M lies on empiricist’s minimum-variance set. From Roll (1977, Corollary 6), we
know that the betas of individual assets with respect to any portfolio are an exact linear function of
individual expected excess returns if and only if the portfolio is minimum-variance. We can write

Σ̂M =
1

γ
Σ̂Σ−1µ =

1

γ
(c3Σ− c4I)Σ−1µ =

c3

γ
µ− c4

N
1, (B.48)

where we have used the equilibrium relation µ = γΣM for the first equality, (B.43) for the second
equality, and γ−1Σ−1µ = M = 1/N for the third equality.

Using the definition of empiricist’s betas in (17), or β̂ = Σ̂M

M′Σ̂M
, it follows that empiricist’s

betas are an exact linear function of expected excess returns:

σ̂2
Mβ̂ = − c4

N
1 +

c3

γ
µ, (B.49)

which implies that M must lie on empiricist’s minimum-variance set. One can further write

µ =
c4γ

Nc3
1 +

γσ̂2
M

c3
β̂ = 1µ

Ẑ
+ β̂(µM − µẐ

), (B.50)

which is (24) in the text. Since c4γ/(Nc3) > 0, it follows that µ
Ẑ
> 0 and therefore M must lie

above T̂ on the upper limb of the minimum-variance set. Furthermore, since we know that true
betas satisfy µ = βµM, replacing in (B.50) and rearranging leads to (25) in the text, where δ is
defined in (26).

B.5 Proof of Lemma 1

The proof starts form the law of total variance (2), in which we replace individual expectations
from (B.20) and consensus beliefs from (13):

Σ̂ = Σ +
γ2

τm
ΣΣ +

τv
τ2

ΦΦ′ (B.51)

= Σ +
γ2

τm
Σ

(
1

τ
ΦΦ′ +

1

τε
I

)
+
τv
τ2

ΦΦ′ (B.52)

= Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
+
τv
τ2

ΦΦ′, (B.53)

where we have replaced Σ from (11) in the second equality, used ΣΦ = e1Φ for the third equality,
and e1 is the unique largest eigenvalue of Σ, defined in (B.41).

B.6 Proof of Proposition 5

The starting point for the proof is Lemma 1, Eq. (28):

Σ̂ = Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
︸ ︷︷ ︸

≡Var[E[R̃e]]

+
τv
τ2

ΦΦ′︸ ︷︷ ︸
≡Var[Ei[R̃e]−E[R̃e]]

, (B.54)
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which we pre-multiply with M′ and post-multiply by M:

σ̂2
M = σ2

M +
γ2

τmτε
σ2

M +
γ2e1Φ̄2

τmτ
+
τvΦ̄

2

τ2
, (B.55)

from which we obtain C2 and D2 as defined in the text, (30)-(31):

C2 ≡
Var[E[R̃eM]]

σ̂2
M

=
γ2

τmτετ σ̂2
M

(τσ2
M + τεe1Φ̄2) (B.56)

D2 ≡
Var[Ei[R̃eM]− E[R̃eM]]

σ̂2
M

=
τvΦ̄

2

τ2σ̂2
M

. (B.57)

Post-multiply (B.54) with M and divide by σ̂2
M to obtain β̂:

β̂ =

(
1 + γ2

τmτε

)
σ2

Mβ +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
Φ
Φ̄(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

, (B.58)

which is a weighted average between β and Φ/Φ̄. Subtract 1 on both sides:

β̂ − 1 =

(
1 + γ2

τmτε

)
σ2

M(β − 1) +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
(Φ

Φ̄
− 1)(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

, (B.59)

and use the definition of true betas from Corollary 2.1:

β̂ − 1 =

(
1 + γ2

τmτε

)
σ2

M(β − 1) +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
τσ2

M

Φ̄2 (β − 1)(
1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

. (B.60)

Thus:

β̂ − 1 =

[
1 +

(
τσ2

M

Φ̄2
− 1

)(
γ2e1Φ̄2

τmτ σ̂2
M

+D2

)]
(β − 1). (B.61)

and thus the distortion δ is

δ =

(
τσ2

M

Φ̄2
− 1

)(
γ2e1Φ̄2

τmτ σ̂2
M

+D2

)
=

(
τσ2

M

Φ̄2
− 1

)(
C2 τεe1Φ̄2

τσ2
M + τεe1Φ̄2

+D2

)
. (B.62)

The last equality follows from (B.56). Since τσ2
M/Φ̄2 − 1 = τ/(NτεΦ̄

2) > 0, δ is strictly positive.
Table A1 provides the limiting cases that we discuss below. It also illustrates the trivial cases in

which the distortion is zero or in which all betas are equal to 1 (and the distortion has no bearing on
betas). We describe here only the case of a vanishing idiosyncratic component in payoffs, τε →∞.
In this case, σ2

M = Φ̄2/τ , and there can be no distortion in empiricist’s SML. However, the term
(τσ2

M/Φ̄2−1) is in fact much larger than zero; this term measures excess variance in the market. We
find that a plausible value for (τσ2

M/Φ̄2−1) based on our dataset is as high as 25 (see Section 5.2).
This along with other trivial cases from Table A1 reveal that idiosyncratic shocks ε̃, a non-zero risk
aversion, imperfect private information, and incomplete revelation of information through public
prices are necessary ingredients for our results. Section 6.3 analyzes a large economy, in which we
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let both the number of stocks and the number of factors grow to infinity.

Variable Case τε →∞ Case γ → 0 Case τv →∞ Case τm →∞

τP
τmτ2

v

γ2 ∞ τmτ2
ε

γ2 ∞
τ τF + τv + τmτ2

v

γ2 ∞ ∞ ∞
Σ 1

τ
ΦΦ′ 1

τε
I 1

τε
I 1

τε
I

σ2
M

Φ̄2

τ
1
Nτε

1
Nτε

1
Nτε

e1
1
τ

1
τε

1
τε

1
τε

Σ̂
(

1
τ

+ γ2e1
τmτ

+ τv
τ2

)
ΦΦ′ 1

τε
I

(
1
τε

+ γ2

τmτ2
ε

)
I 1

τε
I

σ̂2
M

(
1
τ

+ γ2e1
τmτ

+ τv
τ2

)
Φ̄2 1

Nτε
1
Nτε

+ γ2

Nτmτ2
ε

1
Nτε

C2 γ2e1Φ̄2

τmτσ̂2
M

0 γ2

γ2+τmτε
0

D2 τvΦ̄2

τσ̂2
M

0 0 0

β Φ
Φ̄

1 1 1

β̂ Φ
Φ̄

1 1 1

δ 0 0 γ2

γ2+τmτε
0

Table A1: This table presents limiting cases for the distortion δ. In each case, we provide
the limits for several key parameters and components of δ.

The monotonicity of δ with respect to γ, τm, and τε can already be inferred from the limiting
case τv →∞. In this case, the distortion equals C2 and is strictly positive, although both true betas
and empiricist’s betas equal 1. From Table A1, we notice that in the case τv → ∞ the distortion
δ increases with the risk aversion, with the noise in idiosyncratic shocks to payoffs, and with the
noise in assets’ supplies. Figure A1 provides an illustration for the case of finite τv.

We can also characterize the monotonicity of δ with respect to γ and τm for the case of diffuse
priors, τF ≡ 0. We first notice that the parameters γ and τm are not identified separately but only
up to the ratio h ≡ γ2/τm. We thus investigate the monotonicity of δ in this ratio. In particular,
we want to show that:

d

dh
δ > 0. (B.63)

Differentiating δ with respect to h, and using that by the implicit function theorem:

d

dh
τ = −τP (τF + τP + τv + τε)

h(τF + 3τP + τv + τε)
< 0, (B.64)

and simplifying using (20) whereby τv + τP + τε = τετv

τ
1/2
P h1/2

, we obtain:

d

dh
δ =

τ3
ε

(√
hτP − τv

)2
(hτP )3/2

y

h(3τP + τv + τε) (τεφ2(τε(h+ τP + 2τv) + 2h(τP + τv)) + (h+ τε)(τP + τv)2)2 ,

(B.65)
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where

y ≡
(
h2τP τvτε

(
1− φ2

)
+ hτ2

P τvτε
(
5− φ2

)
+ 2(hτP )3/2τvτε

(
1− φ2

)
+2(hτP )3/2

(
(τv + τε)

2 − τ2
P

)
+ hτ2

v τ
2
ε + τP τ

2
v τ

2
ε

)
, (B.66)

and φ ≡ N1/2Φ̄. The numerator and the first ratio in (B.65) are positive, so we focus on the sign
of y. Substitute from (20):

τv + τε =
τετv

τ
1/2
P h1/2

− τP , (B.67)

into (B.66) to obtain:

y = τvτε

(
2
√
hτP + h+ τP

) (
hτP

(
1− φ2

)
+ τvτε

)
> 0. (B.68)

By Hölder’s inequality and the normalization Φ′Φ ≡ 1, φ ∈ (−1, 1) and thus y > 0.

B.6.1 Conditioning on public information

Empiricist’s rejection of the CAPM (Proposition 4) assumes the empiricist’s information is limited
to realized returns. In this appendix, we augment empiricist’s dataset with all relevant public
information (asset prices). Under this augmented information set, we show below that Proposition
4 still holds, but with a different distortion, δ̆:

δ̆ =
τv

τε(τ − τv)
1

Nσ̆2
M

> 0, (B.69)

where σ̆2
M ≡M′Var[R̃e|P̃]M is the variance of excess returns on the market portfolio conditional

on observing all publicly available prices, and the conditional covariance matrix Var[R̃e|P̃] is (which
can be obtained by simply assuming the view of an agent who only observes prices and thus has
zero precision of private information):34

Var[R̃e|P̃] = Var[D̃|P̃] =
1

τ − τv
ΦΦ′ +

1

τε
I. (B.70)

Replace (B.21) in (B.70) to obtain

Var[R̃e|P̃] =
τ

τ − τv
Σ− τv

τε(τ − τv)
I, (B.71)

and

σ̆2
M =

Φ
2

τ − τv
+

1

Nτε
. (B.72)

34Notice that it is not necessary to assume here that the empiricist knows the price coefficients of Proposi-
tion 2. This is because Var[R̃e|P̃] = Var[R̃e]−Var[E[R̃e|P̃]]. The empiricist can compute both terms on the
right hand side: the first term is the covariance matrix of realized returns; the second term is the covariance
matrix of expected returns obtained after regressing realized returns of each asset on the vector of prices P̃.
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When controlling for prices, the empiricist obtains a new set of betas:

β̆ =
Var[R̃e|P̃]M

σ̆2
M

=
τ

τ − τv
σ̂2

M

σ̆2
M︸ ︷︷ ︸

≡(1+δ̆)

β − τv
τε(τ − τv)

M

σ̆2
M

. (B.73)

Take average on both sides by multiplying with M′:

1 = (1 + δ̆)− τv
τε(τ − τv)

1

Nσ̆2
M

, (B.74)

and thus we obtain δ̆ as in (B.69). Replacing δ̆ in (B.73) and subtracting 1 on both sides yields
the main result of Proposition 4:

β̆ − 1 = (1 + δ̆)(β − 1). (B.75)

The new distortion δ̆ in (B.69) may be larger than the initial distortion obtained without
conditioning, δ. To see this, replace (B.72) in (B.69) and use (16) to obtain

δ̆ =
τvτ
−1
ε /N

τσ2
M − τvτ

−1
ε /N

. (B.76)

On the other hand we can rewrite δ in the model as:

δ =
τ−1
ε /N

σ̂2
M

(
γ2

τm
e1 +

τv
τ

)
, (B.77)

which further leads to

δ̆ =
τ σ̂2

M

τσ2
M − τvτ

−1
ε /N

(
γ2τ

τmτv
e1 + 1

)−1

δ. (B.78)

The coefficient multiplying δ on the right hand side is greater than 1 iff

τv >

√
γ2(τF + τP )(τF + τP + τε)

γ2 + τmτε
. (B.79)

Thus, when investors’ private information is sufficiently precise, the empiricist obtains a stronger
CAPM distortion than when estimating a standard unconditional CAPM. Since we know from Table

A1 that limτv→∞ τP = τmτ2
ε

γ2 , the right-hand side of (B.79) is finite as τv →∞. Thus, (B.79) clearly
has a solution. When τv is larger than this solution, the empiricist’s distortion is stronger when
controlling for prices.

B.7 Proof of Proposition 6

We first solve for τ in the common information economy (CIE). Apply the projection theorem:

τ = τF +

(√
τP√
τm

Φ

)′
τg

(√
τP√
τm

Φ

)
= τF +

τg
τm
τP , (B.80)
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as in (35) in the text.
Finding the equilibrium follows the same steps as in Appendix B.2, albeit much simpler here

since there is no learning from prices. To prove Proposition 6, compare the two sets of betas:

β̂ =

(
1 + γ2

τmτε

)
σ2

Mβ +
(
γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

)
Φ
Φ̄(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ
+ τvΦ̄2

τ2

(B.81)

β̂CIE =

(
1 + γ2

τmτε

)
σ2

Mβ + γ2e1Φ̄2

τmτ
Φ
Φ̄(

1 + γ2

τmτε

)
σ2

M + γ2e1Φ̄2

τmτ

. (B.82)

Both β̂ and β̂CIE are weighted averages of β and Φ/Φ̄. In the CIE, the only variable that changes
above is τv = 0 (σ2

M stays the same). Thus, the weighted average gets closer to β: empiricist’s
betas move closer to the true betas, which implies δCIE < δ.

To show that C2
CIE > C2, write first

Σ̂CIE = Σ +
γ2

τm

(
1

τε
Σ +

e1

τ
ΦΦ′

)
︸ ︷︷ ︸

≡Var[E[R̃e]]

. (B.83)

Compared with (B.54), we notice that the last term is missing (because τv = 0 in the CIE). Thus,

C2
CIE =

Var[E[R̃eM]]

M′Σ̂CIEM
(B.84)

is now larger, due to a lower denominator (the numerator is the same in both economies).

Information updating wedge (Albagli et al., 2022). To see how dispersed information
creates an information updating wedge in our setting, we adapt the model to make the exact same
argument as that in Albagli et al. (2022), Section 2.1, Example 1. Consider a single-asset version
of the baseline model in which everything else remains unchanged and Φ ≡ 1. Following the steps
of Appendix B.2 (now greatly simplified) leads to

E[D̃|F i] = D +
τv
τ
Ṽ i +

√
τP
τm

τm
τ
Z̃, (B.85)

where Z̃ ≡ ξ−1P̃ a =
√
τP /τmF̃ + m̃ is a public signal defined as in (33), informationally equivalent

to the equilibrium asset price, P̃ .
Now, consider the investor who, at a given price P̃ , finds it optimal to hold exactly M units

of the asset (notice that this is the same investor for which the unconditional CAPM holds in our
model). Then the following must hold for this investor:

1

γ
Σ−1(E[D̃|F i]− E[D̃]) = m̃, where Σ =

1

τ
+

1

τε
, (B.86)

from which we conclude that the private signal of this investor must exactly be:

Ṽ i = F̃ + γΣ
τ

τv
m̃ = F̃ +

γ(τ + τε)

τvτε
m̃ =

√
τm
τP
Z̃, (B.87)
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where the last equality follows from the definition of τP in (B.31). Thus, the private signal of the
investor who finds it optimal to hold exactly M units of the asset is informationally equivalent to
the public price signal, Z̃. Eq. (B.85) then leads to

E
[
D̃
∣∣∣ Ṽ i =

√
τm
τP
Z̃, Z̃

]
= D +

τv
τ

√
τm
τP
Z̃ +

√
τP
τm

τm
τ
Z̃ = D +

τv + τP
τ

√
τm
τP
Z̃. (B.88)

Therefore, one can write the equilibrium price as the risk-adjusted expectation of an investor who
chooses to hold exactly M units of the asset:

P (Z̃) = E
[
D̃
∣∣∣√τP /τmṼ i = Z̃, Z̃

]
− γΣM. (B.89)

Relative to the “objective” Bayesian posterior of D̃ given Z̃, which satisfies

E[D̃ | Z̃] = D +
τP
τ

√
τm
τP
Z̃, (B.90)

we notice that the price, P (Z̃), responds more strongly to the market signal Z̃. It follows that
the equilibrium price is more sensitive to fundamental and noise trading shocks contained in Z̃. In
other words, in the model with dispersed information investors treat market (public) information
as more informative than it truly is. This excess price sensitivity is the information updating wedge
of Albagli et al. (2022), and is the very reason why building the Common Information Economy in
Section 4.2 requires increasing the precision of the public signal in (35) relative to Z̃ above.

B.8 Proof of Proposition 7

The proof starts from (4),

Σ̂ = Σ + Var[E[R̃e]] + Var[Ei∗[R̃e]], (B.91)

which we multiply with M to obtain

σ̂2
Mβ̂ = σ2

Mβ + Var[E[R̃eM]]βC + Var[Ei∗[R̃eM]]βD, (B.92)

and then divide by σ̂2
M to obtain (38).

B.8.1 Proof of Corollary 7.1

Start from the definition of βC :

βC =

γ2σ2
M

τmτε
β + γ2e1Φ̄2

τmτ
Φ
Φ̄

γ2σ2
M

τmτε
+ γ2e1Φ̄2

τmτ

, (B.93)

which leads to (40) in the text:

βC − β =

γ2e1Φ̄2

τmτ

γ2σ2
M

τmτε
+ γ2e1Φ̄2

τmτ

(
Φ

Φ̄
− β

)
=

(
τσ2

M

Φ̄2
− 1

)
τεe1Φ̄2

τσ2
M + τεe1Φ̄2

(β − 1), (B.94)

where we have used Corollary 2.1 under the form Φ/Φ̄− β = (τσ2
M/Φ̄2 − 1)(β − 1).
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Regarding βD, in our model βD = Φ/Φ̄. Thus

βD − β =
Φ

Φ̄
− β =

(
τσ2

M

Φ̄2
− 1

)
(β − 1). (B.95)

which is (41) in the text.

B.9 Proof of Proposition 8

The proof starts from the definition of Cov[β, β̂] and Var[β̂]:

Cov[β, β̂] =
1

N

M′ΣΣ̂M

σ̂2
Mσ2

M

− βavgβ̂avg (B.96)

Var[β̂] =
1

N

M′Σ̂Σ̂M

σ̂2
Mσ̂2

M

− β̂2
avg, (B.97)

where βavg and β̂avg are arithmetic averages of true betas and empiricist’s betas across stocks. If
M = 1/N , these arithmetic averages coincide with market-weighted averages and thus are both 1.
It then follows that in the case M = 1/N , Cov[β, β̂] < Var[β̂] if and only if

M′ΣΣ̂M

M′ΣM
<

M′Σ̂Σ̂M

M′Σ̂M
. (B.98)

If we further assume that there is no dispersion in beliefs and investors’ information is common
knowledge, then the following relation results immediately from (13):

Σ̂ = Σ +
γ2

τm
ΣΣ. (B.99)

Considering now the eigenvalue decompositions of Σ and Σ̂ (it is easy to see that Σ and Σ̂
have the same eigenvectors, but not the same eigenvalues),

Σ = QΛQ′ and Σ̂ = QΛ(I + hΛ)Q′ (B.100)

where h ≡ γ2/τm > 0, and defining O ≡ Q′M, we need to prove that

O′ΛΛ(I + hΛ)O

O′ΛO
<

O′Λ(I + hΛ)Λ(I + hΛ)O

O′Λ(I + hΛ)O
, (B.101)

or ∑ O2
nΛn∑
O2
nΛn

Λn(1 + hΛn) <
∑ O2

nΛn(1 + hΛn)∑
O2
nΛn(1 + hΛn)

Λn(1 + hΛn). (B.102)

This is a comparison of two weighted averages with different weights given by:

Ω1n =
O2
nΛn∑
O2
nΛn

=
O2
nΛn
A

,
N∑
n=1

Ω1n = 1 (B.103)
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Ω2n =
O2
nΛn(1 + hΛn)∑
O2
nΛn(1 + hΛn)

=
O2
nΛn(1 + hΛn)

A+ hB
,

N∑
n=1

Ω2n = 1, (B.104)

where A ≡
∑
O2
nΛn > 0 and B ≡

∑
O2
nΛ2

n > 0, and thus B/A ∈ (min Λn,max Λn) is a weighted
average of Λn. The difference between the weights Ω2n and Ω1n is:

Ω2n − Ω1n =
O2
nΛn(1 + hΛn)

A+ hB
− O2

nΛn
A

(B.105)

=

(
1

A+ hB
− 1

A

)
O2
nΛn +

h

A+ hB
O2
nΛ2

n (B.106)

= − hB

A(A+ hB)
O2
nΛn +

h

A+ hB
O2
nΛ2

n (B.107)

=
h

A+ hB
O2
nΛn

(
Λn −

B

A

)
. (B.108)

This is a quadratic function of Λn, with two real roots: Λn = 0 and Λn = B/A > 0. Importantly,
the roots do not depend on On. The function is strictly negative on the interval (0, B/A) and strictly
positive on (B/A,∞). We therefore have (keeping in mind that

∑N
n=1 Ω1n =

∑N
n=1 Ω2n = 1):{

Ω2n < Ω1n, if Λn ∈ (0, B/A)

Ω2n > Ω1n, if Λn > B/A,
(B.109)

Thus, the weighted average on the right hand side of (B.102) places strictly higher weights on
higher values, and the inequality is now verified.

B.10 Proof of Proposition 9

The relation of Lemma 1 remains valid regardless the value of M. Writing (B.43) again,

Σ̂ = c3Σ− c4I, (B.110)

where c3, and c4 are positive scalars defined in (B.45), and multiplying with M yields

β̂ =
c3σ

2
M

σ̂2
M

β − c4

σ̂2
M

M (B.111)

Multiply with M′ and use the fact that betas must average to 1:

1 =
c3σ

2
M

σ̂2
M

− c4

σ̂2
M

M′M. (B.112)

Both elements on the right hand side are positive, and the last element is the disortion δ,
generalized for an aribtrary vector M. To see this, write again (B.111) using (B.112):

β̂ =

(
1 +

c4M
′M

σ̂2
M

)
β − c4M

′M

σ̂2
M

M

M′M
= (1 + δ)β − δ M

M′M
, (B.113)
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or

β − 1 =
1

1 + δ
(β̂ − 1) +

δ

1 + δ

(
M

M′M
− 1

)
. (B.114)

where

δ =
M′M

σ̂2
M

(
γ2e1

τmτε
+

τv
τετ

)
. (B.115)

Multiplying (B.114) with µM and using the true CAPM relation µ = βµM yields (54).

B.11 Proof of Condition (55)

For the SML to be downward-sloping a necessary (but not sufficient) condition is that Cov[β, β̂] < 0.
Write the covariance between β and β̂ as:

Cov[β, β̂] =
1

Nσ̂2
Mσ2

M

(
M′ΣΣ̂M− 1′ΣM1′Σ̂M/N

)
︸ ︷︷ ︸

≡∆

. (B.116)

The sign of this expression depends on the term in brackets. Tedious computations show that this
term can be written as:

∆ ≡ τ−2

(
1 +

γ2

τmτε
+
γ2e1

τm
+
τn
τ

)
M′Φ

(
1−N Φ̄2

)︸ ︷︷ ︸
≥0

+τ−2
ε

(
1 +

γ2

τmτε

)(
‖M‖2 − 1/N

)︸ ︷︷ ︸
≥0

+ τ−1τ−1
ε

(
2

(
1 +

γ2

τmτε

)
+
γ2e1

τm
+
τn
τ

)
M′Φ Cov[M,Φ]

(B.117)

The sign under the first underbrace follows from the normalization, Φ′Φ ≡ 1, and Hölder’s inequal-
ity, which together imply that Φ̄2N ≤ 1; similarly, the sign under the second underbrace follows
from that 1′M ≡ 1 and Hölder’s inequality, which together imply that ‖M‖2 ≥ 1/N . Hence, for
∆ < 0 a necessary condition is that Cov[M,Φ] < 0.

B.12 Proofs related to Section 6.3

Following our baseline notation we write investors’ precision on the J factors as:

τ = Var
[
F̃
∣∣∣F i

]−1
= (τF + τv)JIJ + τPΦ′ΦτP , (B.118)

where τP is a J × J−matrix, which is defined formally in the appendix. It will prove convenient
to rotate this matrix using the matrix of eigenvectors, Q, in (59) and to work with the limiting
behavior of Q′τ/NQ, as opposed to τ/N :

τ∞ ≡ lim
J→∞,N→∞,J/N→ψ

Q′τ/NQ. (B.119)

We characterize this matrix in the next lemma. The proof is in Section B.12.1.

Lemma 2. The limiting precision matrix, τ∞, defined in (B.119) is a diagonal matrix; the j−th
element on its diagonal corresponds to the precision on the j−th factor and is uniquely identified
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by the eigenvalue λ on this factor according to the cubic relation:

τ∞(λ) = ψ

(
τF + τv +

λτmτ
2
v τ

2
ε ψ

γ2(τ∞(λ) + λτε)2

)
. (B.120)

Remarkably, after rotating the precision matrix based on (59), the precision on each factor is
uniquely identified by its eigenvalue. Thus, the equilibrium computation in this multiple-factor
economy is not more complicated than solving the cubic equation of Proposition 2 J times, each
time for a different eigenvalue identifying a factor. Interestingly, comparing (B.120) and (B.118)
shows that the ratio in (B.120) represents the contribution of learning from prices to factor precision.
Because the effect of learning from prices is proportional to ψ2, if ψ is small, (B.119) simplifies to:

τ∞ = (τF + τv)ψI +O(ψ2), (B.121)

and thus all factors have identical precision, irrespective of their eigenvalue. That is, in a large
economy in which the relative number of factors is small we can ignore the effect of learning from
prices on precision, an observation that greatly helps for our main results.

We wish to characterize beta distortion with a single number, δ, as we did in the single-factor
case. In principle, there are as many such numbers as there are factors in the economy, since
factors affect the SML to different extents and in different directions. Rather, we examine how
factors collectively affect the SML, which can be captured with a single number. Note that 1 + δ
is the slope coefficient obtained from regressing true betas on measured betas:

1 + δ = Cov[β, β̂]/Var[β]. (B.122)

Hence, when δ > 0 (δ < 0) the SML looks flatter (steeper) than it actually is. From this definition
we obtain Proposition 10 and the corollary below; the proof is in Section B.12.2.

Corollary 10.1. (steepening of empiricist’s SML) Consider the framework of Proposition
10. If eigenvalues are sufficiently dispersed (inequality in (60) is violated) and exhibit a negative
but limited skew (first inequality in (B.183) holds) or if eigenvalues are sufficiently concentrated
(inequality in (B.184) is violated) and exhibit a strictly negative skew (inequality in (B.182) is
violated), the SML will look steeper than it actually is.

B.12.1 Proof of Lemma 2

We start by repeating the steps of Appendix B.2 for the multiple-factor case. As is customary, we
conjecture that prices satisfy

P̃ = ξ0M + λF̃ + ξm̃, (B.123)

for which a sufficient statistic is P̃a ≡ P̃− ξ0M = λF̃ + ξm̃. The projection theorem implies that

τ ≡ Var
[
F̃
∣∣∣Fi

]−1
= (τF + τv)JIJ + λ′(ξξ′)−1λτm. (B.124)

and

E
[
F̃
∣∣∣Fi

]
= τ−1

(
(τ − τF IJ)F̃ + τmλ

′(ξξ′)−1ξm̃ + τvṽi

)
. (B.125)
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It follows that average expectations of future payoffs satisfy

Ē[D̃] ≡
∫
i
E[D̃|Fi]di = D1 + Φτ−1

(
(τ − τF IJ)F̃ + τmλ

′(ξξ′)−1ξm̃
)
. (B.126)

and the conditional covariance matrix of future payoffs satisfies:

Σ ≡ Var
[
D̃
∣∣∣Fi

]
= Φτ−1Φ′ + τ−1

ε IN . (B.127)

The market-clearing condition then requires that P̃ = Ē[D̃]− γΣ(M + m̃), which yields

P̃ = D1 + Φτ−1
(

(τ − τF IJ)F̃ + τm(ξ−1λ)′m̃
)
− γΣ(M + m̃). (B.128)

Separating variables we obtain the following system of equations:

ξ0 = −γΣ, λ = Φτ−1(τ − τF IJ), (B.129)

and

ξ = τmΦτ−1(ξ−1λ)′ − γ
(
Φτ−1Φ′ + τ−1

ε IN
)
. (B.130)

To reduce the size of this system of equations, post-multiply both sides of the above by ξ−1λ:

λ = τmΦτ−1(ξ−1λ)′ξ−1λ− γ
(
Φτ−1Φ′ + τ−1

ε IN
)
ξ−1λ. (B.131)

Observing that τmΦτ−1(ξ−1λ)′ξ−1λ = Φτ−1 (τ − (τF + τv)IJ) ≡ λ− τvΦτ−1, we obtain

τvΦτ
−1 = −γ

(
Φτ−1Φ′ + τ−1

ε IN
)
ξ−1λ, (B.132)

which yields an equation for the vector of signal-to-noise ratios:

ξ−1λ = −τv
γ

(
Φτ−1Φ′ + τ−1

ε IN
)−1

Φτ−1. (B.133)

Pre-multiply this equation by τ−1Φ′ and use Woodbury matrix identity to write:

τ−1Φ′
(
Φτ−1Φ′ + τ−1

ε IN
)−1

Φτ−1 = τ−1 − (τ + τεΦ
′Φ)−1 (B.134)

and to conclude that

τ−1Φ′ξ−1λ = −τv
γ

(
τ−1 − (τ + τεΦ

′Φ)−1
)
. (B.135)

Conjecture that ξ−1λ ≡ − 1√
τm

ΦτP , where τP is a J ×J symmetric matrix of J(J + 1)/2 unknown

coefficients. Replacing this conjecture in the expression for total precision in (B.124) to obtain
(B.118). Further replacing the conjecture in (B.135) produces a matrix equation for τP :

τ−1Φ′ΦτP =
√
τm
τv
γ

(
τ−1 − (τ + τεΦ

′Φ)−1
)
, (B.136)

66



which, premultiplying by τ , can be rewritten as

Φ′ΦτP =
√
τm
τv
γ

(
IJ − (IJ + τετ

−1Φ′Φ)−1
)
. (B.137)

We can simplify this equation further by premultiplying by (Φ′Φ)−1:

τP =
√
τm
τvJ

γ

(
(Φ′Φ)−1 − (Φ′Φ)−1

(
(Φ′Φ)−1 + τετ

−1
)−1

(Φ′Φ)−1
)
, (B.138)

and apply Woodbury matrix identity:

τP =
√
τm
τvJ

γ

(
Φ′Φ + τ−1

ε τ
)−1

. (B.139)

Now let us go back to (10), use Woodbury matrix identity, and substitute (B.139) in it:

τ−1 = (τF + τv)
−1J−1

(
I−

(
I + (τF + τv)Jτ

−1
P (Φ′Φ)−1τ−1

P

)−1
)

(B.140)

= (τF + τv)
−1J−1

(
I−

(
I +

(τF + τv)γ
2

τmτ2
v J

(
Φ′Φ + τ−1

ε τ
)

(Φ′Φ)−1
(
Φ′Φ + τ−1

ε τ
))−1

)
, (B.141)

which is an explicit matrix equation for τ . Further recall that, under (57), the average eigenvalue
of Φ′Φ is:

1

J
tr(Φ′Φ) = N. (B.142)

Hence, in the limit when N →∞, it is important to focus on 1
NΦ′Φ and rewrite this equation as:

(τ/N)−1 = ((τF + τv)J/N)−1I (B.143)

−

(
(τF + τv)J/NI +

(τF + τv)
2γ2

τmτ2
v

(
1

N
Φ′Φ + τ−1

ε τ/N

)(
1

N
Φ′Φ

)−1( 1

N
Φ′Φ + τ−1

ε τ/N

))−1

.

(B.144)

Let us now introduce the eigendecomposition in (59), which further yields:

(τ/N)−1 = ((τF + τv)J/N)−1QQ′ (B.145)

−Q

(
(τF + τv)J/NI +

(τF + τv)
2γ2

τmτ2
v

(
Λ + τ−1

ε Q′τ/NQ
)
Λ−1

(
Λ + τ−1

ε Q′τ/NQ
))−1

Q′,

(B.146)

where we have used that QQ′ = I. Finally, post-multiplying by Q and pre-multiplying by Q′ on
both sides, and taking the limit when N →∞, J →∞, and J/N → ψ we obtain a matrix equation
for τ∞, as defined in (B.119):

τ−1
∞ = ((τF + τv)ψ)−1I−

(
(τF + τv)ψI +

(τF + τv)
2γ2

τmτ2
v

(
Λ + τ−1

ε τ∞
)
Λ−1

(
Λ + τ−1

ε τ∞
))−1

,

(B.147)
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which, using once more Woodbury identity, simplifies into:

τ∞ = (τF + τv)ψI +
ψ2τmτ

2
v

γ2

(
Λ + τ−1

ε τ∞
)−1

Λ
(
Λ + τ−1

ε τ∞
)−1

. (B.148)

Since all matrices are diagonal, it is natural to conjecture (and verify) that τ∞ is diagonal, too, with
elements {τj,∞}Jj=1 on its diagonal. Substituting this conjecture in the matrix equation decouples
it into J algebraic equations for each diagonal element τj,∞, each of the form:

τj,∞ = ψ

(
τF + τv +

λjτmτ
2
v τ

2
ε ψ

γ2(τj,∞ + λjτε)2

)
, j = 1, ..., J. (B.149)

This is a cubic equation in each τj,∞ that has a unique solution, and which delivers the mapping
in (B.120).

B.12.2 Proof of Proposition 10

As in the single-factor case, we start from the law of total covariance to write:

Σ̂ = Σ +
γ2

τm
ΣΣ + τvJΦτ−1τ−1Φ′ (B.150)

=

(
1 +

γ2

τmτε

)
Σ + Φτ−1

(
γ2

τm

(
Φ′Φ + τ−1

ε τ
)

+ τvJI

)
τ−1Φ′. (B.151)

Let us now rescale by N and use the eigendecomposition in (59) and the definition of limiting
precision in (B.119) to rewrite this expression as:

NΣ̂ =

(
1 +

γ2

τmτε

)
NΣ + ΦQτ−1

∞

(
γ2

τm

(
Λ + τ−1

ε τ∞
)

+ τvψI

)
τ−1
∞ Q′Φ′. (B.152)

We now want to use this expression to obtain an expression for δ in (B.122), which can be written
as:

1 + δ =
σ2

M

σ̂2
M

1
NM′ΣΣ̂M− σ2

Mσ̂2
M

1
NM′ΣΣM− σ4

M

=
Nσ2

M

Nσ̂2
M

NM′ΣΣ̂M−Nσ2
MNσ̂2

M

NM′ΣΣM−N2σ4
M

. (B.153)

We first define the following vector:

Z ≡ Q′Φ′M. (B.154)

Denoting its j−th element by zj , and using (B.127) and (B.152) we can write σ2
M and σ̂2

M as:

Nσ2
M = τ−1

ε +

J∑
j=1

z2
j τ∞(λj)

−1, (B.155)

Nσ̂2
M =

(
1 +

γ2

τmτε

)
Nσ2

M +
J∑
j=1

z2
j τ∞(λj)

−2

(
γ2

τm
(λj + τ−1

ε τ∞(λj)) + τvψ

)
, (B.156)
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where the function τ∞(·) is defined Lemma 2. After rearranging we can further write:

NM′ΣΣM = τ−1
ε Nσ2

M +
J∑
j=1

z2
j τ∞(λj)

−1
(
λjτ∞(λj)

−1 + τ−1
ε

)
(B.157)

and thus:

NM′ΣΣM−N2σ4
M =

J∑
j=1

z2
j τ∞(λj)

−1

(
τ∞(λj)

−1λj −
J∑
k=1

z2
kτ∞(λk)

−1

)
. (B.158)

Similarly,

NM′ΣΣ̂M =

(
1 +

γ2

τmτε

)
τ−1
ε Nσ2

M (B.159)

+

J∑
j=1

z2
j τ∞(λj)

−2
(
τ−1
ε τ∞(λj) + λj

)(
1 +

2γ2

τmτε
+ τ∞(λj)

−1

(
γ2

τm
λj + τvψ

))
, (B.160)

and thus

NM′ΣΣ̂M−Nσ2
MNσ̂2

M = (B.161)

J∑
j=1

z2
j τ∞(λj)

−2

(
γ2

τm
λj + τvψ +

(
1 +

2γ2

τmτε

)
τ∞(λj)

)(
λjτ∞(λj)

−1 −
J∑
k=1

z2
kτ∞(λk)

−1

)
. (B.162)

To obtain more transparent expressions we now use the approximation in (B.121) and Assumption
1. This assumption implies that XX′/N → I and thus

1

NJ
tr(Φ′Φ) =

1

NJ
tr(T1/2XX′T1/2)→ 1

J
tr(T) = 1, (B.163)

so that (57) is satisfied in the limit. We now want to compute expressions of the form:

lim
J→∞

J∑
j=1

z2
j f(λj), (B.164)

for an arbitrary, bounded function f based on results in Bai, Miao, and Pan (2007) (among others).
Under Assumption 1, Q is asymptotically Haar distributed. The main idea, as per Silverstein
(1989), is to take an arbitrary unit vector x and focus on Q′x ≡ y, so that y is Uniformly
distributed over {y ∈ RJ : ‖y‖ = 1}. We then obtain that expressions like

∑J
j=1 |yj |2f(λj) converge

to 1
J

∑J
j=1 f(λj) (Corollary 2 in Bai et al. (2007)). We would like our vector Z to share this key

property of y. However, although x is arbitrary, it must be nonrandom. We deal with this issue as
follows. Note that, as pointed out in Bai and Silverstein (1998), the two matrices A1 ≡ Φ′Φ/N =
T1/2XX′T1/2 and its companion A2 ≡ ΦΦ′/N = X′TX/N share the same non-zero eigenvalues.
Recalling our assumption that N ≥ J , the remaining N − J eigenvalues of A2 are zeroes. In
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particular, we can write the singular value decomposition of the matrix N−1/2Φ′ as:

1

N1/2
Φ′ =

J∑
j=1

√
λjqjv

′
j , (B.165)

where qj is the j−th column of Q and vj is the j−th column of the eigenvectors of A2. We can
then write:

1

N1/2
Q′Φ′ =

J∑
j=1

√
λjejv

′
j , (B.166)

where ej is a J × 1−vector with j−th entry 1 and zeroes everywhere else. Choosing a nonrandom
unit vector x ≡ N−1/21 = N1/2M, we can rewrite Z as:

Z =

J∑
j=1

√
λjejv

′
jx, (B.167)

with j−th entry:

zj =
√
λjv

′
jx. (B.168)

Now, pick f(·) to be an arbitrary, bounded function. Since all last N − J eigenvalues of A2 are
zero, we can write:

J∑
j=1

z2
j f(λj) =

J∑
j=1

λj(v
′
jx)2f(λj) =

N∑
j=1

λj1j≤J(v′jx)2f(λj) (B.169)

We can then apply Theorem 1.5 in Xi, Yang, and Yin (2020) (see also Knowles and Yin (2017))

J∑
j=1

z2
j f(λj)→

1

N

N∑
j=1

λj1j≤Jf(λj) =

∫
f(λ)λdFA2(λ), (B.170)

where FA2 denotes the empirical spectral density of A2. As noted in Bai and Silverstein (1998), it
satisfies:

FA2 = (1− ψ)1[0,∞) + ψFA1 . (B.171)

That is, the density dFA2 has an atom at 0 of size 1 − ψ, since a fraction = 1 − J/N of the
eigenvalues of A2 are zeroes. Since f is taken to be bounded, we eventually get:

J∑
j=1

z2
j f(λj)→ ψ

∫
f(λ)λdFA1(λ). (B.172)

Note that in (B.155)—(B.161) all particular forms of f to which we apply this result are bounded.
This is because all eigenvalues, λ > 0, are positive, f is continuous, and, using Lemma 2, for any
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positive integer n and any integer m > n:

lim
λ→∞

λnτ∞(λ)−n =

 3γ2 3
√
γ6τ3

ε(
3
√
γ6τ3

ε − γ2τε

)
2

n

, (B.173)

lim
λ→∞

λnτ∞(λ)−m = 0. (B.174)

This result in (B.172) allows us to write the distortion, δ, in terms of the two statistics σλ and sλ.
Using these definitions along with the approximation in (B.121), we obtain simpler expressions for:

Nσ2
M ≈ τ−1

ε + µλ(τF + τv)
−1, (B.175)

NM′ΣΣM−N2σ4
M ≈ (τF + τv)

−2
(
(σ2
λ + µ2

λ)/ψ − µ2
λ

)
, (B.176)

and

Nσ̂2
M ≈

(
1 +

γ2

τmτε

)
Nσ2

M + (τF + τv)
−2

(
γ2

τm
(σ2
λ + µ2

λ)/ψ +

(
γ2

τmτε
(τF + τv) + τv

)
µλ

)
,

(B.177)

NM′ΣΣ̂M−Nσ2
MNσ̂2

M (B.178)

≈ (τF + τv)
−3

 (
γ2

τm

µ3
λ+µλσ

2
λ

ψ +
(
τv +

(
1 + 2γ2

τmτε

)
(τv + τF )

)
µ2
λ

)
(1/ψ − 1)

+ γ2

τm

sλ+2µλσ
2
λ

ψ2 +
(
τv +

(
1 + 2γ2

τmτε

)
(τv + τF )

)
σ2
λ
ψ

 . (B.179)

Substituting these expressions in turn in (B.153) we can characterize δ in terms of the mean,
dispersion and skewness of eigenvalues:

δ =
γ2τε

(
σ2
λτε(µλ − σλ)(µλ + σλ) + µλsλτε + τ0

(
µ3
λ + 3µλσ

2
λ + sλ

))
+ τ0ψ

(
µ2
λ + σ2

λ

) (
τ1 − γ2µλτε

)
− µ2

λτ0ψ
2τ1(

µ2
λ(1− ψ) + σ2

λ

) (
τmτεψ

(
µλτε(τF + 2τv) + τ2

0

)
+ γ2

(
τ2
ε

(
µ2
λ + σ2

λ

)
+ τ0ψ(2µλτε + τ0)

)) ,

(B.180)

the denominator of which is strictly positive, and where, for convenience, we have definedτ0 = τF+τv
and τ1 = τ0γ

2 + τvτmτε, and

∆ = µ4
λ +

τ2
0

(
γ2µλτε(ψ − 3)− ψτ1

)2
γ4τ4

ε

+
2µ2

λτ0

(
γ2µλτε(5− 3ψ) + (3− 2ψ)ψτ1

)
γ2τ2

ε

. (B.181)

So whether or not the SML looks steeper to the econometrician depends only on the sign of the
numerator. Assume that the condition in (60) is satisfied. Then, if either the distribution of
eigenvalues is positively skewed (or exhibits little negative skewness):

sλ >
µ2
λτ0(ψ − 1)

(
γ2µλτε + ψτ1

)
γ2τε(µλτε + τ0)

(< 0), (B.182)

or, on the contrary, if it exhibits strictly negative (but limited) skewness:

− τε
4(τ0 + µλτε)

∆ ≤ sλ <
µ2
λτ0(ψ − 1)

(
γ2µλτε + ψτ1

)
γ2τε(µλτε + τ0)

, (B.183)
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and if, further, eigenvalues are not too concentrated:

σ2
λ >

1

2

−√∆ +
4sλ(µλτε + τ0)

τε
+ µ2

λ +
µλτ0(3− ψ)

τε
+
τ0ψτ1

γ2τ2
ε

 , (B.184)

the denominator is negative (the SML will look flatter than it actually is). Note that when ψ ≡ 0
we recover the limit we obtain in the single-factor case. Furthermore, to obtain the condition under
which the SML is downward-sloping, note that the slope of the SML is:

Cov(β̂,E[R̃e]) = Cov(β̂,β)E[R̃eM], (B.185)

where the covariance in the second inequality is given by (B.177). If skewness is strictly negative:

sλ <
µ2
λ(ψ − 1)

(
γ2µλτε + τF τετmψ + 2ψτ1

)
γ2τε

, (B.186)

and if eigenvalues are sufficiently concentrated:

σ2
λ <

µ2
λ(ψ − 1)

(
γ2µλτε + τF τετmψ + 2ψτ1

)
− γ2sλτε

γ2µλτε(3− ψ) + ψ(τF τετm + 2τ1)
, (B.187)

then the covariance in the second inequality of (B.177) is negative (the SML is downward-sloping).

B.13 Dollar returns vs rates of returns

In our model with CARA preferences and normally distributed cash flows, returns are expressed
in dollars per share. While this allows us to derive analytical expressions for all our results, it also
raises two concerns. First, does our main result—that the CAPM holds for investors but fails for
the empiricist—survive if we use rates of returns instead of dollar returns? Second, dollar returns
are not entirely consistent with the data analysis of Section 5, where we use rates of returns, as in
the empirical literature. In this appendix we deal with these two concerns.

B.13.1 True versus empiricist’s CAPM with rates of return

The results below mirror the results of Banerjee (2010), who shows that the conditional CAPM
holds regardless of how one compute returns (dollar returns or rates of returns). Our focus is on
the unconditional CAPM. Starting from

E[R̃e] = γΣM, (B.188)

an decomposing the dollar returns as R̃e = D̃− P̃, we obtain

E[D̃]− E[P̃] = γΣM. (B.189)

Defining P ≡ E[P̃] and diag(P) as a diagonal matrix whose diagonal is P, the unconditional
expected rates of excess returns are given by:

µr = diag(P)−1(E[D̃]−P) = diag(P)−1γΣM. (B.190)

(N.B. The constant parameter D plays no role in our results when we work with dollar returns, but
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when working with rates of returns, a sufficiently large parameter D ensures that the probability
of obtaining negative prices remains negligible. The parameter D is also necessary for a realistic
calibration of the model—see below.)

The market portfolio weights are:

w =
diag(P)M

M′P
, (B.191)

and thus the expected rate of excess returns on the market portfolio is:

w′µr =
M′diag(P)

M′P
diag(P)−1γΣM =

γ

M′P
M′ΣM. (B.192)

Dividing (B.190) by (B.192) yields

µr

w′µr
= M′Pdiag(P)−1β. (B.193)

We therefore recover the true unconditional CAPM, with betas modified according to the right
hand side of the above. We verify that indeed these new betas average 1:

w′M′Pdiag(P)−1β =
M′diag(P)

M′P
M′Pdiag(P)−1β = M′β = 1. (B.194)

Moving now to the empiricist’s view, realized rates of returns are computed as

r̃e ≡ diag(P̃)−1(D̃− P̃), (B.195)

and thus are not normally distributed. Therefore, we resort to simulations in order to obtain the
CAPM as measured by the empiricist.

Calibration We calibrate an economy with 50 risky assets such that: (i) the annual average
rate of excess return for the market portfolio is ∼ 6%; (ii) the range of the betas of the 50
assets, computed with rates of returns, is from ∼ 0.5 to ∼ 1.5; and (iii) The values C2 and D2

computed with rates of return are both ∼ 0.05, consistent with our empirical findings (page 22).
The resulting calibration, which will be used for all our simulations below, is N = 50, D = 5000,
γ = 40, τF = 0.05, τε = 1, τv = 1, τm = 22, 500, M = 1/50, and Φ = z/norm(z) where z is a N × 1
vector normally distributed with mean 1 and variance 1. (We have experimented with an extensive
range of calibrations, and consistently obtained similar results.)

Figure A1 depicts the first simulation results. Each panel takes the above calibration as a start-
ing point and varies γ, τm, or τε. The three panels compare the theoretical distortion (Proposition
5) with the distortion obtained using rates of returns. The former is plotted with the solid line,
and the latter with the dashed line. For each point on the dashed lines, we perform one simulation
of the economy at daily frequency, consisting in generating 107 returns for the 50 assets. Then, we
estimate the CAPM using realized rates of return and obtain δ by dividing the intercept by the
slope according to (27). All the panels show that the distortion with rates of returns is consistently
larger than the distortion with dollar returns.
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Figure A1: Distortion with dollar returns vs. rates of return. This figure illustrates
the distortion from Proposition 5 (solid lines) and empiricist’s distortion when using rates
of returns instead of dollar returns (dashed lines). We plot the distortion as a function of γ,
τm, and τε. For each point on the dashed lines we perform one simulation of our economy
at daily frequency, using the calibration below. Each simulation consists in generating 107

returns for the 50 assets in the economy.

B.13.2 Validity of our model predictions when using rates of returns

We now verify that the main testable implications of our model, which we derive in Section 5 using
dollar returns, remain valid when based on rates of return. In a first step we plot histograms for
δ, C2, and D2 computed from simulated data and compare them with their true values from (32),
(30), and (31). In the analysis that follows, when we say “one simulation” we mean that we have
generated 105 random returns for all the 50 assets in the economy using the calibration from page
73, then used the resulting dataset to compute all of our variables of interest with rates of return.
When we say “x simulations” we mean that we have done this exercise x times.

Figure A2 shows one typical simulation. Panel (a) presents our main result obtained in closed
form with dollar returns (as in Figure 2 in the main text). Panel (b) shows the same result obtained
with rates of return from simulated data (returns are annualized). In both panels, the CAPM holds
for investors, but it appears flatter to the empiricist.

Figure A3 plots histograms from 100 simulations of the model. In each panel, the vertical
dashed lines show the true values for δ, C2, and D2 obtained using (32), (30), and (31). The
histograms confirm that δ, C2, and D2 computed from simulated data and using rates of return are
close to the numbers obtained in closed form. Although the C2 and D2 that result from rates of
return are on average lower than the model-implied C2 and D2, their magnitudes remain very close
to the true theoretical values. We have noticed that this pattern—C2 and D2 from rates of return
being lower on average than their theoretical values—is not consistent across simulations, but can
revert for different calibrations of the model. In all cases, however, C2 and D2 from rates of return
continue to stay close to their theoretical counterparts.

Next, we check if Equations (46) and (47), which form the basis of our empirical work (Tables
4 and 5), are verified when using rates of return instead of dollar returns. For (46) we proceed as
follows. Using data from one simulation, we compute the rates of return for all assets and for the
value-weighted market portfolio. With this dataset at hand, we compute β̂ (empiricist’s betas).
We then compute consensus expected rates of return for the assets (using (13) and dividing by the
current prices of assets) and for the market (using the market weights that result from simulations).
This allows us to compute βC as in (39). Finally, we simulate one agent’s time series of private
signals, which allows us to compute βD as in (39) using rates of return. (NB: Simulating the private
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Figure A2: The CAPM with dollar returns vs. rates of return. The left panel plots
our main result with dollar returns: the CAPM holds for investors, but it appears flat to
the empiricist. The right panel confirms this result with an economy simulated in which 105

returns are generated for each of the 50 assets.

Figure A3: δ, C2, and D2: dollar returns vs. rates of return. Each panel shows a
histogram of the parameter δ (left panel), C2 (center panel), and D2 (right panel), obtained
from 100 simulations of the model, and computed using rates of return. The vertical dashed
lines show the true values of δ, C2, and D2 obtained using (32), (30), and (31).

information of only one agent is sufficient for our purpose, thanks to Assumption C, page 5). We
now have all the necessary information to compute both the left-hand side and the right-hand side
of (46). This yields two vectors of dimension 50 × 1, which should be identical if the relationship
holds for rates of return: a regression of any of these two vectors on the other should yield an
intercept of 0, a slope of 1, and a R2 of 1.

Figure A4 presents the intercept (left), slope (center), and R2 (right) that result from 100
simulations. The histograms show that all numbers are very close to what they should be, allowing
us to conclude that (46) is indeed verified based on rates of return. In particular we notice that
the R2 from simulations is almost 1.

Next, we check Equation (47) using the same procedure as for (46): based on simulated data
and using rates of return, we compute both the left-hand and right-hand side of (47) and obtain
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Figure A4: Verification of Equation (46) with rates of return. For each simulation
of the model, we use rates of returns to compute the left-hand and right-hand side of (46).
We then regress one vector on the other. If (46) holds with rates of returns, the regression
should yield an intercept of 0, a slope of 1, and a R2 of 1. The figure shows histograms of
the intercept (left), slope (center), and R2 (right), from 100 simulations of the model.

Figure A5: Verification of Equation (47) with rates of return. For each simulation
of the model, we use rates of returns to compute the left-hand and right-hand side of (47).
We then regress one vector on the other. If (47) holds with rates of returns, the regression
should yield an intercept of 0, a slope of 1, and a R2 of 1. The figure shows histograms of
the intercept (left), slope (center), and R2 (right), from 100 simulations of the model.

two 50 × 1 vectors, then regress one vector on the other. If (47) holds with rates of return, the
regression should yield an intercept of 0, a slope of 1, and a R2 of 1. Figure A5 shows that indeed
the intercept of these regressions is very close to 0, and the slope and R2 are both very close to 1.
Thus, (47) holds with rates of return, justifying the use of rates of return in our empirical analysis.

Finally, we also check how closely related are the betas computed based on rates of return to
our theoretical betas based on dollar returns. In Figure A6, we plot histograms for the correlation
coefficients between β̂ and β̂r (left); βC and βCr (center); and βD and βDr (right). (We use the
subscript r to denote “rates of return.”) The three plots confirm that betas computed based on
rates of return are extremely close to their theoretical counterparts.
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Figure A6: Correlations between theoretical betas and betas computed with rates
of return. For each simulation of the model, we compute the correlations between β̂ and β̂r
(left); βC and βCr (center); and βD and βDr (right). We use the subscript r to denote “rates
of return.” The figure shows histograms resulting from 100 simulations of the model.

B.13.3 First-order approximation of rates of return

In this section we introduce a first-order approximation of rates of returns, which allows us to obtain
many expressions relevant to our analysis in closed-form.35 We examine the two main theoretical
relations (46) and (47) used for empirical tests based on this approximation. We show that the
effect of using first-order approximations of rates of returns, as opposed to dollar returns, leave the
two relation in (46) and (47) virtually unaffected.

For each asset n, we introduce the following first-order approximation of simple rates of returns,
defined as R̃en = D̃n/P̃n − 1, in the price P̃n around its unconditional average, E[P̃n]:

R̃en = D̃n(2E[P̃n]− P̃n)/E[P̃n]2 − 1 +O((P̃n − E[P̃n])2) (B.196)

≈ D̃n(2E[P̃n]− P̃n)/E[P̃n]2 − 1. (B.197)

Thereafter, whenever we write “≈” we mean that the relevant expressions is computed based on
returns ignoring terms of order higher than one. Based on this approximation we want to compute
C2, D2 and δ, along with βCn, βDn , and β̂n.

In a first step we consider a first-order approximation of market returns. In particular, using
market weights as defined in (B.191) we write R̃eM = w′diag(P̃)−1D̃− 1 = M′D̃/M′P̃− 1, which
satisfies the first-order approximation:

R̃eM ≈M′D̃(2M′ E[P̃]−M′P̃)/E[M′P̃]2 − 1, (B.198)

where, using the result of Proposition 2, we have:

E[M′P̃] = D − γ
(
τ−1Φ̄2 + τ−1

ε /N
)
. (B.199)

We then re-express approximated market returns, consensus beliefs about them, along with devia-
tions from consensus beliefs in quadratic forms (in some Gaussian vector to be specified). Specifi-
cally, using the result of Proposition 2 we can write:

R̃eM + 1 ≈ Z′1Λ1Z1/E[M′P̃]2, (B.200)

35We thank an anonymous referee for suggesting this approach.
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where the 5× 5−matrix Λ1 satisfies:

Λ1 ≡
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(B.201)

and where

Z1 ≡
(

1 F̃ Φ′m̃ M′m̃ M′ε̃
)′

(B.202)

is a Gaussian vector with mean µ1 =
(

1 0 0 0 0
)′

and covariance matrix

Σ1 =



0 0 0 0 0
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. (B.203)

Furthermore, using (B.19) we can write consensus beliefs about approximated market returns as:

E[R̃eM] + 1 ≈M′E[D̃](2M′ E[P̃]−M′P̃)/E[M′P̃]2 (B.204)

= Z′2Λ2Z2/E[M′P̃]2, (B.205)

where the 4× 4−matrix Λ2 satisfies:

Λ2 ≡
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(B.206)

and where

Z2 ≡
(

1 F̃ Φ′m̃ M′m̃
)′

(B.207)

78



is a Gaussian vector with mean µ2 =
(

1 0 0 0
)′

and covariance matrix

Σ2 =
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Similarly, using (B.18) we can rewrite individual deviations from consensus as:

Ei[R̃eM]− E[R̃eM] ≈M′(Ei[D̃]− E[D̃])(2M′ E[P̃]−M′P̃)/E[M′P̃]2 (B.209)

= Z′3Λ3Z3/E[M′P̃]2, (B.210)

where the 5× 5−matrix Λ3 satisfies:

Λ3 ≡
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and where

Z3 ≡
(

1 F̃ Φ′m̃ M′m̃ ṽi
)′

(B.212)

is a Gaussian vector with mean µ1 and covariance matrix

Σ3 =
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 . (B.213)

We now repeat these steps to compute consensus beliefs and individual deviations thereof for
approximated returns on stock n. Using (B.197) we start by rewriting realized returns on individual
assets as:

R̃en + 1 ≈ Z′4Λ4Z4/E[P̃n]2, (B.214)

where the 7× 7−matrix Λ4 satisfies:

Λ4 ≡ (B.215)
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(B.216)

and where

Z4 ≡
(

1 F̃ Φ′m̃ M′m̃ M′ε̃ m̃n ε̃n

)′
(B.217)

is a Gaussian vector with mean µ4 ≡
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and covariance matrix
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. (B.218)

We then rewrite consensus beliefs on individual, approximated returns as:

E[R̃en] + 1 ≈ E[D̃n](2E[P̃n]− P̃n)/E[P̃n]2 (B.219)

= Z′5Λ5Z5/E[P̃n]2, (B.220)

where the 5× 5−matrix Λ5 satisfies:

Λ5 ≡ (B.221)
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(B.222)

and where

Z5 ≡
(

1 F̃ Φ′m̃ M′m̃ m̃n

)′
(B.223)
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is a Gaussian vector with mean µ3 and covariance matrix

Σ5 =
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Finally, we can write deviations from consensus on individual stocks as:

Ei[R̃en]− E[R̃en] ≈ (Ei[D̃n]− E[D̃n])(2E[P̃n]− P̃n)/E[P̃n]2 (B.225)

= Z′6Λ6Z6/E[P̃n]2, (B.226)

where the 6× 6−matrix Λ6 satisfies:

Λ6 ≡
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(B.227)

and where

Z6 ≡
(

1 F̃ Φ′m̃ M′m̃ m̃n ṽi
)′

(B.228)

is a Gaussian vector with mean µ4 =
(

1 0 0 0 0 0
)′

and covariance matrix

Σ6 =



0 0 0 0 0 0
0 1

τF
0 0 0 0

0 0 1
τm

Φ̄
τm

Φn
τm

0

0 0 Φ̄
τm

1
Nτm

1
Nτm

0

0 0 Φn
τm

1
Nτm

1
τm

0

0 0 0 0 0 1
τv


. (B.229)

In a second step, we use the following result.

Lemma 3. Let Z be a N−dimensional Gaussian vector with mean µ and covariance matrix Σ,
and let Λa and Λb be two N ×N−symmetric matrices. Then:

V[Z′Λ·Z] = 2tr(Λ·ΣΛ·Σ) + 4µ′Λ·ΣΛ·µ (B.230)

and

Cov(Z′ΛaZ,Z
′ΛbZ) = 2tr(ΛaΣΛbΣ) + 4µ′ΛaΣΛbµ. (B.231)

Proof. See, e.g., Rencher and Schaalje (2008).
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Using this result we can obtain analytical expressions for C2, D2, βCn, βDn , and β̂n based on
approximated returns. To do so, denote by X some matrix and by X̂ the matrix obtained by
bordering X with zeroes so that it is of conformable size. We can then write:

C2 =
2tr(Λ2Σ2Λ2Σ2) + 4µ′2Λ2Σ2Λ2µ2

2tr(Λ1Σ1Λ1Σ1) + 4µ′1Λ1Σ1Λ1µ1
, (B.232)

D2 =
2tr(Λ3Σ3Λ3Σ3) + 4µ′1Λ3Σ3Λ3µ1

2tr(Λ1Σ1Λ1Σ1) + 4µ′1Λ1Σ1Λ1µ1
, (B.233)

β̂n =
E[M′P̃]2

E[P̃n]2

2tr(Λ̂1Σ4Λ4Σ4) + 4µ′4Λ̂1Σ4Λ4µ4

2tr(Λ1Σ1Λ1Σ1) + 4µ′1Λ1Σ1Λ1µ1
, (B.234)

βCn =
E[M′P̃]2

E[P̃n]2

2tr(Λ̂2Σ5Λ5Σ5) + 4µ′3Λ̂2Σ5Λ5µ3

2tr(Λ2Σ2Λ2Σ2) + 4µ′2Λ2Σ2Λ2µ2
, (B.235)

βDn =
E[M′P̃]2

E[P̃n]2

2tr(Λ̂3Σ6Λ6Σ6) + 4µ′4Λ̂3Σ6Λ6µ4

2tr(Λ3Σ3Λ3Σ3) + 4µ′1Λ3Σ3Λ3µ1
. (B.236)

Finally, we obtain δ by applying (B.122) using β̂n as per (B.234) and constructing true betas based
on approximated rates of returns. In this construction, it is important to note that conditional
betas based on rates of returns are random, unlike those based on dollar returns. Hence, the
construction of true betas is based the unconditional average of the conditional covariance matrix,
as appearing in (2):

βn =
E[Vari[R̃e]]M

M′ E[Vari[R̃e]]M
≈ E[M′P̃]2 E[P̃nM

′P̃]

E[P̃n]2 E[(M′P̃)2]

ΣnM

M′ΣM︸ ︷︷ ︸
=βn in (15)

, (B.237)

where Σn denotes the n−th row of Σ, as defined in (11), and where:

E[P̃nM
′P̃] = E[P̃n]E[M′P̃] + γ2τ−1

m τ−1
ε /N (B.238)

+ Φ̄Φnτ
−1
(
τ−1
F τ−1(τ − τF )2 + τ−1

m (γ +
√
τmτP )(τ−1(γ +

√
τmτP ) + 2γτ−1

ε )
)
,

E[(M′P̃)2] = E[M′P̃]2 + γ2τ−1
m τ−1

ε /N (B.239)

+ Φ̄2τ−1
(
τ−1
F τ−1(τ − τF )2 + τ−1

m (γ +
√
τmτP )(τ−1(γ +

√
τmτP ) + 2γτ−1

ε )
)
.

Although analytic (except for δ) these expressions, after substitutions of the relevant matrices,
are unintuitive. There is one limiting case, however, in which these expressions are intuitive.
This limiting case corresponds to D → +∞, that is when the unconditional average of dividends
is infinite. This limiting case is interesting for two reasons. First, note that the unconditional
expectation of the average market price satisfies:

E[M′P̃] = D − γ(τ−1Φ̄2 + τ−1
ε /N). (B.240)

Hence, unless D is sufficiently large, due to the liquidity discount the unconditional expected av-
erage market price is negative, causing the market risk premium to be either negative or excessively
large. Thus, a first condition to obtain a realistic market risk premium is that D be sufficiently
large. Second, a popular interpretation of the simple rate of return, R̃en = (D̃n − P̃n)/P̃n, on asset
n is as a first-order approximation of its log-return, log(D̃n/P̃n), around P̃n, which in this limiting
case is well-defined given that we can ensure that D̃n nor P̃n never become negative. In this case,
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the coefficients C2 and D2 in (B.232)-(B.233) simplify to:

lim
D→+∞

C2 ≈
γ2
(
N Φ̄2τε (2τ + τε) + τ2

)
N Φ̄2τε (γ2 (2τ + τε) + τm (τ + τv) τε) + τ2 (γ2 + τmτε)

, (B.241)

lim
D→+∞

D2 ≈ N Φ̄2τmτvτ
2
ε

N Φ̄2τε (γ2 (2τ + τε) + τm (τ + τv) τε) + τ2 (γ2 + τmτε)
. (B.242)

These two limiting expressions exactly coincide with C2 and D2 obtained based on dollar returns
in (30) and (31). Hence, we expect expressions based on first-order approximations to be close to
tehir counterparts based on dollar returns when D is taken to be large. Under the calibration of
page B.13.1, C2, D2 and δ are virtually identical for the range of parameters considered in Figure
A1 and are thus not reported here.

We now examine the relations in (46) and (47), which consistute the basis of the empirical
analysis in Section 5. Due to the nonlinearity in βCn and βDn implied by the division by E[P̃n] we
proceed with simulations. Specifically, when evaluating the relation in (46) we simulate the vector
Φ and use the expressions for βCn and βDn in (B.235) and (B.236), respectively, and the expression
for β̂n in (B.234). In each simulation we also obtain C2, D2 based on (B.232)-(B.233) (the only
random element being the average loading, Φ̄) and δ in (B.122). We then compute the right-hand
side of (46) and estimate the specification:

β̂n = a0 + a1

(
δ(1− C2 −D2)

δ + C2 +D2
1 +

D2(1 + δ)

δ + C2 +D2
βCn +

D2(1 + δ)

δ + C2 +D2
βDn

)
. (B.243)

For each draw of Φ we obtain an estimate for the intercept, a0, and the slope, a1, of this specification,
which reiterates the exercise of Figure A4 but based on approximated rates of return.
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Figure A7: Verification of Equation (46). This figure plots the histogram of the intercept, a0,
(left panel) and slope a1, (right panel) of the specification in (B.243) across 105 simulations.
It reports the theoretical value of these coefficients when based on dollar returns (red dashed
line). Parameter values correspond to those on page 73.

Based on dollar returns the intercept of the relation in (B.243) is exactly zero and the slope is
exactly 1. Figure A7 shows that for approximated rates of return virtually the same relation holds.
This exercise suggests that the relation in (46) also applies to approximated rates of return.

We now repeat this exercise for the relation in (47), the second main relation used in empirical
tests. In particular, when evaluating the relation in (47) we simulate the vector Φ and use the
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expressions for β̂n, βCn and βDn in (B.234), (B.235) and (B.236), respectively. We also need the
unconditional average approximated rate of return on asset n, which satisfies:

E[R̃en] = 2E[D̃n]/E[P̃n]− E[D̃nP̃n]/E[P̃n]2 − 1 (B.244)

=
D

D − γ(τ−1Φ̄Φn + τ−1
ε /N)

−
Φ2
nτ
−1(τ − τF )τ−1

F

(D − γ(τ−1Φ̄Φn + τ−1
ε /N))2

− 1, (B.245)

which we recompute for every draw of Φ. In each simulation we also obtain C2 and D2 based
on (B.232)-(B.233) and E[R̃eM]. We then compute the right-hand side of (47) and estimate the
specification:

E[R̃en] = b0 + b1

(
E[R̃eM]

1− C2 −D2
β̂n +

C2 E[R̃eM]

1− C2 −D2
βCn +

D2 E[R̃eM]

1− C2 −D2
βDn

)
. (B.246)

We report simulated estimates of the intercept, b0, and the slope, b1, in the figure below.
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Figure A8: Verification of Equation (47). This figure plots the histogram of the intercept, b0,
(left panel) and slope b1, (right panel) of the specification in (B.246) across 105 simulations.
It reports the theoretical value of these coefficients when based on dollar returns (red dashed
line). Parameter values correspond to those on page 73.

Based on dollar returns the intercept of the relation in (B.246) is exactly zero and the slope is
exactly 1. Figure A8 shows that for approximated rates of return virtually the same relation holds.
This exercise suggests that the relation in (B.246) also applies to approximated rates of return.

C Appendix (Data)

We describe here the data and the empirical tests that we build in Section 5. We download
the market returns and the risk-free rate at daily frequency from Kenneth French’s data library
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html). We obtain daily
security returns for all the S&P 500 stocks from the Center for Research in Security Prices (CRSP)
database. First, we merge these two databases by date. Then, for each trading day of the sample,
we compute yearly excess returns using rolling windows of 252 trading days (both into the past and
into the future). Finally, to prepare the data for merging with IBES (see below), from the resulting
dataset we keep only the last trading day of each month.
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We download the monthly excess returns of the Betting Against Beta strategy from the AQR
data library (https://www.aqr.com/Insights/Datasets). On the last trading day of each month, we
compute yearly excess returns using rolling windows of 12 months (both into the past and into the
future). We merge this dataset by date with the dataset of market and stock excess returns.

We download analyst forecast data from the Institutional Brokers’ Estimate System database
(I/B/E/S), and merge it with the excess returns database. Before merging, we clean the IBES
database as follows (see also Engelberg et al., 2018): (i) we keep only firms that have above median
coverage according to the field ESTIMID (in our sample, this median is 32); (ii) we select price
targets with 12-month horizon; (iii) in case an institution issues multiple targets over the window
we select the most recent one; (iv) we remove the 1st and 99th percentiles of price target forecasts;
and (v) we compute expected excess returns as in (42). This results in a total of 429,556 expected
excess return forecasts provided by 585 unique forecasters (“forecaster” is defined at the institution
level, ESTIMID) over the period December 1999 to September 2019. Next, on each end-of-month
date t, we go back in time 180 days and collect all the forecasts for each stock, which we align in
time as forecasts at date t. We compute the consensus forecast for each stock as the median across
forecasters. Using a simple regression of future excess returns on consensus excess returns, we
show that indeed forecasts are strongly and positively correlated with future excess returns (slope
coefficient 0.38 with Newey-West adjusted t-stat of 29.98).

In constructing a proxy for expected excess returns in (42) we make several choices. First,
we keep track of Ei[R̃en] at the institution level, as opposed to the analyst level, as an institution
covers many more stocks than an individual analyst does; this ensures that there are multiple
forecasters covering a given pair of stocks, which is critical for the computation of dispersion betas,
βD. Second, choosing the length of the lookback window is not trivial but has little effect on our
conclusions (see point 3 below). Third, targets that are announced when the stock market is closed
are shifted to the closest, preceding business day. An analyst sometimes, although rarely, issues
multiple targets for the same firm on the same day (likely by mistake), in which case we select the
most recent activation time. Finally, we remove all firms that have less than median coverage, all
nonpositive targets, and all expected returns below the first and above the 99th percentile; other
data-cleaning details follow closely the strategy in Engelberg et al. (2018).

To sum up, at the end of the above data-collection operations, we have 190 end-of-month dates
(from Dec. 2002 to Sept. 2018), and for each date we obtain an average of 410 stocks, with the
following data for each stock:

• past 1-year excess return;

• future 1-year excess return;

• expected 1-year excess return by forecaster;

• consensus expected 1-year excess return (median across forecasters).

At each end-of-month date t, we compute the value-weighted consensus expected 1-year excess
return for the market portfolio. We then use the above data to compute three types of betas for
each individual stock n: realized beta β̂n, consensus beta βCn, and dispersion beta βDn . We compute
these betas using a rolling window of 36 months, as follows:

1. For realized betas, we regress past excess returns of each individual stock on past excess
returns on the market;

2. For consensus betas, we regress past consensus expected returns of each individual stock on
past consensus expected returns on the market;
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3. For dispersion betas, our starting point is to collect all individual stock/forecaster expected
excess return forecasts over the past 36 months. We then remove the consensus forecasts from
the individual forecasts and organize the data into a table that has forecasters (ESTIMID) as
rows and individual stocks (cusip) as columns. Very often, we have several ESTIMID/cusip
observations. In such cases, we take the last observation.

There is a tradeoff in choosing the length of the rolling window used for these computations:
using a shorter window yields a sparse covariance matrix (there are not many pairs of stocks
that have enough forecasts to allow computation of covariances); using a longer window con-
taminates the cross-sectional variation in Ei∗[R̃e] with stale observations, e.g., observations
that are more than 3 years old.

Once the table ESTIMID/cusip is built, we also compute average market capitalizations for
all the stocks in the table over the last 36 months. Then, for each pair of stocks in the
table, we compute the covariance among forecasts whenever we have at least two common
forecasters available (the minimum number of forecasts needed to compute a covariance). We
also compute the variance across forecasters for each individual stock. We then group all the
covariances and variances into the matrix of co-beliefs Var[Ei∗[R̃e]] from (39).

To get an idea of the matrix of co-beliefs Var[Ei∗[R̃e]], we provide here a simplified example.
Consider an economy with 2 stocks, n ∈ {a, b} and 3 forecasters, i ∈ {1, 2, 3}. For this
economy, the matrix ESTIMID/cusip is made of two vectors:E1∗[R̃ea] E1∗[R̃eb]

E2∗[R̃ea] E2∗[R̃eb]

E3∗[R̃ea] E3∗[R̃eb]

 . (C.247)

The matrix of co-beliefs Var[Ei∗[R̃e]] is the covariance matrix of these two vectors:[
Var[Ei∗[R̃ea]] Cov[Ei∗[R̃ea],Ei∗[R̃eb]]

Cov[Ei∗[R̃ea],Ei∗[R̃eb]] Var[Ei∗[R̃eb]]

]
. (C.248)

(Notice that covariances—of-diagonal elements—can be computed only if the two stocks have
at least a pair of common forecasters.)

We keep only stocks for which we are able to measure covariance in beliefs with at least 100
other stocks (including itself).

Finally, using the average market capitalizations computed above we obtain the matrix of
asset-specific market weights M. Having obtained Var[Ei∗[R̃e]] and M, the data necessary
to compute βD at the end of each month (Eq. 39) is now complete.

We further winsorize our beta estimates at 0.5% (Bali et al., 2016). The regressions that we
perform in Section 5 are standard and self-explanatory and we do not further elaborate on them
here. Nevertheless, in building our data we have made several assumptions—most of them borrowed
from the existing literature—and it is important to discuss here the robustness of our results. The
results do not change significantly if:

(a) We do not remove the 1st and 99th percentile of analyst forecasts;

(b) We vary the past window of 180 calendar days over which we collect forecasts from 90 days
to 240 days;

86



(c) We compute consensus forecasts as average instead of median;

(d) We use a rolling window for beta computations (realized, consensus, and dispersion betas)
between 24 and 48 months (instead of 36 months);

(e) We do not winsorize our beta estimates;

(f) We use different approaches for computing dispersion betas over the same 36 month rolling
window. Dispersion betas are new to the literature, and we have experimented several ap-
proaches, always with similar results. In particular, results do not change substantially if:

i. We change the threshold of 100 minimal covariances (see above) between 50 and 250.

ii. When dealing with duplicates (ESTIMID/cusip), we take an average instead of the last
observation, for forecasts or for market capitalization.

iii. We require more than two common forecasters when computing covariances for disper-
sion betas (that is, between 2 and 10 forecasters).

D List of Symbols

0 N × 1 N -dimensional vector of zeros
1 N × 1 N -dimensional vector of ones
D Unconditional mean of assets’ payoffs

D̃ N × 1 ≡ 1D + ΦF̃ + ε̃, assets’ payoffs
e1 = 1/τ + 1/τε, largest eigenvalue of matrix Σ

F̃ Unobserved fundamental

F i {Ṽ i, P̃} Information set of investor i ∈ [0, 1]

G̃ N × 1 Public signals (Section 4.2)
g̃ N × 1 Noise in public signals (Section 4.2)
I N ×N Identity matrix of dimension N
m̃ N × 1 Liquidity shocks (demand or liquidity traders)
M N × 1 Market portfolio
N Number of risky assets
N Normal distribution

P̃ N × 1 ≡ 1D + ξ0M + λF̃ + ξm̃, equilibrium prices

R̃e N × 1 ≡ D̃− P̃, dollar excess returns
T N × 1 Investors’ tangency portfolio

T̂ N × 1 Empiricist’s tangency portfolio
ṽi Noise in the private signal of investor i ∈ [0, 1]

Ṽ i ≡ F̃ + ṽi, private signal of investor i ∈ [0, 1]

wi = Σ−1 Ei[R̃e]/γ, optimal portfolio of investor i ∈ [0, 1]

Ẑ N × 1 Empiricist’s zero-beta portfolio
β N × 1 True betas (Corollary 2.1)

β̂ N × 1 Empiricist’s betas (Eq. 17)
βC N × 1 Consensus betas (Proposition 7)
βD N × 1 Dispersion betas (Proposition 7)
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C2 Fraction in the variation of realized returns of the market explained by variation
in consensus beliefs

D2 Fraction in the variation of realized returns of the market explained by disper-
sion in beliefs across investors

δ CAPM distortion
ε̃ N × 1 Idiosyncratic shocks to assets’ payoffs (residual uncertainty)

Φ N × 1 Vector of exposures of assets’ payoffs to the fundamental F̃
Φ̄ Average of Φ
γ Coefficient of absolute risk aversion

λ N × 1 Exposure of prices to the fundamental factor F̃

µ N × 1 ≡ E[R̃e], unconditional expected excess returns

µM ≡M′ E[R̃e], unconditional market expected excess return

µ
Ẑ

Unconditional expected excess return of empiricist’s zero-beta portfolio Ẑ
Σ N ×N = ΦΦ′/τ + I/τε, investors’ variance matrix of future excess returns (Eq. 11)
σ2

M = M′ΣM = Φ̄2/τ + 1/(Nτε), investors’ variance of market’s future excess
returns

Σ̂ N ×N Empiricist’s variance matrix of realized excess returns (Lemma 1)

σ̂2
M = M′Σ̂M, empiricist’s variance of the realized excess returns on the market
ξ0 N ×N Exposure of prices to the market portfolio M
ξ N ×N Exposure of prices to liquidity shocks m̃

τF Precision of the fundamental F̃
τε Precision of the idiosyncratic shocks
τg Precision of noise in public signals
τv Precision of noise in private signals
τm Precision of the supply shocks

τ ≡ 1/Var[F̃ |F i], precision of F̃ conditional on the information set F i of investor
i ∈ [0, 1]

τP Price informativeness
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