
Information Percolation, Momentum, and Reversal

Banque de France, Mars 2014

Time-Series Momentum and Reversal: Evidence

T-Statistic by Month, All Asset Classes

SOURCE: MOSKOWITZ, OOI, AND PEDERSEN (2012)

Behavioral Theories of Momentum and Reversal

	Momentum	Reversal
BARBERIS, SHLEIFER,	Conservatism	Representativeness
and Vishny (1998)	(underreaction)	heuristic (overreaction)
Daniel, Hirshleifer,	Biased self-attribution	Overconfidence
and Subrahmanyam	(continuing overreaction)	(overreaction)
(1998)		
Hong and Stein	Newswatchers	Momentum Traders
(1999)	(underreaction)	(overreaction)

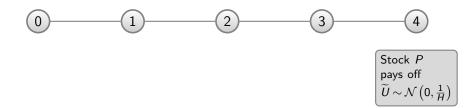
Behavioral Theories of Momentum and Reversal

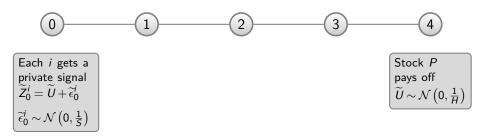
	Momentum	Reversal
BARBERIS, SHLEIFER,	Conservatism	Representativeness
and Vishny (1998)	(underreaction)	heuristic (overreaction)
Daniel, Hirshleifer,	Biased self-attribution	Overconfidence
and Subrahmanyam	(continuing overreaction)	(overreaction)
(1998)		
Hong and Stein	Newswatchers	Momentum Traders
(1999)	(underreaction)	(overreaction)

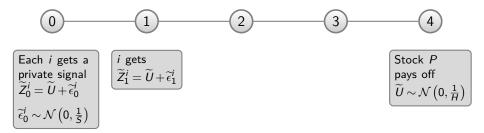
Challenges (Moskowitz, Ooi, and Pedersen, 2012):

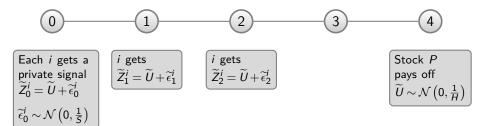
- Markets vary widely in terms of type of investors, yet the pattern of returns is the same
- No apparent link between measures of investor sentiment and time series momentum

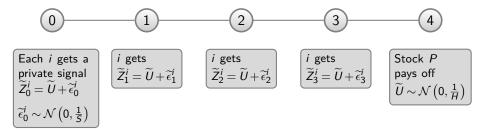
- Momentum traders
- Contrarians

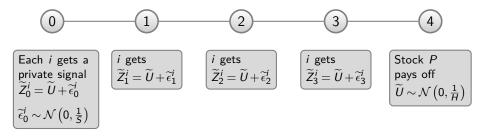

- Momentum traders
- Contrarians
- Partial information aggregation (underreaction)
 - The information diffuses through word-of-mouth communication (Duffie and Manso, 2007)
 - Prices play an informational role (GROSSMAN AND STIGLITZ, 1980)

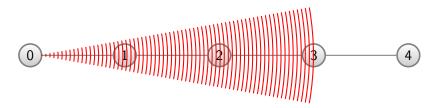

- Momentum traders
- Contrarians
- Partial information aggregation (underreaction)
 - The information diffuses through word-of-mouth communication (Duffie and Manso, 2007)
 - Prices play an informational role (GROSSMAN AND STIGLITZ, 1980)
- Momentum trading is profitable and yet momentum persists


- Momentum traders
- Contrarians
- Partial information aggregation (underreaction)
 - The information diffuses through word-of-mouth communication (Duffie and Manso, 2007)
 - Prices play an informational role (GROSSMAN AND STIGLITZ, 1980)
- Momentum trading is profitable and yet momentum persists
- Rumor spreads can generate reversals (overreaction)


There is a continuum $i \in [0,1]$ of investors with CARA= $\frac{1}{\gamma}$ utility

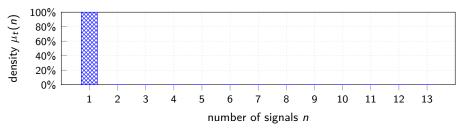






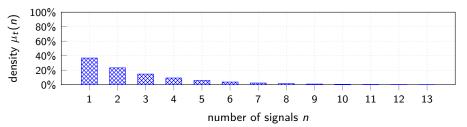


Noisy supply $\widetilde{X}_t \sim \mathcal{N}(0, \frac{1}{\Phi})$

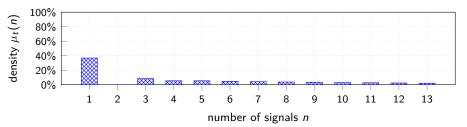


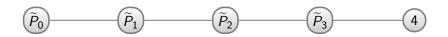


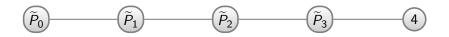
Agents meet and share their initial signal with intensity λ :

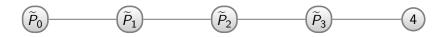


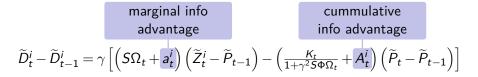

Agents meet and share their initial signal with intensity λ :

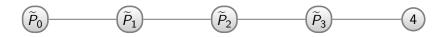



Agents meet and share their initial signal with intensity λ :

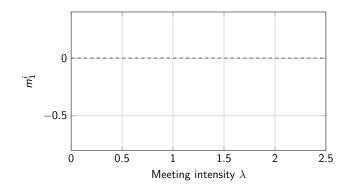


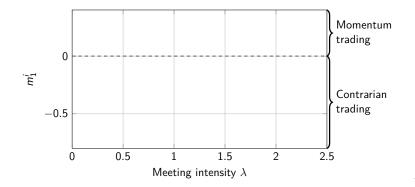

Agents meet and share their initial signal with intensity λ :

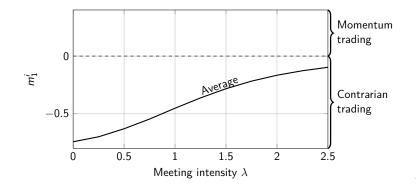


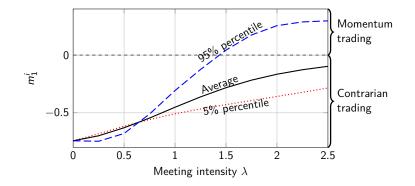


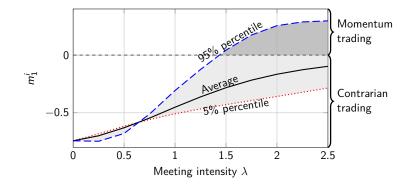
$$\widetilde{P}_t = \frac{K_t - H}{K_t} \widetilde{U} - \sum_{j=0}^t \frac{1 + \gamma^2 S \Omega_j \Phi}{\gamma K_t} \widetilde{X}_j$$

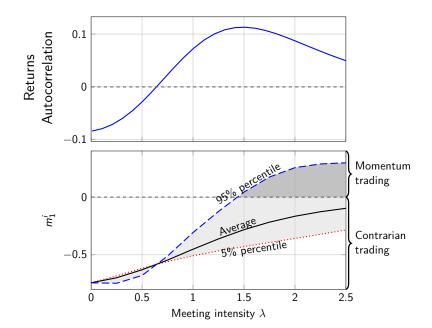

$$\widetilde{P}_t = \frac{K_t - H}{K_t} \widetilde{U} - \sum_{j=0}^t \frac{1 + \gamma^2 S \Omega_j \Phi}{\gamma K_t} \widetilde{X}_j$$

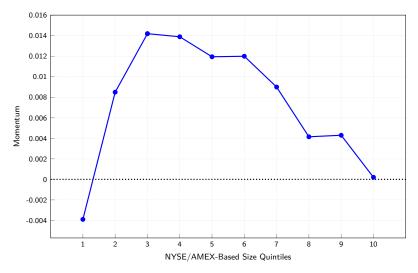




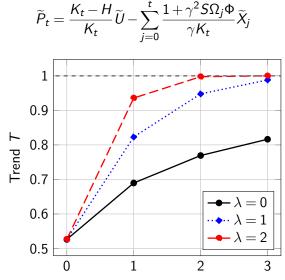

$$\widetilde{P}_t = \frac{K_t - H}{K_t} \widetilde{U} - \sum_{j=0}^t \frac{1 + \gamma^2 S \Omega_j \Phi}{\gamma K_t} \widetilde{X}_j$$


$$\begin{split} & \begin{array}{c} & \begin{array}{c} \text{marginal info} & \text{cummulative} \\ \text{info advantage} & \text{info advantage} \\ & \widetilde{D}_{t}^{i} - \widetilde{D}_{t-1}^{i} = \gamma \left[\left(S\Omega_{t} + \boldsymbol{a}_{t}^{i} \right) \left(\widetilde{Z}_{t}^{i} - \widetilde{P}_{t-1} \right) - \left(\frac{\kappa_{t}}{1 + \gamma^{2} S \Phi \Omega_{t}} + \boldsymbol{A}_{t}^{i} \right) \left(\widetilde{P}_{t} - \widetilde{P}_{t-1} \right) \right] \\ & \\ & \mathbb{E} \left[\widetilde{D}_{t}^{i} - \widetilde{D}_{t-1}^{i} \middle| \widetilde{P}_{t} - \widetilde{P}_{t-1} \right] = m_{t}^{i} \left(\widetilde{P}_{t} - \widetilde{P}_{t-1} \right) \end{split}$$





Relation Between Size and Momentum

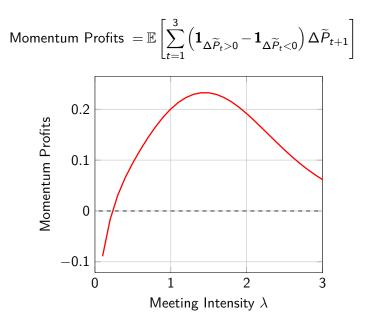


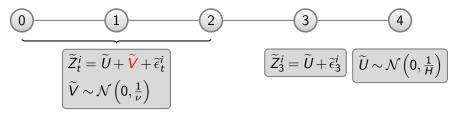
Source: Hong, Lim, and Stein (2000)

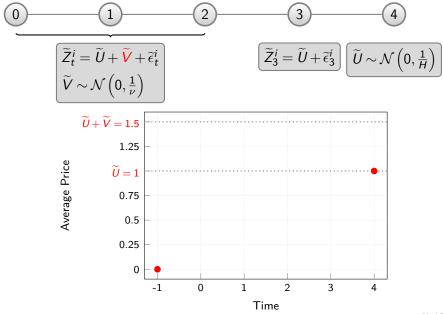
Market Learning and Momentum

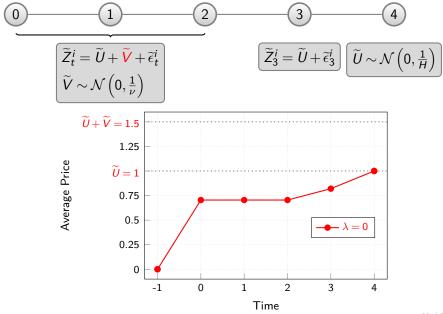
$$\widetilde{P}_t = \frac{K_t - H}{K_t} \widetilde{U} - \sum_{j=0}^t \frac{1 + \gamma^2 S \Omega_j \Phi}{\gamma K_t} \widetilde{X}_j$$

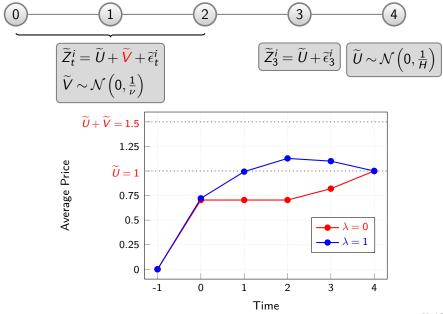
Market Learning and Momentum

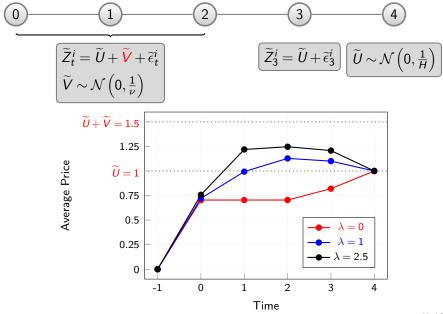


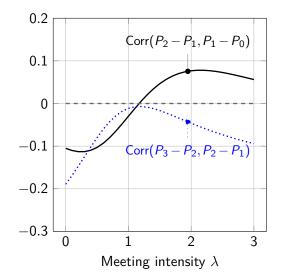

Time t

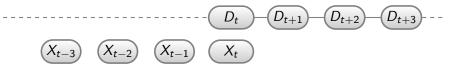

Momentum Profits

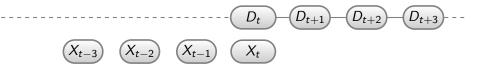

$$\text{Momentum Profits } = \mathbb{E}\left[\sum_{t=1}^{3} \left(\mathbf{1}_{\Delta \widetilde{P}_{t} > 0} - \mathbf{1}_{\Delta \widetilde{P}_{t} < 0}\right) \Delta \widetilde{P}_{t+1}\right]$$

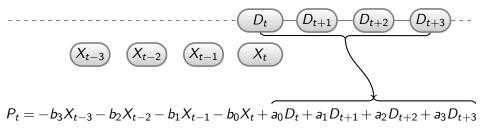

Momentum Profits

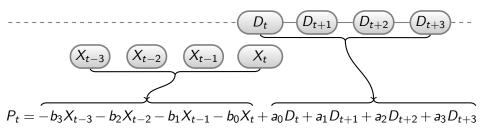


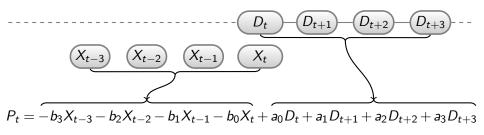












 $P_{t} = -b_{3}X_{t-3} - b_{2}X_{t-2} - b_{1}X_{t-1} - b_{0}X_{t} + a_{0}D_{t} + a_{1}D_{t+1} + a_{2}D_{t+2} + a_{3}D_{t+3}$

- $Cov(P_{t+2} P_{t+1}, P_{t+1} P_t)$ is generally amplified by information percolation
- For some calibrations, $Cov(P_{t+2} P_{t+1}, P_{t+1} P_t)$ can turn from negative (reversals) to positive (momentum)
- Intuition about momentum/contrarian trading holds in this case as well

Further Questions

- Multiple asset setting (MOSKOWITZ, OOI, AND PEDERSEN (2012) show that correlations of time series momentum strategies across asset classes are larger than the correlations of the asset classes themselves)
- Endogenous meeting intensity (explaining momentum in response to fundamental impulses such as earnings announcements or analysts' forecast revisions)
- Truth telling, influence of an investor on others (talking about winners or losers, thought contagion)

References I

- Barberis, N., A. Shleifer, and R. Vishny (1998, September). A model of investor sentiment. Journal of Financial Economics 49(3), 307–343.
- Daniel, K., D. Hirshleifer, and A. Subrahmanyam (1998, December). Investor psychology and security market under- and overreactions. *Journal of Finance* 53(6), 1839–1885.
- Duffie, D. and G. Manso (2007, May). Information percolation in large markets. *American Economic Review* 97(2), 203–209.
- Grossman, S. J. and J. E. Stiglitz (1980). On the impossibility of informationally efficient markets. *The American Economic Review 70*(3), pp. 393–408.
- Hong, H., T. Lim, and J. C. Stein (2000). Bad news travels slowly: Size, analyst coverage, and the profitability of momentum strategies. *The Journal of Finance* 55(1), pp. 265–295.
- Hong, H. and J. C. Stein (1999, December). A unified theory of underreaction, momentum trading, and overreaction in asset markets. *Journal of Finance* 54(6), 2143–2184.
- Moskowitz, T. J., Y. H. Ooi, and L. H. Pedersen (2012). Time series momentum. Journal of Financial Economics 104(2), 228–250.