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1 Introduction

One of the most pervasive facts in finance is price momentum. It is documented every-

where, both across and within countries and asset classes. It appears in the cross-section

of returns, where it refers to securities’ relative performance, but also in the time-series of

returns, where it refers to a security’s own performance.1 Both forms of momentum, “cross-

sectional momentum” and “time-series momentum,” are followed by a phase of reversal over

longer horizons. Time-series momentum and reversal are the focus of this paper.

Reconciling the existence of short-term momentum and long-term reversal with a rational

explanation is challenging. Rational investors can easily detect predictable patterns and

trade on them, thereby eliminating them. Leading theories of momentum and reversal are

therefore mostly behavioral.2 But the weak link between momentum and various measures

of investor sentiment (Moskowitz et al., 2012) indicates that behavioral models have yet

to identify the main source driving momentum and reversal. This paper provides a joint

explanation for time-series momentum and reversal in which momentum arises and persists

in the absence of behavioral biases.

We use a rational-expectations framework (Grossman and Stiglitz, 1980) to derive a

condition on the “shape” of information arrival that is necessary for momentum to exist. Our

building block is an economy in which a large population of risk-averse agents trade a risky

asset over several rounds. Investors observe a flow of private information and a flow of public

information conveyed by equilibrium prices. We introduce the concept of precision elasticity,

which measures how average market precision responds to a change in the average precision

of private information. Momentum only obtains when precision elasticity is greater than one,

1See Rouwenhorst (1998), Asness, Moskowitz, and Pedersen (2013), Jegadeesh and Titman (1993), and
Moskowitz, Ooi, and Pedersen (2012). Cross-sectional and time-series momentum are related, but distinct
empirical anomalies. Importantly, Moskowitz et al. (2012) show that time-series momentum is not fully
explained by cross-sectional momentum.

2These theories propose various behavioral biases to generate momentum and reversal: “momentum
traders,” “conservative investors,” or “attribution bias” generate momentum, whereas “newswatchers,” “rep-
resentativeness heuristic,” or “overconfidence” generate reversals. See Barberis, Shleifer, and Vishny (1998),
Daniel, Hirshleifer, and Subrahmanyam (1998), and Hong and Stein (1999).
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so that average market precision increases faster than the precision of private information

over time. To enforce this condition, private information must flow at an increasing rate.

We show that momentum never obtains when the flow of private information is linear, a

customary assumption in the literature.

Among the possible mechanisms that cause information to flow at an increasing rate, we

focus on word-of-mouth communication. In the context of a rational-expectations model,

word-of-mouth communication represents an additional channel of information acquisition.

We model word-of-mouth communication through the information percolation theory (Duffie

and Manso, 2007), whereby agents exchange information in random, bilateral private meet-

ings. Investors therefore trade in centralized markets, but also search for each other’s private

information—trading is centralized, but information exchange is partially decentralized.

When embedded into a centralized trading model, information percolation has two ef-

fects. First, the percolation mechanism dictates how average market precision evolves over

time. As agents accumulate information through random meetings, the average precision

of information in the economy increases at an accelerated—exponential—rate. Beyond a

certain threshold of the intensity at which agents meet and talk, this exponential increase

in precision generates short-term momentum and long-term reversal. We fully characterize

this critical threshold of the meeting intensity.

Second, the percolation mechanism dictates how individual precisions are distributed

across agents. Through the meeting process, agents acquire heterogeneous amounts of in-

formation, which causes them to implement different trading strategies. We first show that

the “average agent” in our model is neutral to the market—she is not a momentum trader,

nor a contrarian. It follows that, without information percolation, all investors in our model

are market neutral. Information percolation, instead, allows agents’ precision to differ from

average market precision. In this case, the distance between agents’ precision and average

market precision determines agents’ strategies. Agents who are better informed than the

average agent are contrarians, while others are momentum traders. Although everyone (in-
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cluding the econometrician) observes momentum, better informed investors trade against it,

thus allowing momentum to persist in the presence of momentum traders.

We argue that word-of-mouth communication is a plausible mechanism, as it produces

several predictions that are supported by empirical evidence. Our model can simultaneously

generate short-term momentum and long-term reversal (Moskowitz et al., 2012) and a hump-

shaped pattern of momentum, similar to that documented by Hong, Lim, and Stein (2000).

Moreover, our model is consistent with the empirical finding that stock returns exhibit

strong reversals at shorter horizons (Jegadeesh, 1990; Lehmann, 1990) and with empirically

documented trading strategies (Grinblatt, Jostova, Petrasek, and Philipov, 2016).

We extend our model along three dimensions. A first extension is based on the idea

that word-of-mouth communication is a natural propagator of rumors (Shiller, 2000). When

private information contains a rumor, this rumor circulates among investors, who are aware

of its existence but cannot observe it, creating a disconnect between the stock price and the

fundamental. Ultimately, the rumor subsides, leading to a price reversal. Second, while we

derive our results in a model with a finite horizon, we show that they carry over to a fully

dynamic setup. In particular, momentum obtains whether the asset pays a single liquidating

dividend or an infinite stream of dividends. Finally, in the Appendix (Section C.4), we

introduce a large, unconstrained, risk-neutral arbitrageur who could conceivably eliminate

momentum. We find that this is not the case—the arbitrageur must also consider that her

trades move prices adversely.

Among the large theoretical literature on momentum, leading rational theories are based

on growth-options models (Berk, Green, and Naik, 1999; Johnson, 2002; Sagi and Seasholes,

2007). Our theory abstracts from firm decisions and directly builds on information trans-

mission as a driver of investors’ decisions and thereby of stock returns.3 Previous rational-

3We believe that private exchange of information is linked to momentum for several reasons. First,
private information is an important driver of stock price variations (French and Roll, 1986) and provides an
incentive for investors to implement heterogeneous trading strategies. Public news, instead, do not predict
prices (Roll, 1988), nor do they explain price changes (Chan, Fong, Kho, and Stulz, 1996) or generate
trading heterogeneity (Mitchell and Mulherin, 1994; Gropp and Kadareja, 2012; Tetlock, 2010; Koudijs,
2016). Second, word-of-mouth communication is an innate channel of information processing, “a central part
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expectations models (Holden and Subrahmanyam, 2002; Cespa and Vives, 2012) suggest that

an increase in information precision generates momentum. Our model offers a unified ex-

planation for short-term momentum, long-term reversal, and the persistence of momentum,

despite the presence of investors who profitably trade on it. Albuquerque and Miao (2014)

show that “advance information” produces momentum in a dynamic model. Importantly,

our model delivers opposite conclusions regarding trading strategies: in Albuquerque and

Miao (2014) informed investors are contrarians and uninformed investors are momentum

traders, a difference that could be used to distinguish both theories empirically. As in Biais,

Bossaerts, and Spatt (2010), investors in our model follow different investment strategies and

extract information from prices. Our focus, however, is on the role that word-of-mouth com-

munication plays in generating momentum and reversal.4 We adopt the definition of “price

drift,” as well as portfolio decompositions from Banerjee, Kaniel, and Kremer (2009), who

show that stock returns can exhibit momentum when investors have higher-order differences

of opinions.

Finally, among the well-established behavioral explanations of momentum, Barberis et al.

(1998), Daniel et al. (1998), and Hong and Stein (1999) are related to this paper. Hong

and Stein (1999) show that the slow diffusion of information leads to underreaction. Our

theory differs in two key respects. First, we show that learning from prices is instrumental

in generating momentum in our model, whereas momentum does not obtain in Hong and

Stein (1999) if investors learn from prices. Second, we do not assume that investors follow

different trading strategies, but rather let investors optimally decide whether they want to be

of economic life” (Stein, 2008), and plays an important role in stock market fluctuations and in investors’
decisions (Shiller, 2000; Shiller and Pound, 1989; Grinblatt and Keloharju, 2001; Hong, Kubik, and Stein,
2004; Feng and Seasholes, 2004; Ivkovic and Weisbenner, 2005; Brown, Ivkovic, Smith, and Weisbenner,
2008; Shive, 2010; Cohen, Frazzini, and Malloy, 2008). Furthermore, evidence suggests that word-of-mouth
communication is related to momentum: momentum profits are decreasing in analyst coverage, supporting
the notion that momentum is caused by slow information diffusion (Hong et al., 2000; Hou and Moskowitz,
2005; Verardo, 2009).

4Biais et al. (2010) build a dynamic model in which momentum may arise depending on the relative
persistence of the fundamental and noise trading risk. Instead, in our model, persistence arises endogenously
through the acceleration of information through word-of-mouth communication among investors. Other
papers related to momentum, but unrelated to social interactions and information diffusion, include Vayanos
and Woolley (2013), Makarov and Rytchkov (2012), and Wang (1993).
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momentum traders or contrarians. Barberis et al. (1998) and Daniel et al. (1998) introduce

two behavioral biases, one of which explains momentum and the other reversal. Our model

abstracts from behavioral biases and simultaneously explains momentum and reversal solely

based on information percolation. Our work complements existing behavioral theories, as

information percolation and behavioral biases could reinforce each other.

The remainder of the paper is organized as follows. Section 2 presents and solves the

model, Sections 3 and 4 contain the main results on momentum and momentum trading,

Section 5 presents extensions of the model, and Section 6 concludes. All proofs are provided

in the Appendix.

2 Information percolation in centralized markets

In this section, we build a model of centralized trading (a noisy rational-expectations

equilibrium) with decentralized information gathering (information percolation). We start

by describing the information diffusion mechanism.

2.1. Information percolation

Consider an economy with T trading dates, indexed by t = 0, 1, ..., T − 1, and a final

liquidation date, T . The economy is populated by a continuum of investors indexed by

i ∈ [0, 1]. There is a risky security with payoff Ũ realized at the liquidation date. The

payoff of this security is unobservable and follows a normal distribution with zero mean and

precision H.5

Immediately prior to trading session t = 0, each investor i obtains a private signal about

the asset payoff, z̃i:

z̃i = Ũ + ε̃i, (1)

5We refer to the precision of a random variable as the inverse of its variance. The zero mean assumption
is without loss of generality.
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where ε̃i is distributed normally and independently of Ũ , has zero mean, precision S, and

is independent of ε̃k if k 6= i. The precision of individual private signals is the same across

investors.

We now introduce a mechanism that causes information to flow at an increasing rate

and information precision to become heterogeneous across agents. To do so, we use the

information percolation theory (Duffie, Malamud, and Manso, 2009). From date t = 0

onward, agents meet each other randomly and share their information. Meetings take place

continuously at Poisson arrival times with intensity λ—the only parameter we add to this

standard equilibrium model.

When agents meet, they exchange their initial signal and other signals that they received

during previous meetings (if any). This assumption is simply a matter of convention, since

incomplete exchange of information can always be incorporated by scaling the meeting in-

tensity.6 Moreover, agents are infinitesimally small and therefore are indifferent between

telling the truth or lying—if they attempt to lie, they will not be able to move prices, and

therefore will not benefit from their lies. For this reason, we assume that they tell the truth.7

This assumption along with the normality of individual signals imply that an agent’s pri-

vate information is completely summarized by two statistics: her total number of signals

and her posterior expectation of the fundamental. These two statistics are sufficient for the

information agents actually exchange when they meet and “talk.”

To illustrate how information percolation works, pick two agents—say D and J—out

of the crowd. D and J start with one signal. Suppose the first time they meet someone,

6A stylized way of incorporating incomplete exchange of information is to assume that agents share
nothing with probability p or share their entire set of signals with probability 1−p. In this case, the meeting
intensity can be reinterpreted as λ̂ ≡ λ(1 − p). While incomplete exchange of signals dampens the effect
of percolation, the increase in the cross-sectional average number of signals remains exponential (as we will
show shortly in Proposition 1). This exponential increase is the crucial feature which leads to our main
results.

7While infinitesimal agents do not have a strict incentive to tell the truth in centralized markets, a
large but finite number of agents may. Possible incentives to tell the truth include, for instance, short-
term investment horizons (Schmidt, 2015), reputation (Benabou and Laroque, 1992), complementarity in
information sets (Stein, 2008), the presence of highly connected agents in the market (Acemoglu, Bimpikis,
and Ozdaglar, 2014), or coordination motives (Abreu and Brunnermeier, 2002).
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they meet each other. They exchange their signals truthfully and therefore end up with two

signals after the meeting. Suppose further that D meets someone else, say M , who also has

two signals (i.e., M also met someone before). Since D and M are part of an infinite crowd

of agents, the person that M has met cannot be J , it must be someone else, i.e., meetings do

not overlap.8 Hence, after the meeting, D and M both part with four signals each. Signals

keep on adding up randomly in the exact same way for every agent in the economy.

Random meetings introduce heterogeneity in information precisions: while agents start

off holding one signal, they end up with different numbers of signals as soon as they meet

and talk. This heterogeneity is captured by the cross-sectional distribution of the number

of additional signals, πt. Formally, between trading dates t − 1 and t, each agent i collects

a number ωit ∈ N of signals, excluding the signals she received up to and including time

t − 1.9 An important statistic in this economy is the cross-sectional average of the number

of additional signals at time t:

Ωt ≡
∑
n∈N

πt (n)n. (2)

Since agents are initially endowed with a single signal, the initial distribution of signals

has 100% probability mass at n = 1, and therefore ωi0 = Ω0 = 1, ∀i ∈ [0, 1]. As information

diffuses (at dates t > 0), the distribution πt takes values over N. For example, an agent

who did not meet anyone between t − 1 and t is of type n = 0; an agent who collected ten

signals between t− 1 and t is of type n = 10, and so on. Following Duffie et al. (2009), the

8In other words, there is a zero probability that the set of agents that D has met before time t overlaps
with the set of agents that J has met before time t. This eliminates the concern that we are introducing
persuasion bias in the terms of Demarzo, Vayanos, and Zwiebel (2003): an agent might share her signals to
another agent who passes those signals at subsequent meetings to other agents and maybe the same signals
will come back to the first agent—without her knowledge. The infinite mass of agents prevents this double
accounting of signals to happen, since the probability for an agent to meet in the future precisely those
agents who got her signals is zero. Thus, for every pair (i, j) of agents, their signal sets are always disjoint
prior to their meeting.

9Notice that both the distribution over the total number of signals and the distribution over additional
signals may be equivalently used; we choose to use distribution of additional signals because it helps us
better separate and understand the effects of information percolation on the equilibrium price and trading
strategies.
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cross-sectional distribution of the number of additional signals satisfies

d

dt
πt(n) = λπt ∗ µt − λπt = λ

n−1∑
m=1

πt(n−m)µt(m)− λπt(n), (3)

where “∗” denotes the discrete convolution product and µ represents the cross-sectional

distribution of the total number of signals, which we define in Appendix A.1. The summation

term on the right-hand side in (3) represents the rate at which new agents of a given type

are created, whereas the second term in (3) captures the rate at which agents leave a given

type.

This setup leads to a closed-form solution for both the cross-sectional distribution πt and

the cross-sectional average of the number of additional signals Ωt.

Proposition 1. At time t ∈ {1, 2, ..., T − 1}, the probability density function πt over the

additional number of signals collected by agents between t− 1 and t is given by

πt(n) =


e−λ if n = 0

e−nλt(eλt − 1)n−1(1− e−λ) if n ≥ 1.

(4)

The cross-sectional average of the number of additional signals at time t is given by

Ωt = e(t−1)λ(eλ − 1). (5)

Fig. 1 illustrates the evolution of the cross-sectional distribution of both the total number

of signals µt(n) (the left-hand side) and the additional number of signals πt(n) (the right-

hand side). The meeting intensity is set at λ = 1 and each distribution is depicted at times

t = 1 and t = 2. The distribution of the total number of signals is defined over N∗, whereas

the distribution of the additional number of signals is defined over N. For both distributions,

the average precision and the precision heterogeneity change over time. First, the mass of

the distributions gradually shifts towards larger number of signals. As a result, the average
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number of signals, and therefore the average precision, increases over time. Second, while

both distributions are initially concentrated at n = 1 (each agent starts off with one signal),

they rapidly spread to reflect the growing heterogeneity in precision across the population.

This heterogeneity itself varies through time.10

[insert Figure 1 here]

2.2. The economy

We now describe the structure of the economy. The main difference with a standard

rational-expectations model (Grossman and Stiglitz, 1980) is that we allow the precision of

information to increase over time and to differ across agents.

Investors have exponential utility with common coefficient of absolute risk aversion 1/τ ,

where τ denotes investors’ risk tolerance. The asset payoff is realized and consumption takes

place at time t = T , while trading takes place at times t = 0, 1, ..., T − 1. Each investor i is

endowed at time t = 0 with a quantity of the risky asset represented by X i. At each trading

date, investor i chooses a position in the risky asset, D̃i
t, to maximize her expected utility of

terminal wealth, denoted by W̃ i
T :

max
D̃it

E
[
e−

1
τ
W̃ i
T

∣∣∣F it] ,
subject to W̃ i

T = X iP̃0 +
T−2∑
t=0

[
D̃i
t

(
P̃t+1 − P̃t

)]
+ D̃i

T−1

(
Ũ − P̃T−1

)
.

(6)

The information set of investor i at time t, F it , contains private signals collected through

information percolation, and prices (endogenously determined in equilibrium and denoted

by P̃t) as public signals.11

10Other aspects are worth mentioning. First, the two distributions have identical shapes at t = 1, although
their respective support differs. Second, the cross-sectional distribution of additional number of signals
assigns the same probability mass at n = 0 at all times, as shown in (4); these are investors who did not
meet anyone during the last period and consequently end up with zero additional signals.

11Our model bears similarities with Brennan and Cao (1997), with the main difference that it embeds
an information diffusion mechanism. To keep the setup comparable to leading momentum theories, such as
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The aggregate per capita supply of the risky asset at time t = 0, X̃0 =
∫ 1

0
X idi, is

normally and independently distributed with zero mean and precision Φ. New liquidity

traders enter the market in trading sessions t = 1, ..., T − 1. The incremental net supply of

liquidity traders, X̃t, is normally distributed with zero mean and precision Φ.

The noisy supply prevents asset prices from fully revealing the final payoff Ũ . We adopt

a random walk specification for the noisy supply, i.e., the total supply at time t is
∑t

j=0 X̃j.
12

Under this specification and in the absence of additional private information at dates t ≥ 1,

prices are martingales. As a result, any pattern in the correlation of returns depends only

on the pattern of private information arrival. That is, our setup allows us to isolate the link

between the diffusion of information and the serial correlation of returns.13

The solution method for finding a linear, partially revealing rational-expectations equi-

librium is standard and is relegated to Appendix A.2. We describe the equilibrium below.

2.3. Equilibrium

We first introduce notation and terminology for further use. At each date t, agent i

receives ωit new signals. From Gaussian theory, these signals are equivalent to a single signal

with precision Sωit. We denote this signal by Z̃i
t :

Z̃i
t = Ũ + εit, where εit ≡

 1

ωit

ωit∑
j=1

ε̃j

 ∼ N

(
0,

1

Sωit

)
. (7)

Daniel et al. (1998) and Hong and Stein (1999), we focus on a single asset economy, featuring several trading
dates and a final liquidation date.

12Equivalently, we assume that increments in the noisy supply are independent and identically distributed,
which is likely to happen when time between consecutive trading dates is small.

13Other specifications, such as an AR(1) noise trading process, give qualitatively similar results, but
complicate unnecessarily the analysis.
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The conditional precision of agent i about the final payoff Ũ , given all available information,

is denoted by Ki
t ,

Ki
t ≡ Var−1

[
Ũ
∣∣∣F it] , (8)

whereas the cross-sectional average of conditional precisions over the entire population of

agents is denoted by Kt,

Kt ≡
∑
n∈N

Ki
t(n)πt(n). (9)

Throughout the paper, we will often refer to the “average agent” as the agent whose

precision of information equals the average precision at time t, Kt. Note that, without

information percolation, the average agent represents any agent in the economy, because

Ki
t = Kt, ∀i, t. Finally, we refer to the normalized price signals as

Q̃t ≡ Ũ − 1

τSΩt

X̃t. (10)

Observing the signals {Q̃j}tj=0 or past prices {P̃j}tj=0 generates equivalent information sets.

These information sets represent the information available to an econometrician at time t.

We denote the precision of the econometrician, conditional on any of these two common

information sets, by Kc
t .

Theorem 2.1 describes the risky asset prices at each date in a noisy rational-expectations

equilibrium with information percolation.

Theorem 2.1. (Equilibrium) There exists a partially revealing rational-expectations equi-

librium in the T trading session economy in which the price of the risky asset, P̃t, for
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t = 0, ..., T − 1, is given by:

P̃t =
Kt −H
Kt

Ũ −
t∑

j=0

1 + τ 2SΩjΦ

τKt

X̃j. (11)

The individual and average market precisions, Ki
t and Kt, are given by

Ki
t = H +

t∑
j=0

Sωij +
t∑

j=0

τ 2S2Ω2
jΦ, (12)

Kt = H +
t∑

j=0

SΩj +
t∑

j=0

τ 2S2Ω2
jΦ, (13)

and the precision of the econometrician is given by

Kc
t = H +

t∑
j=0

τ 2S2Ω2
jΦ. (14)

The individual asset demands, D̃i
t, are given by

D̃i
t = τKi

t

(
E[Ũ |F it ]− P̃t

)
(15)

= τ

 S
t∑

j=0

ωijZ̃
i
j︸ ︷︷ ︸

Private information

+ τ 2S2Φ
t∑

j=0

Ω2
jQ̃j︸ ︷︷ ︸

Public information

−Ki
t P̃t

 . (16)

The asset price in Eq. (11) is a linear function of the final payoff and supply shocks, as

is customary in the noisy rational-expectations literature. Following the interpretation in

Wang (1993), the second term in (11) is a discount on the price that compensates informed

investors for bearing noise trading risk: as noise traders sell (i.e., the supply increases),

the price decreases through the discount, which generates a higher risk premium and thus

induces investors to hold more stocks. The size of this risk premium is inversely related to

average market precision, because higher information precision reduces the risk of holding
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the asset.14

Setting λ equal to zero we obtain an economy in which average precision is constant

(Ω0 = 1, Ωt = 0 ∀t ≥ 1) and agents have identical precisions (Ki
t = Kt, ∀i, t). This

economy serves as our benchmark model. In contrast, when λ > 0, the average precision

increases exponentially over time, as can be seen by replacing Ωj = e(j−1)λ(eλ−1) in (13), and

agents become heterogeneous with respect to their information precision. Finally, Eq. (16)

shows how agents build their demands based on private and public information, a standard

decomposition in the noisy rational-expectations literature (e.g., Brennan and Cao, 1997).

3 Momentum and reversal

In this section we analyze the implications of the increase in average precision caused by

information percolation for the serial correlation of returns. In the benchmark model (λ = 0),

the average precision is constant over time and prices are martingales. Return predictability

arises only if agents gather new private information over time (λ > 0). In this case, we derive

a general condition on the “shape of learning” that is necessary for momentum to arise in a

rational-expectations model. We then describe how information percolation can enforce this

condition beyond a certain threshold of the meeting intensity, which we fully characterize.

We finally relate our theoretical predictions to existing empirical evidence.

3.1. Predictability of returns

The following proposition establishes the condition under which future returns are pre-

dictable.

14This negative relationship is consistent with empirical findings. In particular, there is consensus in the
accounting literature that increasing the precision of information reflected in prices decreases the cost of
capital (Lambert, Leuz, and Verrecchia, 2011). See also Botosan, Plumlee, and Xie (2004), Francis, LaFond,
Olsson, and Schipper (2005), and Amir and Levi (2014).
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Proposition 2. Agent i’s expectation regarding future returns conditional on F it satisfies:

E
[
P̃t+1 − P̃t

∣∣∣F it] =
Kt+1 −Kt

Kt+1︸ ︷︷ ︸
≥0

(
E
[
Ũ
∣∣∣F it]− P̃t) . (17)

Returns are predictable only if average market precision is strictly increasing over time.

The first term in Eq. (17) represents the relative evolution of average market precision

K over time. Clearly, if average market precision is constant, prices are martingales and

no agent, even perfectly informed, can predict future returns. If, instead, average market

precision increases over time, Eq. (17) shows that an agent can predict future returns by

comparing the current price she observes to her current expectation of the fundamental.

When she perceives that the stock is overvalued, she predicts negative future returns; when

she perceives that the stock is undervalued, she predicts positive future returns.

Future returns can be further decomposed into three main sources of predictability, as

we show in Proposition 3.

Proposition 3. Stock returns from time t to time t+ 1 admit the following decomposition:

P̃t+1 − P̃t =
(
Et+1[Ũ ]− Et[Ũ ]

)
︸ ︷︷ ︸

Evolution of market consensus

+
Kt+1 −Kt

τKtKt+1

t∑
j=0

X̃j︸ ︷︷ ︸
Past and current

supply shocks

− 1

τKt+1

X̃t+1︸︷︷︸
Future

supply shock

(18)

where Et[·] ≡
∫
i
E[·|F it ]di denotes the weighted average market expectation at time t:

Et[Ũ ] =

∫ 1

0

Ki
tE[Ũ |F it ]
Kt

di. (19)

Three elements drive future returns: (i) the evolution of the market consensus, (ii) cur-

rent and past supply shocks, and (iii) the supply shock occurring in the future.15 Notice that

15Alternatively, supply shocks can be interpreted as X̃j = −τSΩj(Q̃j − Ũ), where Q̃j − Ũ represents the
forecast error that the market makes at time j in estimating the fundamental (a positive error means that
the market overvalues the fundamental and vice versa). Market errors are independent across time and are
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no agent, even perfectly informed, can predict future supply shocks. Hence, predictability

must arise through the first two components of returns. In general, agents’ expectations

regarding these two components differ, because they have heterogeneous information sets.

Agents, however, share a common information set F ct , which consists of the history of nor-

malized price signals

F ct =
{
Q̃j : 0 ≤ j ≤ t

}
, (20)

and is equivalent to the information set of the econometrician, who observes all past prices.

From the point of view of the econometrician, the evolution of market consensus is not

predictable (see Appendix B.3 for a proof):

E
[
Et+1[Ũ ]− Et[Ũ ]

∣∣∣F ct ] = 0. (21)

Therefore, observing past prices only, predictability arises exclusively through the inference

of the current and past supply shocks, a result we summarize in the following proposition.

Proposition 4. From the point of view of the econometrician, return predictability arises

solely from the inference of current and past supply shocks:

E
[
P̃t+1 − P̃t

∣∣∣F ct ] =
Kt+1 −Kt

τKtKt+1

t∑
j=0

E
[
X̃j

∣∣∣F ct ] (22)

=
Kt+1 −Kt

Kt+1Kc
t

t∑
j=0

SΩj

(
P̃t − Q̃j

)
. (23)

Proposition 4 highlights the relation between public information and expected returns.

However, the relation in (23) is not based on a standard definition of past returns. While

observationally equivalent, the common information set F c has a different economic meaning

normally distributed with mean zero and precision τ2S2Ω2
jΦ. Substituting supply shocks by market errors in

the decomposition in (18) yields an alternative interpretation of return predictability in terms of information,
as opposed to risk. These two interpretations of return predictability—information and risk—can be viewed
as two sides of the same coin.
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than the information set containing all past returns:

F rt =
{
P̃t−l+1 − P̃t−l : 1 ≤ l ≤ t+ 1

}
(24)

where P̃−1 = Ω−1 ≡ 0 and K−1 ≡ H. We therefore follow the convention introduced

by Banerjee et al. (2009) and condition future returns on past returns, as opposed to the

common information set F c. We obtain from Eq. (23) an expression for the serial correlation

of returns at different lags.

Proposition 5. Conditional on past returns, expected future returns satisfy

E
[
P̃t+1 − P̃t

∣∣∣F rt ] =
t+1∑
l=1

Kt+1 −Kt

Kt+1Kc
t

mt−l︸ ︷︷ ︸
Serial correlation of returns

at the l−th lag

(
P̃t−l+1 − P̃t−l

)
, (25)

where the coefficients mt−l, for lags l = 1, ..., t+ 1, are defined as:

mt−l ≡
t−l∑
k=0

SΩk︸ ︷︷ ︸
Momentum

effect

− SΩt−l+1

(Kt−l+1 −Kt−l) /Kt−l︸ ︷︷ ︸
Reversal

effect

. (26)

To understand the sign of the serial correlation coefficient m in (25), consider the first

lag, l = 1, and use Proposition 3 to write current returns as

P̃t − P̃t−1 = Et[Ũ ]− Et−1[Ũ ] +
Kt −Kt−1

τKt−1Kt

t−1∑
j=0

X̃j −
1

τKt

X̃t. (27)

Eqs. (18) and (27) then reveal that the current supply shock, X̃t, moves current and future

returns in opposite directions, generating reversal in stock returns. This result originates

from inventory considerations (Grossman and Miller, 1988). Because risk-averse informed

investors act as market makers and accommodate the noninformational demand of noise

traders, they require a risk premium for holding the asset. As a result, current supply shocks
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create a negative relation between current and future returns. For instance, a positive supply

shock today (i.e., noise traders sell the stock) simultaneously decreases the stock price and

increases the risk premium for holding a larger supply of the asset. Similarly, a negative

supply shock today leads to high current returns and low future returns. While the current

supply shock generates reversal, past supply shocks, (X̃j)
t−1
j=0, produce momentum in stock

returns. In particular, Eqs. (18) and (27) show that the coefficients of past supply shocks

are always nonnegative. The reason is that the market continues to “absorb” past supply

shocks in future trading rounds.

Whether the reversal effect of the current supply shock or the momentum effect of past

supply shocks in Eq. (26) dominates determines the sign of the serial correlation of stock

returns at the l-th lag (equivalently, the sign of the coefficient mt−l). First, the momentum

effect strengthens as private signals “accumulate.” Second, the reversal effect also strength-

ens with the accumulation of private signals (numerator), but weakens as average market

precision increases (denominator). For momentum to arise, the increase in average market

precision must be sufficiently large to restore the balance in favor of the momentum effect.

To determine the necessary condition on the increase in average market precision that

enforces momentum, we introduce the concept of precision elasticity. This concept relies on

the average precision of private information at time t, SΩt, where Ωt ≡
∑t

j=0 Ωj denotes the

total number of private signals that the average agent holds at time t.

Definition 1. (Precision Elasticity) Precision elasticity at time t is the percentage

change of average market precision, Kt, relative to a percentage change in the average pre-

cision of private information, SΩt:

εt ≡
(Kt+1 −Kt)/Kt

(SΩt+1 − SΩt)/(SΩt)
=

∑t
j=0 SΩj

H +
∑t

j=0 SΩj +
∑t

j=0 γ
2S2Ω2

jΦ

(
1 + γ2SΩt+1Φ

)
. (28)

Precision elasticity is a general concept that characterizes the “shape of learning” in a

rational-expectations model. It measures how average market precision responds to a change
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in the average precision of private information. Eq. (28) shows that this response is always

positive.

Importantly, precision elasticity is lower than one if information arrives at a linear rate

(i.e., if Ωt ≡ Ω, for all t),

εt|Ωt≡Ω = 1− H

H + SΩ(1 + τ 2SΦΩ)(t+ 1)
≤ 1, (29)

a customary assumption in rational-expectations models. In contrast, for momentum to

obtain, precision elasticity must be higher than one, a condition we establish in Theorem 3.1.

Theorem 3.1. (Momentum Condition) Returns exhibit momentum at the l−th lag if

and only if precision elasticity at lag l ≤ t is higher than one:

εt−l > 1. (30)

At lag l = t+ 1, the serial correlation of returns is always negative or zero.

The main implication of Theorem 3.1 is that learning must have a specific “shape” for

momentum to arise in a rational-expectations model—the precision elasticity needs to be

greater than one so that the percentage increase in average market precision exceeds the

percentage increase in the precision of private information.

Learning from prices is instrumental in generating this pattern. Theorem 2.1 shows that

the price-learning channel improves investors’ precision by the square of the incremental

number of private signals, Ωj, j = 1, .., t. This quadratic increase precisely allows learning

from prices to create a larger increase in average market precision relative to the precision of

private information. It follows that learning from prices is the main channel through which

momentum arises in this model. To emphasize the particularity of this result, notice that in

Hong and Stein (1999) momentum does not obtain if investors learn from prices.

Learning from prices is necessary, but not sufficient to produce momentum. Not only
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does momentum require the price-learning channel for average market precision to increase

faster than the flow of private information, it also requires the flow of private information to

have the “right dynamics.” For instance, Theorem 3.1 and Eq. (29) show that momentum

never arises in a standard rational-expectations model when the flow of private information

is linear. We now study how information percolation can generate dynamics that enforce

the condition in (30) through an exponential increase in the average number of signals.

3.2. Information percolation and momentum

We formalize the effect of information percolation on the serial correlation of returns and

show that the momentum condition in Eq. (30) is always satisfied beyond a certain threshold

of the meeting intensity.

Theorem 3.2. For each horizon t− l ≥ 0,

1. There exists a unique threshold, λ?(H,S,Φ, τ, t− l) ∈
(
0, log

(
2 + H

Φτ2S2

)]
, of the meet-

ing intensity above which stock returns always exhibit momentum. This threshold sat-

isfies the following implicit equation:

λ?(H,S,Φ, τ, t− l) = ln

(
Kt−l+1

Kt−l

)
. (31)

2. The threshold λ?(H,S,Φ, τ, t − l) is increasing in H and decreasing in S, Φ, τ , and

t− l.

3. Returns are martingales when λ = 0 or when λ→∞.

The first part of Theorem 3.2 characterizes the threshold λ? of the meeting intensity

above which information percolation creates momentum in stock returns. This threshold

directly follows from the momentum condition of Theorem 3.1. At the threshold λ? of the

meeting intensity, Eq. (31) is exactly satisfied, precision elasticity is equal to one, and

returns are martingales: the (logarithmic) increase in the precision of private information
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coincides with the (logarithmic) increase in average market precision. As a result, when

the meeting intensity is below λ?, the increase in the precision of private signals dominates,

precision elasticity is less than one, and returns therefore exhibit reversals; when the meeting

intensity is above λ?, the increase in average market precision dominates, precision elasticity

is higher than one, and thus returns exhibit momentum.

The second part of Theorem 3.2 shows how the threshold λ? reacts to changes in the

parameters of the model. An increase in fundamental precision requires stronger information

percolation to generate momentum, whereas the other parameters have the opposite effect.

For instance, decreasing noise trading helps information percolation generate momentum.

Less noise trading allows more information to be revealed through prices, which decreases

the risk premium and the reversal effect associated with it. A similar reasoning applies to

risk aversion and the precision of individual signals.

The momentum threshold decreases with the horizon t − l and therefore increases with

the lag l. Hence, as we increase the lag, we need a higher meeting intensity to generate

momentum, i.e., λ?(·, t − l − 1) > λ?(·, t − l). An immediate consequence of this result,

which is empirically appealing, is that there always exists a meeting intensity λ ∈ (λ?(·, t−

l), λ?(·, t− l− 1)), such that we simultaneously obtain short-term momentum and long-term

reversal. A second consequence is that the serial correlation of returns in Eq. (25) decays

with the lag in the momentum region, thus generating a downward-sloping term structure

of momentum.

To illustrate the different points of Theorem 3.2, we plot in Fig. 2 the serial correlation

of returns as a function of the meeting intensity for different lags. Without information

percolation, returns are unpredictable, consistent with the last point of Theorem 3.2. With

information percolation, stock returns exhibit reversals when the meeting intensity is below

the threshold λ? defined in Theorem 3.2. As information percolation intensifies and the meet-

ing intensity rises above the threshold λ?, stock returns become positively autocorrelated.

Furthermore, the momentum thresholds increase with the lag (the second point of Theorem
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3.2), while the magnitude of momentum decays with the lag. Finally, for large values of the

meeting intensity, returns become serially uncorrelated (the last part of Theorem 3.2).

[insert Figure 2 here]

Importantly, Fig. 2 shows that momentum is hump-shaped in the meeting intensity. To

see this, pick the momentum threshold as the meeting intensity, λ = λ?(·, t − l). At this

point, the reversal effect associated with current supply shocks exactly offsets the momentum

effect associated with the revision of past supply shocks. An increase in the meeting intensity

beyond this threshold weakens the reversal effect and strengthens the momentum effect,

thereby creating an increasing relation between momentum and the meeting intensity. As

the meeting intensity becomes infinite, not only does the reversal effect die out, but the

momentum effect also disappears. As a result, the relation between momentum and the

meeting intensity becomes decreasing as the meeting intensity increases, resulting in a hump-

shaped pattern.

3.3. Model predictions and empirical evidence

Our model predicts a hump-shaped relation between momentum and the meeting inten-

sity, as apparent from Fig. 2. This prediction is consistent with Hong et al. (2000), who

test the momentum theory of Hong and Stein (1999). Both our theory and that of Hong

and Stein (1999) centrally rely on the speed at which information diffuses in the market,

which Hong et al. (2000) proxy using firm size. Specifically, Hong et al. (2000) document a

hump-shaped pattern between firm size and the profitability of momentum.16 While Hong

and Stein (1999) rationalize the decreasing part of this relation, our model further explains

reversals for small firms through liquidity shocks (see also French and Roll, 1986).

16Note that the empirical study of Hong et al. (2000) is related to cross-sectional momentum, whereas
both Hong and Stein (1999) and our theoretical study relate to time-series momentum. These two forms of
momentum are strongly related but not identical. See Moskowitz et al. (2012) for a discussion.
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Lehmann (1990) and Jegadeesh (1990) find that stock returns exhibit strong reversals

at frequencies less than a month. In our model, the amount of information that agents ac-

cumulate depends on the time elapsed between trading rounds—the longer the time within

trading rounds is, the more information agents accumulate through random meetings. Con-

sequently, fixing the meeting intensity, our model predicts that the sign of serial correlation

varies for different trading frequencies. While the information percolation mechanism gener-

ates momentum at lower trading frequencies, agents have little time to talk between trading

rounds at high trading frequencies and short-term reversal therefore prevails.

An additional empirical finding is that the magnitude of momentum is large for short

lookback periods (one to six months) and decays as the lookback period increases, with

weaker evidence of reversal for periods longer than 12 months (Moskowitz et al., 2012).17

Information percolation bears similar time-series implications. To see this, note that the

specification of Proposition 5 can also be written for different lookback periods:

E
[
P̃t+1 − P̃t

∣∣∣F rt ] =
t∑
l=1

Kt+1 −Kt

Kt+1Kc
t

m′t−l

(
P̃t − P̃t−l

)
− Kt+1 −Kt

Kt+1Kc
t

H

1 + τ 2ΦSΩ0

P̃0, (32)

and

m′t−l ≡ Kt−l

(
1

1 + τ 2SΩt−lΦ
− 1

1 + τ 2SΩt−l+1Φ

)
− H

1 + τ 2ΦSΩ0

. (33)

Eq. (32) indicates that momentum also arises for larger lookback windows. Since the sec-

ond term in (32) is negative, Eq. (33) suggests a decaying “term-structure” of momentum,

whereby returns exhibit momentum for short lookback periods and reversal over longer look-

back periods. To illustrate this decaying pattern of momentum, we plot the serial correlation

in Eqs. (32) – (33) as a function of the lookback window in Fig. 3. For low values of the

meeting intensity, returns exhibit reversals at all horizons (the solid bars). In contrast,

17Moskowitz et al. (2012) find that this decaying pattern differs across asset classes. The pattern is
decaying for commodities, equities, and currencies and U-shaped for other asset classes.
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information percolation at a higher intensity generates short-run momentum and long-run

reversals (the dashed bars), consistent with Moskowitz et al. (2012).18

[insert Figure 3 here]

Novy-Marx (2012) proposes an alternative measure of momentum, which includes past

returns at both recent and intermediate horizons. This way of measuring momentum is

similar to our momentum measure in Proposition 5, which includes all past returns. In the

context of our model, ignoring lags leads to an omitted-variables bias, which can potentially

result in overestimating the magnitude of time-series momentum, a matter on which we now

elaborate.

3.4. Standard definition of momentum

Our measure of momentum in Proposition 5 uses all past returns to obtain a complete

description of momentum. Except for Novy-Marx (2012), including more than one lag is

not a standard way of measuring momentum empirically. To be consistent with a large

body of empirical literature, we compute the regression coefficient in Proposition 5 when the

right-hand side includes only the most recent past return.

Proposition 6. Under the standard definition of momentum, expected future returns satisfy

E
[
P̃t+1 − P̃t

∣∣∣ P̃t − P̃t−1

]
=
Kt+1 −Kt

Kt+1Kc
t

(mt−1 + bt−1)
(
P̃t − P̃t−1

)
, (34)

where bt−1 ≥ 0 is a positive bias, which arises through the omission of past returns:

bt−1 =
Kt −Kt−1

KtKc
t−1

Var[
∑t

l=1mt−1−l(P̃t−l − P̃t−1−l)]

Var[P̃t − P̃t−1]
. (35)

18We do not attempt to match the magnitude of momentum, nor the exact length of the decaying pattern.
Our purpose is to highlight a theoretical mechanism that can generate such pattern. Empirical work is yet
needed to estimate plausible values of λ and other parameters to better match the data.
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In our setup, omitting past realized returns creates a positive bias in the estimate of

the coefficient of serial correlation. To illustrate the magnitude of this bias, we plot in the

left panel of Fig. 4 the serial correlation of returns as a function of the meeting intensity,

including or excluding past realized returns. The left panel shows that the bias introduced

by the standard measure is non-monotonic in the meeting intensity. For large or small

values of the meeting intensity, both our measure and the standard measure coincide. For

intermediate values of the meeting intensity, however, the bias can be substantial, suggesting

that our measure provides a conservative estimate of momentum relative to the standard

measure.

[insert Figure 4 here]

The size of the estimation bias decreases with the length of the lookback period consid-

ered. In particular, the right panel of Fig. 4 depicts momentum for lookback periods of

different lengths (Moskowitz et al., 2012), while keeping the meeting intensity constant. Ex-

cluding past realized returns (dashed bars) produces a strong positive bias at short horizons

(relative to including all realized returns).19

In general, Proposition 6 and Fig. 4 demonstrate that including all past returns produces

a lower estimate of momentum relative to standard measures, a result that strengthens the

conclusions of the previous section. Moreover, the relation between momentum and the

meeting intensity remains robust to the inclusion or the exclusion of past returns. Finally,

the bias arising from the exclusion of past returns prevails independently of the pattern of

information arrival that we propose in this paper—omitting lagged returns always results in

overestimating momentum in a rational-expectations model.

Empirically, however, the difference between the two measures in Propositions 5 and 6

19While the right panel of Fig. 4 shows that returns exhibit momentum over the range of lookback periods
considered, extending the lookback period beyond 12 months shows that they eventually exhibit long-term
reversal, consistent with a vast majority of empirical literature. Hence, for certain values of λ, there exists
a threshold of the lookback period beyond which the sign of the serial correlation changes from positive to
negative. Comparative statics about this threshold open the possibility of additional tests of the model. We
thank a referee for this suggestion.
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does not necessarily constitute an estimation bias. Rather, this difference is a matter of

how one defines momentum empirically. In that respect, the existence of a bias in our

model suggests a possible way of validating the model empirically by comparing the two

definitions; it also provides an alternative approach to rationalize the term structure of

momentum documented in Novy-Marx (2012).

4 Trading strategies

In this section we analyze investors’ trading strategies. We first decompose investors’

demand into two components, a short-term and long-term component. We show that in-

formation percolation induces investors to trade on short-term price moves, as opposed to

long-term fundamentals. We then show that information percolation generates heterogene-

ity in precision, which induces better informed investors to front run those lesser informed.

Specifically, better informed investors act as “profit takers,” while lesser informed investors

follow the public opinion. As a result, better informed investors systematically trade against

the serial correlation of returns: when returns exhibit momentum, better informed investors

are contrarians, while lesser informed investors are momentum traders. In contrast, with

homogeneous precisions, all agents are market neutral in the eyes of the econometrician.

By trading at the expense of momentum traders, contrarians optimally allow momentum

to persist, despite the existence of momentum traders. This result is key to our theory of

momentum: while an exogenous increase in average market precision is sufficient to generate

momentum (Holden and Subrahmanyam, 2002), investors do not trade on it if they have

homogeneous precisions. However, what makes momentum a puzzle is that it persists, despite

the presence of momentum traders. Our model offers a potential answer to this puzzle based

on heterogeneity in individual precisions—momentum survives in the presence of momentum

traders because better informed investors trade against it.
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4.1. Predictability of trading strategies

We start by decomposing investors’ trading strategies in (16) into two components.

Proposition 7. At date t, agent i’s optimal demand is given by

D̃i
t =

τKi
t

Kt

 K2
t

Kt+1

(
E[Ũ |F it ]− P̃t

)
︸ ︷︷ ︸

Long-term
position

+Kt

(
E[P̃t+1|F it ]− P̃t

)
︸ ︷︷ ︸

Short-term
position

 . (36)

Agent i’s optimal demand is the product of two terms. The first term, τKi
t/Kt, shows

that each agent i compares the precision of her own information with the average market

precision and trades more aggressively when her precision is higher. The second term (in

brackets) has the same structure for all agents and consists of two components [see also

Banerjee et al. (2009) for a similar decomposition]:

1. A long-term position, reflecting the agent’s view about the long-term payoff.

2. A short-term position, reflecting the agent’s view about short-term price moves.

When average market precision remains constant over time (i.e., Kt+1 = Kt), prices are

martingales (see Proposition 2) and agents’ short-term position drops out of (36): because

the price tomorrow does not contain more information than the price today, agents focus

on their long-term view of the fundamental. With information percolation, in contrast, the

price tomorrow incorporates increasingly precise information about the fundamental, caus-

ing investors’ short-term position to dominate their demand (in the extreme case whereby

agents collect an infinite amount of information between t and t+ 1, their optimal demand

at time t becomes myopic and consists of their short-term position exclusively). Hence,

the decomposition in (36) shows that information percolation, by generating an increase in

average market precision, induces investors to optimally adopt trading strategies based on

short-term views. This short-term trading activity arises as investors anticipate an increase
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in average market precision next period, Kt+1, which they can perfectly predict.20

We now analyze how investors expect to trade in the future. To do so, we first establish

in Proposition 8 a key relationship necessary to understand investors’ trading behavior.

Proposition 8. The portfolio of any agent i in the economy, rescaled by the inverse of her

relative precision, Kt/K
i
t , is a martingale:

E
[
Kt+1

Ki
t+1

D̃i
t+1

∣∣∣∣F it] =
Kt

Ki
t

D̃i
t. (37)

Proposition 8 has two important implications, which we present as corollaries. First, an

agent whose current precision coincides with average market precision, Kt, cannot predict

how she will trade next period.

Corollary 1. If Ki
t = Kt then

E
[
D̃i
t+1 − D̃i

t

∣∣∣F it] = 0. (38)

As a consequence, the average agent is neutral to the market: she is neither a momentum

trader nor a contrarian.21 This agent therefore serves as a useful benchmark when analyzing

the heterogeneity of trading strategies generated by information percolation.

Second, the expected trading strategy of any agent i conditioned on the common infor-

mation set, F c, can be written as follows.

Corollary 2. The trading strategy of agent i, as measured by the econometrician, satisfies

E
[
D̃i
t+1 − D̃i

t

∣∣∣F ct ] = τ
(Kt −Ki

t)(Kt+1 −Kt)

Kt+1

(
E[Ũ |F ct ]− P̃t

)
. (39)

20The cross-sectional average of investors’ precision for the next period, Kt+1, is known at time t, because
it is just a function of time. In other words, investors know today how precise they will be on average next
period, although they do not know what their individual precision will be next period.

21One can see this by applying the law of iterated expectations on (38) and conditioning on the last period

price move, P̃t − P̃t−1. This directly implies that cov(D̃i
t+1 − D̃i

t, P̃t − P̃t−1) = 0.
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From now on we adopt the point of view of the econometrician and describe agents’

trading strategies with respect to the common information set F ct , under which strategies

are comparable directly. The econometrician can predict how agent i trades only if average

market precision improves over time and if agent i’s precision differs from the average market

precision. In particular, better informed agents (Ki
t > Kt) trade against the “public opinion,”

as measured by the term (E[Ũ |F ct ] − P̃t), whereas less informed agents follow the public

opinion. We draw two conclusions from this observation. First, a model in which all agents

have the same precision does not produce predictable trading—even though an exogenous

increase in precision can generate momentum (Theorem 3.1), no one would trade on it.

Second, heterogeneous precisions create an additional layer of trading activity, whereby

informed agents not only trade against noise traders, but also trade against less informed

traders.

That better informed agents trade against lesser informed agents can be interpreted as a

competitive form of “front running.” To illustrate this, suppose that the public opinion today

is that the stock is undervalued, E[Ũ |F ct ] > P̃t. All agents then buy the stock today—the

better informed they are, the more aggressively they buy.22 Eq. (39) in turn indicates that

lesser informed investors expect to further increase their position tomorrow, thus following

the public opinion (their trades tomorrow are positively correlated with the public opinion

today). In contrast, while better informed investors build a large position today, they expect

to partly unwind it tomorrow at the expense of the lesser informed agents, thus acting as

“profit takers.” We emphasize, however, that this “front-running” behavior is not strategic,

since investors, who belong to a continuum, do not have price impact in our model.

22To see this, notice that D̃i
t = τKi

t(E[Ũ |F i
t ] − P̃t). Thus, E[D̃i

t|Fc
t ] = τKi

t(E[Ũ |Fc
t ] − P̃t), and therefore

if E[Ũ |Fc
t ]− P̃t > 0, investors buy the stock today.
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4.2. Information percolation and momentum trading

To identify trend-following and contrarian strategies, we follow the convention introduced

by Brennan and Cao (1997). This approach is consistent with the convention we adopted to

measure momentum: we condition future trading strategies on the information set containing

past returns, F rt . We provide this trading measure in Proposition 9.

Proposition 9. Conditional on past returns, the expected trading strategy of investor i from

time t to t+ 1 satisfies

E
[
D̃i
t+1 − D̃i

t|F rt
]

=
t+1∑
l=1

τ(Kt −Ki
t)
Kt+1 −Kt

Kt+1Kc
t

mt−l︸ ︷︷ ︸
Momentum trading coefficient

(P̃t−l+1 − P̃t−l), (40)

where the coefficients mt−l are defined in Proposition 5.

Investors’ trading behavior is tightly related to the serial correlation of returns: Eq.

(40) shows that the trading coefficient of an investor i is the serial correlation of returns

multiplied by a factor τ(Kt−Ki
t), measuring how investor i’s precision compares to average

market precision. As a result, better informed investors trade systematically against the

serial correlation of returns: when returns exhibit reversals they are momentum traders and

when returns exhibit momentum they are contrarians. The opposite mechanism applies for

lesser informed investors. This trading behavior is consistent with the front-running pattern

we previously discussed: better informed agents speculate against the public opinion and

front run the trades of the lesser informed agents, who, they expect, trade on momentum.

To illustrate these points, we plot in Fig. 5 the “trading coefficient” at lag l = 1, as

a function of the meeting intensity and for two investor types: (i) the 5% percentile least

informed investor (solid line) and (ii) the 95% percentile best informed investor (dashed

line). The area between the lines therefore captures 90% of the investor population. In the

absence of information percolation, all investors are neutral. Because they have information

with identical precision, they are neither momentum traders nor contrarians. For positive
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values of the meeting intensity, optimal trading strategies differ. Better informed investors

are momentum traders in the reversal region and contrarians in the momentum region,

whereas the opposite holds for the lesser informed investors. Finally, the spectrum of trading

strategies expands as the magnitude of momentum increases and contracts as the magnitude

of momentum decreases. At the threshold λ∗, prices are martingales and therefore investors

do not trade based on past prices.23

[insert Figure 5 here]

These trading patterns are consistent with empirical evidence. A recent empirical study

by Grinblatt et al. (2016) finds that most hedge funds are contrarians, whereas most mu-

tual funds tend to follow momentum strategies. Furthermore, contrarian hedge funds make

profits on mutual funds by buying stocks that mutual funds sell. While hedge funds out-

perform mutual funds on average, mutual funds consistently profit from momentum trading

(Grinblatt, Titman, and Wermers, 1995). Another strand of the literature documents that

investors who have a broader experience on how the market operates—specialists and com-

mercial investors—are contrarians and liquidity providers (Hendershott and Seasholes, 2007;

Moskowitz et al., 2012). In contrast, mutual fund flows chase past performance and further

exacerbate market anomalies (Akbas, Armstrong, Sorescu, and Subrahmanyam, 2015; Lou,

2012). Kelley and Tetlock (2013) observe that informed retail trades predict returns, all

the more so in markets with higher investor heterogeneity, consistent with our idea that

heterogeneity is a key element in understanding return predictability. Finally, Baltzer, Jank,

and Smajlbegovic (2015) show that foreign investors trade on momentum, while domestic

investors, who presumably possess more information about domestic stocks, are contrarians.

While this evidence can be used to distinguish empirically our theory from Albuquerque and

23Because the momentum trading coefficient is just the serial correlation of returns rescaled by an agent’s
relative precision and risk tolerance, the analysis of Section 3.4 also applies to trading strategies: conditioning
only on the most recent lagged return (as opposed to all past returns) leads to a positively biased estimator
for the momentum trading coefficient. The econometrician may therefore overestimate the magnitude of
momentum trading by market participants.
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Miao (2014), who predict different trading patterns, further research is needed to distinguish

our theory from theirs.

Overall, our model provides an explanation to the puzzling observation that time-series

momentum persists, even though investors trade on it (Moskowitz et al., 2012). In our

setup, better informed individuals trade systematically against the serial correlation of re-

turns, front running the lesser informed agents. Conversely, the main force that could elimi-

nate momentum—the lesser informed investors—is also the weakest one. A potential caveat

is that an unconstrained, risk-neutral arbitrageur could enter the market and conceivably

eliminate momentum. We consider this possibility in Appendix C.4 and show that this arbi-

trageur must necessarily impact prices to eliminate momentum. Since her trades move prices

adversely, she faces a tradeoff between trading aggressively on momentum and moderating

her price impact. Hence, she optimally decides not to eliminate momentum completely.

5 Extensions

In this section, we extend our model along two dimensions. First, we extend the model

to a stationary equilibrium—a setup in which the asset pays an infinite stream of dividends

instead of a single liquidating dividend. In this setup, we demonstrate that information per-

colation generates and amplifies momentum, thus generalizing our previous results. Second,

we incorporate a “rumor” in our benchmark model and show that it can generate a phase

of price over-shooting followed by a phase of price correction. Under certain conditions, this

convergence pattern can jointly produce short-term momentum and long-term reversal.

5.1. Dynamic setup

We present a simplified version of the stationary model and relegate all technical details

to Appendix D.1. Consider an economy that goes on forever and in which the stock pays a

stochastic dividend Dt per share. As in the finite-horizon version of the model, new liquidity
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traders enter the market in every trading session. For simplicity, we assume that the dividend

process Dt and the supply process Xt follow random walks (we solve a general version of the

model with AR(1) processes in Appendix D.1):

Dt = Dt−1 + εdt (41)

Xt = Xt−1 + εxt . (42)

All investors observe the past and current realizations of dividends and stock prices. Each

investor observes a signal about the dividend innovation 3-steps ahead:24

z̃it = εdt+3 + ε̃it. (43)

As in the baseline model, investors meet and share private information over time. A

fundamental difference, however, is that investors do not only talk about a single liquidation

value, but about several dividends revealed at different times in the future—they share

information about the dividend 3-steps ahead, 2-steps ahead, and 1-step ahead.

Unlike the baseline model, we consider an overlapping generation of agents, as in Bac-

chetta and Wincoop (2006), Watanabe (2008), Banerjee (2011), and Andrei (2013). This

assumption considerably simplifies the analysis by ruling out dynamic hedging demands

and does not change the results qualitatively.25 The solution method, which follows An-

drei (2013), proceeds by specifying an equilibrium price that is a linear function of model

24Note that the model can be extended to a general case in which investors receive information about
the dividend T -steps ahead at the expense of analytical complexity and without altering the main intuition
presented here.

25In the infinite-horizon case the portfolio maximization problem is substantially more complicated. The
fixed-point problem cannot be reduced to a finite dimensional one, but Bacchetta and Wincoop (2006) and
Andrei (2013) show how to approximate the problem to a desired accuracy level by truncating the state space.
The (numerical) results for the infinite-horizon model are very close to those obtained in the overlapping
generations model. See also Albuquerque and Miao (2014).
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innovations:

Pt = αDt + βXt−3 + (a3 a2 a1)εdt + (b3 b2 b1)εxt , (44)

where εdt ≡ (εdt+1 ε
d
t+2 ε

d
t+3)> are the three unobservable dividend innovations occurring in

the future and εxt ≡ (εxt−2 ε
x
t−1 ε

x
t )
> are the last three supply innovations. In general, the

coefficients a are positive, whereas the coefficients b are negative. The main difference with

respect to our baseline model is that equilibrium prices are now stationary: the coefficients

α, β, a, and b in (44) do not change over time, in contrast to the price coefficients in

Theorem 2.1. These coefficients, however, have a term structure capturing the price effect

of the next three dividend shocks and the last three supply shocks.

Information percolation significantly affects the term structure of the price coefficients.

Because investors dynamically talk about the next three dividends, they spend more time

talking about the dividend one step ahead, as compared to dividends occurring two or three

periods ahead. As a result, they have more information regarding the dividend one step

ahead. It follows that information percolation causes the coefficient a3 to increase faster

than the coefficient a2, which itself increases faster than the coefficient a1. The upper left

panel of Fig. 6 illustrates the term structure of coefficients a for λ = 0 (solid line) and λ = 1

(dashed line). Clearly, information percolation “steepens” the term structure of coefficients

and magnifies the differences between them. The upper right panel of Fig. 6 shows that a

similar term structure prevails for supply coefficients. In particular, information percolation

exacerbates the effect of current supply shocks (the coefficient b1 becomes larger in absolute

terms), relative to past supply shocks (as measured by the coefficients b2 and b3). Overall,

the percolation mechanism steepens the term structure of price coefficients.

[insert Figure 6 here]

The term structure of price coefficients is the main determinant of the sign of the serial

correlation of returns. To see this, consider two consecutive price changes, Pt − Pt−1 and
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Pt+1− Pt. Each price change depends differently on future dividend shocks and past supply

innovations. Table 1 decomposes the dependence of price changes on each shock. Computing

the covariance between Pt − Pt−1 and Pt+1 − Pt in turn involves multiplying the differences

between consecutive coefficients a and consecutive coefficients b, as given in each column of

Table 1.26 The term structure of price coefficients precisely dictates the magnitude of these

differences, which information percolation amplifies.

[insert Table 1 here]

Importantly, the current supply shock εxt is the only column of Table 1 that creates

reversal, as in our benchmark model; other shocks generate momentum. While information

percolation amplifies the price effect of all shocks—it steepens the term structure of price

coefficients—it causes the momentum effect to dominate the reversal effect beyond a certain

threshold of the meeting intensity. In the case of the random walk specification in (41) –

(42), stock returns are serially uncorrelated when investors do not receive private information.

Hence, any flow of private information creates momentum, which information percolation

simply amplifies, as apparent from the solid line in the lower panel of Fig. 6. In contrast,

when the dividend and the supply follow mean-reverting processes, returns exhibit reversals

without information percolation. In this case, information percolation not only amplifies

momentum but allows momentum to arise in the first place, as in our benchmark model.

For instance, the dashed line in the lower panel of Fig. 6 shows that information percolation

creates momentum when the dividend and supply have a reversion parameter of 0.9.

5.2. Rumors

Our baseline model can jointly generate short-term momentum, consistent with the em-

pirical finding of Jegadeesh and Titman (1993), and long-term reversal, consistent with the

26To be consistent with our main model, we compute the serial correlation of returns using ex-dividend
prices. Alternatively, one could assume several trading rounds in-between dividend payment dates (which
would bring this extension even closer to our baseline case), with similar results. See Makarov and Rytchkov
(2012) for a detailed analysis when returns are computed using cum-dividend prices.
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over-reaction phenomenon of De Bondt and Thaler (1985). However, an important question

is whether these effects can be amplified by rumors. It is natural to think of social inter-

actions as propagators of rumors.27 We introduce a rumor in our model by assuming that

agents receive at time t = 0 signals of the form:

z̃i0 = Ũ + Ṽ + ε̃i0 (45)

where Ṽ is normally distributed with zero mean and precision ν. We build a simplified

version of the model in which we assume that the asset is liquidated at time T = 4.

The common noise Ṽ satisfies two important properties of a rumor: (i) it circulates from

person to person and (ii) it is unverifiable. The first property arises as private signals now

contain the variable Ṽ , which now circulates from one agent to another through word-of-

mouth communication. The second property results from the signal specification in (45): on

average, private signals only reveal the sum of the fundamental value and the rumor (Ũ+ Ṽ ).

As a result, the rumor is unverifiable as agents cannot distinguish fundamental information

from the rumor, either using prices or their private signals.

After receiving the initial signal at time t = 0, agents meet with each other exactly

as in the baseline setup. When they meet, they exchange the information they have, which

includes the rumor Ṽ . Agents are aware of the existence of the rumor, but cannot disentangle

it from fundamental information because the signals they exchange through private meetings

all contain the rumor. To allow agents to eventually learn about the rumor, we assume that

agents receive an additional signal at t = 3, as the economy approaches the final liquidation

date. This information is now centered on the fundamental:

Z̃i
3 = Ũ + ε̃i3. (46)

27Peterson and Gist (1951) define a rumor as “an unverified account or explanation of events circulating
from person to person and pertaining to an object, event, or issue in public concern.”
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Although this signal does not allow an agent to perfectly back out the content of rumor, it

allows prices to become more informative about the fundamental. The reason is that the

private signal in (46) is centered on Ũ . This assumption incorporates the idea that rumors

do not last forever, but eventually subside.

In the presence of a rumor, asset prices and investors’ asset demands do not have a closed-

form solution. Theorem 5.1 describes a system of recursive equations for the equilibrium price

coefficients. We provide the proof of Theorem 5.1 and we solve this system of equations

through a numerical scheme that we describe in Appendix D.2.

Theorem 5.1. In the presence of a rumor, equilibrium prices have the following form

P̃t =
t−1∑
j=0

ξj,tQ̃j + βt

[
Ũ − 1

τSΩ′t

(
X̃t − ΛtṼ

)]
︸ ︷︷ ︸

Q̃t

, (47)

where {Q̃j}tj=0 are the normalized price signals, which can be written as

Q̃j ≡ Ũ − 1

τSΩ′j

(
X̃j − ΛjṼ

)
. (48)

The coefficients {Ω′j}tj=0 and {Λj}tj=0 are positive and solve a fixed-point problem given by a

system of recursive equations:

Ω′t =
1

τS

t∑
j=0

θ̄j −
t−1∑
j=0

Ω′j

Λt =
t∑

j=0

θ̄j −
t−1∑
j=0

Λj,

(49)

in which θ̄ denotes the average coefficients of agents’ private signals in their optimal demand.

The normalized price signals in (48) contain a rumor. The price signal now reflects

fundamental information Ũ , supply shocks X̃, and the rumor Ṽ . When signals do not

contain a rumor, we recover the result of Theorem 2.1, in which the coefficients Ω′j = Ωj, for
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j = 0, 1, ...3, represent the average number of incremental signals and increase exponentially

over time. In contrast, when signals contain a rumor, the coefficients Ω′j increase initially

but then revert back to zero, as we show in Fig. 7. Intuitively, agents know they possess

information of lower quality due to the presence of the rumor and therefore apply a discount

on the actual number of signals they have—the coefficients Ω′j now represent discounted

averages of incremental signals. At time t = 2, the discounted average Ω′ declines, as agents

anticipate that they will get better information at time t = 3 and apply a stronger discount

on their number of signals. At time t = 3, the discounted average number of signals almost

reaches zero for λ = 3. When agents have collected a large number of signals, they can

accurately forecast Ũ + Ṽ . Hence, when they get the signal centered on the fundamental,

they ignore their other signals. The rumor thus induces agents to interpret their information

with caution.

[insert Figure 7 here]

We now investigate how this convergence pattern relates to the serial correlation of stock

returns. Intuitively, the first phase of price “over-shooting” generates short-term momentum

and the second phase of price correction generates long-term reversal. To show this, we

plot the serial correlation of returns in Fig. 8. When the rumor is fairly precise (Panel a),

returns mostly exhibit momentum: despite the presence of the rumor, agents’ precision rises

over time, generating momentum. As the precision of the rumor decreases (Panel b), agents

discount their actual number of signals more strongly. As a result, agents progressively cut

back their positions—they adjust their trades to reflect that their information is of lower

quality. While these portfolio adjustments do not prevent returns to exhibit momentum in

the first period, they induce reversal in the second period as the price gradually corrects.

Finally, when the rumor’s precision is low (Panel c), agents become cautious about their

information and the improvement in their precision is not sufficient to generate momentum.

[insert Figure 8 here]
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6 Conclusion

This paper suggests several interesting avenues for future research. For instance, in this

paper we abstract from individual behavioral biases, but we believe that individual biases,

such as in Daniel et al. (1998) or Barberis et al. (1998), would amplify the effects we analyze.

Other questions are worthwhile investigating, such as extending the setup to multiple assets,

where information percolation could generate rich dynamics of the conditional correlation

among assets. It is also interesting to study precisely the mechanism of information trans-

mission and find conditions under which investors find it beneficial to tell the truth (Stein,

2008).

A legitimate question is what empirical exercise would validate our model. We be-

lieve that natural experiments capturing an exogenous increase or decrease in the intensity

of word-of-mouth communication could make a worthwhile empirical point. For example,

Shiller (2000) relates the increase in the word-of-mouth communication intensity once the

telephone became effective during the 1920s with the steady increase of volatility during

the same period. Alternatively, the Regulation Fair Disclosure, promulgated by the U.S.

Securities and Exchange Commission in August 2000, forbids firms and their insiders to pro-

vide information to some investors (often large institutional investors). Hence, after August

2000, there should be less information propagated through the word-of-mouth communica-

tion channel.
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Appendix A

A.1. Proof of Proposition 1

To obtain the closed-form solution for the distribution π of incremental signals, we first

derive the equation for its dynamics.

Lemma A.1. The probability density function π over the additional number of signals col-

lected by each agent satisfies

d

dt
πt(n) = −λπt(n) + λ(πt ∗ µt)(n), π0 = δn=1. (50)

Proof. We use an argument made in Proposition 3 of Duffie, Giroux, and Manso (2010) and

Proposition 4.2 in Duffie, Malamud, and Manso (2010): the probability density function πt

solves (50) if and only if its Fourier transform π̂t solves

d

dt
π̂t = −λπ̂t + λµ̂tπ̂t, π̂0 = 1. (51)

This differential equation has a unique solution, which is given by

π̂t = exp

(
−λ
∫ t

0

µ̂sds− λt
)
. (52)

Our goal is to show that π̂t has the solution in (52). Denote by Xti the number of new signals

gathered if a meeting occurs at time ti and observe that it is distributed as

Xti ∼ µ (ti, ·)

where the distribution µ (t, x) satisfies the Boltzmann equation (Duffie et al., 2009)

d

dt
µt(n) = −λµt(n) + λ(µt ∗ µt)(n), µ0 = δn=1. (53)
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Furthermore, the number N (t) of meetings that took place between time 0 and t is a

Poisson counter with intensity λ; accordingly, the total number Yt of new signals gathered

between time 0 and t is given by
∑N(t)

i=1 Xti . We now characterize its distribution. First,

observe that Yt, conditional on the set of times {0 ≤ t1 ≤ t2 ≤ ... ≤ tN(t) ≤ t} at which a

meeting occurs (up to time t) and the total number of meetings N (t) (that is, conditioning

on the whole trajectory ANt of the Poisson process), is distributed as

Yt|ANt ∼
∫
RN−1

µ
(
YtN − YtN−1

, tN
)

dµ
(
YtN−1

− YtN−2
, tN−1

)
...dµ (Yt1 − 0, t1) (54)

≡
∫
RN−1

µ (XtN , tN) dµ
(
XtN−1

, tN−1

)
...dµ (Xt1 , t1) .

The distribution in (54) may be written as

Yt|ANt ∼ Γ
N(t)
i=1 µti

where, for any probability measures α1, ..., αk, we write Γki=1 = α1 ∗ α2 ∗ ... ∗ αk.

Now, observe that each ti in the sequence of meetings {0 ≤ t1 ≤ t2 ≤ ... ≤ tN(τ) ≤ t}

conditional on N (t) is uniformly distributed over t; accordingly, we have that

Yt|N (t) ∼ Γ
N(t)
i=1

1

t

∫ t

0

µtidti =

(
1

tN(t)

(∫ t

0

µsds

)∗N(t)
)

where ∗n denotes the n−fold convolution.

Using that N (t) is a Poisson(λ) counter, we can write

Yt ∼
∞∑
k=0

e−λt
(λt)k

k!

1

tk

(∫ t

0

µsds

)∗k
,

and thus

πt ≡ e−λt
∞∑
k=0

λk

k!

(∫ t

0

µsds

)∗k
. (55)
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Furthermore, computing the Fourier transform of (55), using that the transform of a convo-

lution is the product of the transforms (e.g., Duffie and Manso, 2007), we obtain

π̂t ≡ e−λt
∞∑
k=0

λk

k!

(∫ t

0

µ̂sds

)k
. (56)

Finally, using the Taylor expansion of ex =
∑∞

k=0
xk

k!
, we can write

π̂t = exp

(
−λ
∫ t

0

µ̂sds− λt
)
, (57)

which proves (52) and thus (50), corresponding to Eq. (3) in the paper.

To prove Proposition 1, write the Boltzmann equation in (53) of the cross-sectional

distribution µt of the number of total signals at time t as

d

dt
µt(n) = λ

n−1∑
k=1

µt(n− k)µt(k)− λµt(n). (58)

Since agents are assumed to be initially endowed with a single signal, the initial distribu-

tion of signals is a Dirac mass at 1, i.e., µ0(1) = 1. This initial distribution has the advantage

of leading to a closed-form solution for the cross-sectional distribution of the total number

of signals at time t ≥ 1 and the average number of total signals at time t, denoted by Ωt:

µt(n) = e−nλt
(
eλt − 1

)n−1
(59)

Ωt = eλt. (60)

To obtain the distribution of incremental number of signals between time t − 1 and t,

notice that the probability of getting n new signals over [t−1, t] is independent of an agent’s

current type and is thus given by the cross-sectional distribution:

P [n new signals over [t− 1, t]|meeting someone] = µt(n). (61)
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Since the probability of meeting no one between time t− 1 and t is

P [meeting no one over [t− 1, t]] = e−λ, (62)

it follows that the distribution π of incremental signals satisfies

πt(n) =P [n new signals over [t− 1, t]|meet someone]

× (1− P [meet no one over [t− 1, t]]) ,

(63)

and thus

πt(n) = µt(n)
(
1− e−λ

)
= e−nλt

(
eλt − 1

)n−1 (
1− e−λ

)
, n ≥ 1. (64)

The average number of incremental signals is then given by

Ωt = Ωt − Ωt−1 = eλ(t−1)(eλ − 1). (65)

A.2. Proof of Theorem 2.1 (Equilibrium)

We provide the proof for a two-trading session economy. Once the equilibrium quantities

are written in a recursive form, as in Brennan and Cao (1997), or in He and Wang (1995),

it is straightforward to derive the full recursive equilibrium solution. The model is solved

backwards, starting from date 1 and then going back to date 0. First, we conjecture that

prices in period 0 and period 1 have the following form

P̃0 = β0Ũ − α0,0X̃0 (66)

P̃1 = β1Ũ − α1,0X̃0 − α1,1X̃1. (67)
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Consider the normalized price signal in period zero, informationally equivalent to P̃0:

Q̃0 ≡
1

β0

P̃0 = Ũ − α0,0

β0

X̃0. (68)

Replace X̃0 from (68) into (67) to obtain

P̃1 = ϕ1Ũ + ξ1Q̃0 − α1,1X̃1, (69)

where ϕ1 ≡ β1 − α1,0
β0
α0,0

and ξ1 ≡ α1,0
β0
α0,0

. These coefficients are to be determined in

equilibrium. We normalize the price signal in period t = 1 and obtain Q̃1:

Q̃1 ≡
1

ϕ1

(
P̃1 − ξ1Q̃0

)
= Ũ − α1,1

ϕ1

X̃1. (70)

Thus, observing {Q̃0, Q̃1} is equivalent to observing {P̃0, P̃1}. We conjecture the following

relationships (see Admati, 1985), which are to be verified once the solution is obtained:

α0,0

β0

=
1

τSΩ0

(71)

α1,1

ϕ1

=
1

τSΩ1

. (72)

In our setup, Ω0 = 1 ∀λ, Ω1 = 0 if λ = 0 (in this case the price P̃1 is not informative), and

Ω1 > 0 if λ > 0. Relationships (71) and (72) make the calculations that follow straightfor-

ward. The normalized price signals become:

Q̃0 = Ũ − 1

τSΩ0

X̃0 (73)

Q̃1 = Ũ − 1

τSΩ1

X̃1. (74)
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Period 1 Consider an investor i who, at date t = 1, collects ωi1 ≥ 1 additional signals. At

date t = 1, investor i chooses D̃i
1 to maximize expected utility of final wealth:

max
D̃i1

E
[
−e−

1
τ
W̃ i

2

∣∣∣F i1] , (75)

where the final wealth at date t = 2 (at liquidation) is

W̃ i
2 = X iP̃0 + D̃i

0

(
P̃1 − P̃0

)
+ D̃i

1

(
Ũ − P̃1

)
, (76)

and F i1 represents the total information available at date t = 1. This information is given

by Z̃i
1, Z̃i

0 (private signals) and Q̃1, Q̃0 (public signals, informationally equivalent to prices).

Note that Z̃i
0 represents only one signal of precision S, but Z̃i

1 represents the average of the

ωi1 additional signals collected by the investor at date t = 1 (ωi1 signals of equal precision S

are informationally equivalent to their average, a single signal with precision ωi1S). Based

on this information (i.e., Z̃i
0, Z̃i

1, Q̃0, and Q̃1), investor i updates her expectations regarding

Ũ and her posterior variance

Ki
1 = V ar−1

[
Ũ
∣∣∣Z̃i

1, Z̃
i
0, Q̃1, Q̃0

]
(77)

µ̃i1 = E
[
Ũ
∣∣∣Z̃i

1, Z̃
i
0, Q̃1, Q̃0

]
, (78)

using the Projection Theorem (see, e.g., DeGroot, 2005):

(Projection Theorem). Consider the n-dimensional normal random variable

(θ, s) ∼ N


 µθ

µs

 ,
 Σθ,θ Σθ,s

Σs,θ Σs,s


 . (79)

Provided Σs,s is non-singular, the conditional density of θ given s is normal with conditional
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mean and conditional variance-covariance matrix:

E[θ|s] = µθ + Σθ,sΣ
−1
s,s (s− µs) (80)

Var[θ|s] = Σθ,θ − Σθ,sΣ
−1
s,sΣs,θ. (81)

From this theorem, we obtain

Ki
1 = H + S + Sωi1 + τ 2S2Φ

(
Ω2

0 + Ω2
1

)
(82)

µ̃i1 =
1

Ki
1

[
SZ̃i

0 + Sωi1Z̃
i
1 + τ 2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)]
. (83)

The normality assumption along with the exponential utility function then imply that the

optimal demand of trader i in period 1 has the standard form:

D̃i
1 = τKi

1

(
µ̃i1 − P̃1

)
. (84)

Replacing (83) in (84) we obtain

D̃i
1 = τ

[
SZ̃i

0 + Sωi1Z̃
i
1 + τ 2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)
−Ki

1P̃1

]
. (85)

We can now integrate the optimal demands to obtain the total demand. We follow the

convention used by Admati (1985) that
∫ 1

0
Z̃i
j = Ũ , almost surely. Importantly, we have to

keep track of the heterogeneity in information endowments when aggregating all individual

demands. In particular, at time t = 1 there is an infinity of types of investors with respect to

their number of signals, and within each type there is a continuum of investors. Consequently,

the total demand at time t = 1 satisfies

D̃1 =

∫ 1

0

D̃i
1 =

∑
n∈N

[
π1(n)

∫
{i:ωi1=n}

D̃i
1

]
, (86)
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which yields

D̃1 = τ
[
S (Ω0 + Ω1) Ũ + τ 2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)
−K1P̃1

]
, (87)

where K1 is the average precision across the entire population of agents:

K1 ≡
∫ 1

0

Ki
1 =

∞∑
ωi1=0

K1(ωi1)π1(ωi1) = H + S (Ω0 + Ω1) + τ 2S2Φ
(
Ω2

0 + Ω2
1

)
. (88)

Replacing (74) in (87) we obtain

D̃1 = τ
[(
SΩ0 + SΩ1 + τ 2S2ΦΩ2

1

)
Ũ + τ 2S2ΦΩ2

0Q̃0 − τΦSΩ1X̃1 −K1P̃1

]
. (89)

Once we impose market clearing, D̃1 = X̃0 + X̃1, we can use the conjecture for the price P̃1

in Eq. (69) to get the undetermined coefficients ϕ1, ξ1, and α1,1:

ϕ1 =
SΩ1 (1 + τ 2SΦΩ1)

K1

, (90)

ξ1 =
SΩ0 (1 + τ 2SΦΩ0)

K1

, (91)

α1,1 =
1 + τ 2SΦΩ1

τK1

. (92)

We can now verify that, indeed, α1,1

ϕ1
= 1

τSΩ1
, hence validating the conjecture in (72). Fur-

thermore, the undetermined coefficients of P̃1 of the conjectured form in (67) are

β1 =
K1 −H
K1

(93)

α1,0 =
1 + τ 2SΦΩ0

τK1

(94)

α1,1 =
1 + τ 2SΦΩ1

τK1

, (95)
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and thus P̃1 can be written

P̃1 =
K1 −H
K1

Ũ − 1 + τ 2SΦΩ0

τK1

X̃0 −
1 + τ 2SΦΩ1

τK1

X̃1, (96)

which, after using (73) and (74), becomes:

P̃1 =
SΩ0 + τ 2S2ΦΩ2

0

τK1

Q̃0 +
SΩ1 + τ 2S2ΦΩ2

1

τK1

Q̃1. (97)

Period 0 The problem of investor i at time t = 0 is

max
D̃i0

E
[
−e−

1
τ [XiP̃0+D̃i0(P̃1−P̃0)+D̃i1(Ũ−P̃1)]

∣∣∣Z̃i
0, Q̃0

]
. (98)

Observe that, at time t = 0, investor i needs to estimate Ũ , D̃i
1, and P̃1, after observing Z̃i

0

and Q̃0. D̃i
1 and P̃1 are given by (84) and (96), respectively. Note also that D̃i

1 depends

on the future number of additional signals at time t = 1, which is unknown to the investor

at time t = 0. The following lemma shows that this uncertainty about ωi1 is irrelevant for

portfolio choice.

Lemma A.2. When agent i builds her portfolio, her future number of signals is irrelevant.

Proof. The value function V i of agent i at time t = 0 is given by

V i(W0) = e−
1
τ
W0 max

D̃i0

E
[
−e−

1
τ [D̃i0(P̃1−P̃0)+D̃i1(ωi1)(Ũ−P̃1)]

∣∣∣Z̃i
0, Q̃0

]
(99)

= e−
1
τ
W0 max

D̃i0

∑
k∈N

π1(k)E
[
−e−

1
τ [D̃i0(P̃1−P̃0)+D̃i1(k)(Ũ−P̃1)]

∣∣∣Z̃i
0, Q̃0;ωi1 = k

]
︸ ︷︷ ︸

g(k,D̃i0)

, (100)

where π1(k) represents the probability of receiving k additional signals at time 1 and g

represents an expectation of an exponential affine quadratic normal variable. To derive its

explicit form, we use the following standard result from multivariate normal calculus:
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Lemma A.3. Consider a random vector z ∼ N (0,Σ). Then,

E
[
ez
′Fz+G′z+H

]
= |I − 2ΣF |−

1
2 e

1
2
G′(I−2ΣF )−1ΣG+H .

In our particular case, the vector z of random variables is given by z = [Ũ D̃i
1(k) P̃1]′.

Tedious computations then show that

g
(
k, D̃i

0

)
= − |I − 2Σ(k)F |−

1
2 e

1
2
G(k,D̃i0)

′
(I−2Σ(k)F )−1Σ(k)G(k,D̃i0)+H(k,D̃i0), (101)

where

Σ(k) ≡


1
Ki

0

τ(Ki
1−K1)

K1

K1−K0

Ki
0K1

τ(Ki
1−K1)

K1

τ2Ki
1[K0S2Ω1(Ω1−k)+kSK1(K1−K0)]

K2
1 (K1−K0−SΩ1)

− τSΩ1Ki
1(K1−K0)

K2
1 (K1−K0−SΩ1)

K1−K0

Ki
0K1

− τSΩ1Ki
1(K1−K0)

K2
1 (K1−K0−SΩ1)

(K1−K0)2(K1−SΩ1)

Ki
0K

2
1 (K1−K0−SΩ1)

 (102)

F ≡


0 − 1

2τ
0

− 1
2τ

0 1
2τ

0 1
2τ

0

 (103)

G(k, D̃i
0) ≡


SKi

1(Q̃0−Z̃i0)

K1

S(Q̃0−Z̃i0)

τK1

τSKi
1(Z̃i0−Q̃0)−K1D̃i0

τK1

 (104)

H(k, D̃i
0) ≡

D̃i
0

[
Ki

0(K1P̃0 − S(Q̃0 − Z̃i
0))− SK1(Z̃i

0 + τ 2SΦQ̃0)
]

τKi
0K1

− S2Ki
1(Q̃0 − Z̃i

0)2

K2
1

.

(105)

Further computations show that

h(k) ≡ |I − 2Σ(k)F |−
1
2 =

√
τ 2ΦK2

1

Ki
1(1 + τ 2SΦΩ1 + τ 2ΦK1)

, (106)
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and

q(D̃i
0) ≡ 1

2
G
(
k, D̃i

0

)′
(I − 2Σ(k)F )−1 Σ(k)G

(
k, D̃i

0

)
+H

(
k, D̃i

0

)
(107)

=
P̃0D̃

i
0

τ
−

Φ
[
D̃i

0 + τS(Q̃0 − Z̃i
0)
]2

2 [1 + τ 2Φ(K1 + SΩ1)]
+
D̃i

0

[
2τS(Z̃i

0 + τ 2SΦQ̃0)− D̃i
0

]
2τ 2 [SΩ1(1 + τ 2SΦΩ1)−K1]

, (108)

which does not depend on k. Plugging these expressions into (101), agent i solves

V i(W0) = e−
1
τ
W0

(∑
k∈N

π1(k)h(k)

)
︸ ︷︷ ︸

Anticipation of future signals

max
D̃i0

−eq(D̃i0), (109)

and it follows that her portfolio decision is independent of her expectation regarding her

future number of signals.

To obtain agent i’s optimal demand, we solve the problem in (109) and impose optimality

∂

∂D̃i
0

q
(
n0, D̃

i
0

)
= 0.

We integrate the resulting optimal demand and impose market clearing in order to solve for

the undetermined coefficients of P̃0, i.e., β0 and α0,0. The solutions for these coefficients are:

β0 =
K0 −H
K0

, α0,0 =
1 + τ 2SΦΩ0

τK0

, (110)

where

K0 = Ki
0 = H + S + τ 2S2ΦΩ2

0 (111)

µ̃i0 =
1

K0

(
SZ̃i

0 + τ 2S2ΦΩ2
0Q̃0

)
. (112)

Note that K0 = Ki
0 because all investors start with one signal at time 0. The optimal
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demand of investor i at time t = 0 is

D̃i
0 = τS

(
Z̃i

0 − Q̃0

)
= τ

(
SZ̃i

0 + τ 2S2ΦΩ2
0Q̃0 − τ 2S2ΦΩ2

0Q̃0 − SQ̃0

)
(113)

= τ

[
SZ̃i

0 + τ 2S2ΦΩ2
0Q̃0 −

(
S + τ 2S2ΦΩ2

0

) 1

β0

P̃0

]
(114)

= τKi
0

(
Ei0[Ũ |F i0]− P̃0

)
. (115)

At this point, we can use (110) and (111) to verify that, indeed, α0,0

β0
= 1

τSΩ0
, which validates

the conjecture in (71). Then

P̃0 = β0Q̃0 =
K0 −H
K0

Ũ − 1 + τ 2SΦΩ0

τK0

X̃0. (116)

The solution can then be written in a recursive form and extended to more than two trading

periods, as done in Theorem 2.1. The recursive form for prices follows from (116) and (96);

the recursive form for individual precisions follows from (111) and (82); the recursive form

for individual demands follows from (113) – (115) and (84) – (85).

Appendix B

B.1. Proof of Proposition 2

Define µ̃it ≡ Et[Ũ |F it ] and start with the following lemma.

Lemma B.1. Y i
t ≡ Kt(P̃t − µ̃it) is a martingale under agent i’s information set:

E
[
Y i
t+1|F it

]
= Y i

t . (117)
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Proof. Compute first the expected stock price tomorrow as

E
[
Pt+1|F it

]
=
Kt+1 −H
Kt+1

µ̃it −
t∑

j=0

1 + τ 2SΩjΦ

τKt+1

E
[
X̃j

∣∣∣F it] (118)

=
Kt+1 −H
Kt+1

µ̃it −
t∑

j=0

SΩj + τ 2S2Ω2
jΦ

Kt+1

(µ̃it − Q̃j) (119)

=
Kt+1 −Kt

Kt+1

µ̃it +
t∑

j=0

SΩj + τ 2S2Ω2
jΦ

Kt+1

Q̃j. (120)

Moreover, observe that since P̃t ∈ F it , we also have that

P̃t = E
[
P̃t

∣∣∣F it] =
t∑

j=0

SΩj + τ 2S2Ω2
jΦ

Kt

Q̃j. (121)

Multiply (120) by Kt+1 and subtract Kt+1µ̃
i
t to obtain

E
[
Kt+1(Pt+1 − µ̃it+1)|F it

]
= −Ktµ̃

i
t +

t∑
j=0

(SΩj + τ 2S2Ω2
jΦ)Q̃j, (122)

which follows from the fact that, by the law of iterated expectations

E[µ̃it+1|F it ] = µ̃it. (123)

Similarly, multiply (121) by Kt and subtract Ktµ̃
i
t to obtain

Kt(P̃t − µ̃it) = −Ktµ̃
i
t +

t∑
j=0

(SΩj + τ 2S2Ω2
jΦ)Q̃j. (124)

Clearly, comparing (122) and (124), Kt(P̃t − µ̃it) is a martingale under F it .

Rearranging the martingale relation of Lemma B.1, we obtain

E
[
Pt+1|F it

]
=

Kt

Kt+1

P̃t +
Kt+1 −Kt

Kt+1

µ̃it (125)
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and Proposition 2 follows.

B.2. Proof of Proposition 3

The weighted average Et[Ũ ] obtains from the market clearing condition

t∑
j=0

X̃j =

∫ 1

0

D̃i
tdi (126)

=

∫ 1

0

τKi
t

(
E[Ũ |F it ]− P̃t

)
di (127)

=

∫ 1

0

τKi
tE[Ũ |F it ]di− τKtP̃t (128)

= τKt


∫ 1

0

Ki
tE[Ũ |F it ]
Kt

di︸ ︷︷ ︸
Et[Ũ ]

−P̃t

 , (129)

and thus every price is of the form

P̃t = Et[Ũ ]− 1

τKt

t∑
j=0

X̃j, (130)

and thus

P̃t+1 − P̃t =
(
Et+1[Ũ ]− Et[Ũ ]

)
+
Kt+1 −Kt

τKtKt+1

t∑
j=0

X̃j −
1

τKt+1

X̃t+1. (131)

B.3. Proof of Proposition 4

First, notice that

E
[
Ũ |F ct

]
=

1

Kc
t

t∑
j=0

τ 2S2Ω2
jΦQ̃j, (132)
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and thus the price in (121) satisfies

P̃t =
t∑

j=0

SΩj

Kt

Q̃j +
Kc
t

Kt

E
[
Ũ |F ct

]
. (133)

Further, we know that

P̃t = Et[Ũ ]− 1

τKt

t∑
j=0

X̃j, (134)

and thus the average market expectations at time t can be written as

Et[Ũ ] =

∑t
j=0 SΩj

Kt

Ũ +
Kt −

∑t
j=0 SΩj

Kt

E
[
Ũ |F ct

]
(135)

≡ αtŨ + (1− αt)E
[
Ũ |F ct

]
. (136)

Taking this expression one step forward and applying the law of iterated expectations with

respect to the common information set at time t, F ct , we obtain

E
[
Ēt+1[Ũ ]

∣∣∣F ct ] = E
[
αt+1Ũ + (1− αt+1)E

[
Ũ |F c

t+1

]∣∣∣F ct ] (137)

= αt+1E
[
Ũ |F c

t

]
+ (1− αt+1)E

[
Ũ |F c

t

]
(138)

= E
[
Ũ |F c

t

]
. (139)

Furthermore, notice that

E
[
Et[Ũ ]|F ct

]
= E

[
αtŨ |F ct

]
+ (1− αt)E

[
Ũ |F c

t

]
(140)

= αtE
[
Ũ |F c

t

]
+ (1− αt)E

[
Ũ |F c

t

]
(141)

= E
[
Ũ |F c

t

]
(142)
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and thus

E
[
Et+1[Ũ ]− Et[Ũ ]

∣∣∣F ct ] = 0. (143)

Using (143) to compute the common expectation of (18), we finally get

E
[
P̃t+1 − P̃t

∣∣∣F ct ] =
Kt+1 −Kt

τKtKt+1

t∑
j=0

E
[
X̃j

∣∣∣F ct ] (144)

which yields the first part of Proposition 4. To obtain the second part of the proposition,

apply the law of iterated expectations to (125) with respect to F c to obtain

E [Pt+1|F ct ] =
Kt

Kt+1

P̃t +
Kt+1 −Kt

Kt+1

E
[
Ũ
∣∣∣F ct ] (145)

and thus

E
[
Pt+1 − P̃t|F ct

]
=
Kt+1 −Kt

Kt+1

(
E
[
Ũ
∣∣∣F ct ]− P̃t) (146)

=
Kt+1 −Kt

Kt+1Kc
t

(
Kc
tE
[
Ũ
∣∣∣F ct ]−Kc

t P̃t

)
. (147)

Using (121) and (132), we know that

KtP̃t =
t∑

j=0

SΩjQ̃j +
t∑

j=0

τ 2S2Ω2
jΦQ̃j. (148)

Kc
tE
[
Ũ
∣∣∣F ct ] =

t∑
j=0

τ 2S2Ω2
jΦQ̃j = KtP̃t −

t∑
j=0

SΩjQ̃j, (149)

where the second equality in (149) results from (148). Plugging this into (147), we get

E
[
Pt+1 − P̃t|F ct

]
=
Kt+1 −Kt

Kt+1Kc
t

(
(Kt −Kc

t )P̃t −
t∑

j=0

SΩjQ̃j

)
. (150)
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Finally, observing that Kt −Kc
t =

∑t
j=0 SΩj, we obtain the second part of Proposition 4:

E
[
Pt+1 − P̃t|F ct

]
=
Kt+1 −Kt

Kt+1Kc
t

t∑
j=0

SΩj

(
P̃t − Q̃j

)
. (151)

B.4. Proof of Proposition 5

Conditioning (151) on F r requires computing the following expectation:

E
[
P̃t − Q̃j|F rt

]
, ∀j = 0, ..., t, (152)

which amounts to derive the recursive relation between the information sets F c and F r. To

do so, we first use (148) and obtain

P̃t =
Kt−1

Kt

P̃t−1 +
Kt −Kt−1

Kt

Q̃t, (153)

from which we derive

P̃t − Q̃t =
Kt−1

Kt

(P̃t−1 − Q̃t) (154)

P̃t − P̃t−1 = −Kt −Kt−1

Kt

(P̃t−1 − Q̃t). (155)

Replacing (155) in (154), we further get

P̃t − Q̃t = −Kt−1

Kt

Kt

Kt −Kt−1

(P̃t − P̃t−1) = − Kt−1

Kt −Kt−1

(P̃t − P̃t−1). (156)

Accordingly, the expectation for j = t in (152) writes

E
[
P̃t − Q̃t|F rt

]
= − Kt−1

Kt −Kt−1

(P̃t − P̃t−1). (157)
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Proceeding similarly for j = t− 1, we obtain the following recursive relation:

E
[
P̃t − Q̃t−1|F rt

]
= E

[
P̃t − P̃t−1 + P̃t−1 − Q̃t−1|F rt

]
(158)

= (P̃t − P̃t−1) + E
[
P̃t−1 − Q̃t−1|F rt

]
. (159)

Iterating over this recursive relation, the sum in (151) can be written as

t∑
j=0

SΩj(P̃t − Q̃j) =

(
t−1∑
k=0

SΩk − SΩt
Kt−1

Kt −Kt−1

)
(P̃t − P̃t−1)

+

(
t−2∑
k=0

SΩk − SΩt−1
Kt−2

Kt−1 −Kt−2

)
(P̃t−1 − P̃t−2)

+ ...

+

(
j−1∑
k=0

SΩk − SΩj
Kj−1

Kj −Kj−1

)
(P̃j − P̃j−1)

+ ...

+

(
SΩ0 − SΩ1

K0

K1 −K0

)
(P̃1 − P̃0)

+

(
−SΩ0

H

K0 −H

)
(P̃0 − 0),

(160)

which pins down the recursive equivalence between F c and F r. Inspecting (160) shows that

the coefficient of (P̃t−l+1 − P̃t−l) is:

t−l∑
k=0

SΩk −
SΩt−l+1

(Kt−l+1 −Kt−l)/Kt−l
(161)

and thus the sum in (151) can be written recursively as

t∑
j=0

SΩj(P̃t − Q̃j) =
t+1∑
l=1

(
t−l∑
k=0

SΩk −
SΩt−l+1

(Kt−l+1 −Kt−l)/Kt−l

)
(P̃t−l+1 − P̃t−l) (162)

≡
t+1∑
l=1

mt−l(P̃t−l+1 − P̃t−l) (163)
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and the relation in (25) follows.

B.5. Proof of Theorem 3.1 (Momentum Condition)

Using the relation in (25), if Kt+1 > Kt, a sufficient condition for momentum to obtain

at lag l is that mt−l > 0. We can therefore express the momentum condition at lag l as

t−l∑
j=0

SΩj >
Kt−l

Kt−l+1 −Kt−l
SΩt−l+1, (164)

which implies

Kt−l+1 −Kt−l

Kt−l
>

SΩt−l+1∑t−l
j=0 SΩj

. (165)

This gives the momentum condition (30) in Theorem 3.1:

(Kt−l+1 −Kt−l)/Kt−l

SΩt−l+1/
∑t−l

j=0 SΩj

= εt−l > 1. (166)

The last part of the claim follows directly from inspecting the last lag l = t + 1, which

satisfies

m−1(P̃0 − P̃−1) ≡ − H

1 + τ 2SΦΩ0

P̃0. (167)

For the limit when t→∞, we need to compute:

lim
t→∞

Kt+1 −Kt

Kt+1Kc
t

= lim
t→∞

1

Kc
t

− lim
t→∞

Kt

Kt+1Kc
t

. (168)

The first limit is zero. For the second limit, notice that:

1

Kt+1

<
Kt

Kt+1Kc
t

≤ 1

Kc
t

, (169)
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and both bounds go to zero as t→∞. Thus, the second limit is also zero, and we obtain

lim
t→∞

Kt+1 −Kt

Kt+1Kc
t

m−1 = 0. (170)

B.6. Proof of Theorem 3.2

The proof is organized in three parts. We first prove that there exists a unique threshold

such that the momentum condition in (30) is satisfied. Second, we show how this threshold

is related to the parameters of the model. Third, we prove that prices are martingales for

λ = 0 and λ→∞.

Note first that

t∑
k=0

Ωk = eλt (171)

t∑
k=0

Ω2
k =

e2λt(eλ − 1) + 2

eλ + 1
, (172)

and thus

Kt−l = H + Seλ(t−l) + τ 2S2Φ
e2λ(t−l)(eλ − 1) + 2

eλ + 1
(173)

Kt−l+1 = H + Seλ(t−l+1) + τ 2S2Φ
e2λ(t−l+1)(eλ − 1) + 2

eλ + 1
. (174)

The momentum threshold Eq. (30) can be written

(eλ − 1)Kt−l = Kt−l+1 −Kt−l, (175)

from which we obtain Eq. (31):

λ?(H,S,Φ, τ, t− l) = ln

(
Kt−l+1

Kt−l

)
. (176)
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Furthermore, plugging (173) – (174) in the right-hand side of (175) we can write

(eλ − 1)Kt−l = Seλ(t−l)(eλ − 1) + τ 2S2Φ
e2λ(t−l)(eλ − 1)

eλ + 1
(e2λ − 1), (177)

and thus

Kt−l = Seλ(t−l) + τ 2S2Φe2λ(t−l)(eλ − 1), (178)

from which we derive the following equation in λ:

eλ[2(t−l)+1]
(
eλ − 1

)
− 2

eλ + 1
=

H

τ 2S2Φ
. (179)

Define the function on the left-hand side as g(λ). It takes values on [−1,∞), with g(0) = −1

and limλ→∞ g(λ) =∞, and is increasing in λ:

g′(λ) =
eλ[2(t−l)+1] [2(t− l) sinh(λ) + sinh(λ) + 1] + 1

(eλ + 1)2
2eλ > 0, (180)

and thus Eq. (179) has a unique solution.

Applying the Implicit Function Theorem to Eq. (179) allows us to prove the second part

of Theorem 3.2: If H is larger, then the threshold is harder to reach. If τ , S, and Φ are

larger, the threshold is easier to reach. If t − l is large, the threshold is easier to reach.

Therefore, the threshold λ?(H,S,Φ, τ, t− l) is increasing in H and decreasing in S, Φ, τ and,

t− l.

Using the fact that the threshold is decreasing in t− l, we obtain an upper bound for λ?.

It takes its largest value with t− l = 0. In this special case, the threshold λ? is given by

eλ =
H + 2τ 2S2Φ

τ 2S2Φ
, (181)
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and thus

λ?(H,S,Φ, τ, t− l) ∈
(

0, log

(
2 +

H

Φτ 2S2

)]
. (182)

For the third part of the theorem, we know from Proposition 2 that when λ = 0, returns

are not predictable. When λ → ∞, the coefficients of supply shocks in Eqs. (18) and (27)

become zero. Since return predictability arises solely from the inference of current and past

supply shocks (Proposition 4), prices become martingales in this case.

B.7. Proof of Proposition 6

Using Proposition 5, we can write

E
[
P̃t+1 − P̃t|F rt

]
=
Kt+1 −Kt

Kt+1Kc
t

[
mt−1(P̃t − P̃t−1) + X̃t−1

]
, (183)

where X̃t−1 ≡
∑t

l=1mt−1−l(P̃t−l − P̃t−1−l). Observing that {P̃t − P̃t−1} ⊂ F rt and applying

the law of iterated expectations, it follows that

E
[
P̃t+1 − P̃t|P̃t − P̃t−1

]
=
Kt+1 −Kt

Kt+1Kc
t

{
mt−1(P̃t − P̃t−1) + E

[
X̃t−1|P̃t − P̃t−1

]}
. (184)

To compute the conditional expectation in the inner bracket, further observe that Proposition

5 implies that

P̃t − P̃t−1 =
Kt −Kt−1

KtKc
t−1

X̃t−1 + εt−1, (185)

where the noise εt−1 is independent of (P̃t−l − P̃t−1−l), for l = 1, ..., t, and thus of X̃t−1.

Hence,

Cov
[
P̃t − P̃t−1, X̃t−1

]
=
Kt −Kt−1

KtKc
t−1

Var
[
X̃t−1

]
, (186)
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which implies

E
[
X̃t−1|P̃t − P̃t−1

]
=

Cov
[
P̃t − P̃t−1, X̃t−1

]
Var

[
P̃t − P̃t−1

] (
P̃t − P̃t−1

)
(187)

=
Kt −Kt−1

KtKc
t−1

Var
[
X̃t−1

]
Var

[
P̃t − P̃t−1

] (P̃t − P̃t−1

)
. (188)

Substituting back into (184), we obtain

E
[
P̃t+1 − P̃t|P̃t − P̃t−1

]
=
Kt+1 −Kt

Kt+1Kc
t

mt−1 +
Kt −Kt−1

KtKc
t−1

Var
[
X̃t−1

]
Var

[
P̃t − P̃t−1

]
 (P̃t − P̃t−1).

(189)

Appendix C

C.1. Proof of Proposition 7

An application of Lemma B.1 yields agent i’s expectation regarding the future price:

E
[
P̃t+1|F it

]
=

Kt

Kt+1

P̃t +
Kt+1 −Kt

Kt+1

µ̃it. (190)

Reorganize the relation in (190) as

µ̃it = E
[
P̃t+1|F it

]
− Kt

Kt+1

P̃t +
Kt

Kt+1

µ̃it, (191)

and substitute it in individual portfolio demands D̃i
t = τKi

t(µ̃
i
t − P̃t) to obtain

D̃i
t = τKi

t

(
E
[
P̃t+1|F it

]
− Kt

Kt+1

P̃t +
Kt

Kt+1

µ̃it − P̃t
)
. (192)
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Reorganizing yields the following decomposition

D̃i
t = τKi

t

Kt

Kt+1

(
E[Ũ |F it ]− P̃t

)
+ τKi

t

(
E[P̃t+1|F it ]− P̃t

)
, (193)

which can also be written as in Proposition 7:

D̃i
t =

τKi
t

Kt

(
K2
t

Kt+1

(
E[Ũ |F it ]− P̃t

)
+Kt

(
E[P̃t+1|F it ]− P̃t

))
. (194)

C.2. Proof of Proposition 8, Corollary 1, and Corollary 2

Recall that individual demands are given by

D̃i
t = Ki

t(µ̃
i
t − P̃t), (195)

and the martingale condition of Lemma B.1 is

E
[
Kt+1(P̃t+1 − µ̃it+1)|F it

]
= Kt(P̃t − µ̃it), (196)

which can thus be interpreted as a condition on rescaled portfolios. In particular, we can

write:

E
[
Kt+1

Ki
t+1

D̃i
t+1|F it

]
=
Kt

Ki
t

D̃i
t, (197)

which is the result of Proposition 8.

Proof of Corollary 1. From Lemma B.1, we know that:

E
[
Kt+1(µ̃it+1 − P̃t+1)|F it

]
= Kt(µ̃

i
t − P̃t). (198)
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Further, if agent i’s precision, Ki
t , coincides with the average market precision, Kt, then

E
[
Ki
t+1|F it

]
= Ki

t +Kt+1 −Kt = Kt+1, (199)

that is, the agent expects to remain the “average agent” next period. Thus,

E
[
D̃i
t+1 − D̃i

t|F i
t

]
= E

[
τKi

t+1(µ̃it+1 − P̃t+1)− τKi
t(µ̃

i
t − P̃t)|F i

t

]
(200)

= τ
{
E
[
Kt+1(µ̃it+1 − P̃t+1)|F it

]
−Kt(µ̃

i
t − P̃t)

}
(201)

= 0. (202)

Proof of Corollary 2. We can write

E
[
D̃i
t+1|F it

]
= τE

[
Ki
t+1µ̃

i
t+1 −Ki

t+1P̃t+1|F it
]

(203)

= τE
[
Ki
t+1µ̃

i
t+1|F it

]
− τE

[
Ki
t+1|F it

]
E
[
P̃t+1|F it

]
(204)

where the second line follows from the fact that Ki
t+1 and P̃t+1 are independent conditional

on the information set F it . Using

µ̃it =
1

Ki
t

(
t∑

j=0

SωijZ̃
i
j +

t∑
j=0

Φτ 2S2Ω2
jQ̃j

)
, (205)

we can express conditional expectations recursively as

Ki
t+1µ̃

i
t+1 = Ki

t µ̃
i
t + Sωit+1Z̃

i
t+1 + Φτ 2S2Ωt+1Q̃t+1. (206)

Observe that, since meetings are independent, an agent i expects to collect the average

incremental number of signals next period

E
[
ωit+1|F it

]
= Ωt+1. (207)
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As a result, we have

E
[
Ki
t+1µ̃

i
t+1|F it

]
= Ki

t µ̃
i
t + SΩt+1E

[
Z̃i
t+1|F it

]
+ Φτ 2S2Ωt+1E

[
Q̃t+1|F it

]
(208)

= Ki
t µ̃

i
t + SΩt+1µ̃

i
t + Φτ 2S2Ωt+1µ̃

i
t (209)

= (Ki
t +Kt+1 −Kt)µ̃

i
t (210)

and

E
[
Ki
t+1|F it

]
= Ki

t +Kt+1 −Kt. (211)

Finally, using the relation (190), we can write

E
[
D̃i
t+1|F it

]
= τ

(
Ki
t +Kt+1 −Kt

) (
µ̃it − E

[
P̃t+1|F it

])
(212)

= τ
(
Ki
t +Kt+1 −Kt

)(
µ̃it −

Kt

Kt+1

P̃t −
Kt+1 −Kt

Kt+1

µ̃it

)
(213)

= τ
(
Ki
t +Kt+1 −Kt

) Kt

Kt+1

(
µ̃it − P̃t

)
(214)

=
(
Ki
t +Kt+1 −Kt

) Kt

Kt+1

1

Ki
t

D̃i
t. (215)

We can therefore compute

E
[
D̃i
t+1 − D̃i

t|F ct
]

=

[(
Ki
t +Kt+1 −Kt

) Kt

Kt+1

1

Ki
t

− 1

]
E
[
D̃i
t|F ct

]
(216)

=

[(
Ki
t +Kt+1 −Kt

) Kt

Kt+1

−Ki
t

]
τ
(
E[Ũ |F ct ]− P̃t

)
(217)

=
(Kt −Ki

t)(Kt+1 −Kt)

Kt+1

τ
(
E[Ũ |F ct ]− P̃t

)
, (218)

where the second line follows by the law of iterated expectations.
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C.3. Proof of Proposition 9

We know from Proposition 8, Corollary 2 that

E
[
D̃i
t+1 − D̃i

t|F ct
]

=
(Kt −Ki

t)(Kt+1 −Kt)

Kt+1

τ
(
E[Ũ |F ct ]− P̃t

)
. (219)

Then, we restate here Eq. (146):

E[Ũ |F ct ]− P̃t =
Kt+1

Kt+1 −Kt

E[P̃t+1 − P̃t|F ct ]. (220)

Replacing (220) in (219) gives

E
[
D̃i
t+1 − D̃i

t|F ct
]

= τ(Kt −Ki
t)E[P̃t+1 − P̃t|F ct ], (221)

and then using Proposition 5 and the fact that F ct and F rt are equivalent information sets,

we obtain

E
[
D̃i
t+1 − D̃i

t|F rt
]

= τ(Kt −Ki
t)

t+1∑
l=1

Kt+1 −Kt

Kt+1Kc
t

mt−l(P̃t−l+1 − P̃t−l). (222)

C.4. Risk-neutral arbitrageur

In this appendix, we derive equilibrium solutions for prices and optimal demands in the

presence of an unconstrained, uninformed, risk-neutral arbitrageur, which we summarize in

Theorem C.1 below.

Theorem C.1. There exists a partially revealing rational-expectations equilibrium in the

four-trading session economy in which the price signal, Q̃t, for t = 0, .., 3, satisfies

Q̃t = Ũ − 1

τSΩt

X̃t (223)
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and in which the arbitrageur’s demand x̃t satisfies

x̃t =
1

2λt

(
E
[
P̃t+1|{Q̃j}tj=0

]
− ϕtQ̃t −

t−1∑
j=0

ξj,tQ̃j

)
. (224)

The price coefficients satisfy

ϕt =
At−τS

∑t−1
j=0 Ωj

Dt
, ξj,t =

Bj,t+τSΩj
Dt

, γt = Ct+1
Dt

, λt = 1
Dt

(225)

where A, Bj, C, and D correspond to the coefficients of the aggregate demand of informed

traders

∫ 1

0

D̃i
t = AtŨ +

t−1∑
j=0

Bj,tQ̃j − CtX̃t −DtP̃t. (226)

Proof. We provide the proof for a two-trading session economy. The model is solved back-

wards, starting from date 1 and then going back to date 0. First, conjecture that prices in

period 0 and period 1 are

P̃0 = β0Ũ − γ0,0X̃0 + λ0x̃0 (227)

P̃1 = β1Ũ − γ1,0X̃0 − γ1,1X̃1 + λ1x̃1, (228)

where x̃ represents the demand of the risk-neutral arbitrageur, on which we elaborate below.

Consider the normalized price signal in period zero (which is informationally equivalent to

P̃0):

Q̃0 =
1

β0

(P̃0 − λ0x̃0) = Ũ − γ0,0

β0

X̃0 (229)

where the demand x̃ of the risk-neutral trader is observable because she only trades on public
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information, i.e., prices. Replace X̃0 from (229) into (227) to obtain

P̃1 = ϕ1Ũ + ξ1Q̃0 − γ1,1X̃1 + λ1x̃1 (230)

where ϕ1 = β1− γ1,0
β0
γ0,0

and ξ1 = γ1,0
β0
γ0,0

. We normalize the price signal in period t = 1 and

obtain Q̃1:

Q̃1 =
1

ϕ1

(
P̃1 − ξ1Q̃0 − λ1x̃1

)
= Ũ − γ1,1

ϕ1

X̃1. (231)

Observing {Q̃0, Q̃1} is equivalent to observing {P̃0, P̃1}. As in the setup of Section 2.2, we

conjecture the following relationships:

Q̃0 = Ũ − 1

τSΩ0

X̃0 (232)

Q̃1 = Ũ − 1

τSΩ1

X̃1. (233)

Period 1 At time t = 1, both the precision and the posterior mean of an investor i remain

identical to those of Section 2.2 in (83) along with her demand in (84). Integrating informed

agents’ demand again yields (87). The risk-neutral agent solves

max
x̃1

x̃1E[Ũ − P̃t|Q̃0, Q̃1] = max
x̃1

x̃1E[Ũ − ϕ1Q̃1 − ξ1Q̃0 − λ1x̃1|Q̃0, Q̃1], (234)

and her optimal demand satisfies

x̃1 =
1

2λ1

(
E[Ũ |Q̃0, Q̃1]− ϕ1Q̃1 − ξ1Q̃0

)

where

E[Ũ |Q̃0, Q̃1] =
τ 2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)
H + τ 2S2Φ(Ω2

0 + Ω2
1)

. (235)
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The market clearing condition is D̃1 + x̃1 = X̃0 + X̃1. Once we impose market clearing, we

can use the conjectured Eq. (230) to get the undetermined coefficients ϕ1, ξ1, γ1,1, and λ1:

ϕ1 =
SΩ1 (1 + τ 2SΦΩ1)

K1

,

ξ1 =
SΩ0 (1 + τ 2SΦΩ0)

K1

γ1,1 =
1 + τ 2SΦΩ1

τK1

λ1 =
1

τK1

.

(236)

From these solutions, we can verify that, indeed, γ1,1
ϕ1

= 1
τSΩ1

. Hence, (72) is also verified in

the presence of the risk-neutral agent.

Period 0 The problem of investor i at time t = 0 is, as in Section 2.2,

max
D̃i0

E
[
−e−

1
τ
W̃ i

2

∣∣∣Z̃i
0, Q̃0

]
(237)

where the expectation now takes into account the new price function in (230). Importantly,

Lemma A.2 still holds and informed agents’ portfolio remains independent of the expected

number of signals they will get in the future. The risk-neutral agent solves

max
x̃0

x̃0E[P̃1 − P̃0|Q̃0] = max
x̃0

x̃0E[P̃1 − β0Q̃0 − λ0x̃0|Q̃0]. (238)

The optimization problem in (238) only involves the profits of period 0 because we assume

that the risk-neutral agent does not take into account that a deviation from her strategy will

affect current and future price signals for informed agents who cannot detect a deviation in

her strategy; in that sense, the risk-neutral agent is myopic. As a result, her optimal demand

satisfies

x̃0 =
1

λ0

(
E[P̃1|Q̃0]− β0Q̃0

)
(239)
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where

E[P̃1|Q̃0] =
S
(

2τ 2SΦ + H
H+S(Ω0+Ω1+τ2SΦ(Ω2

0+Ω2
1))

)
2(H + τ 2S2ΦΩ2

0)
. (240)

Integrating informed investors’ optimal demand and imposing market clearing D0 + x̃0 = X̃0,

we obtain β0, γ0,0, and λ0. We can then verify that, indeed, γ0,0
β0

= 1
τSΩ0

. By induction, the

solution of the equilibrium for the trading dates takes the form in Theorem C.1.

Arbitrageur’s profits In this section, we show that the arbitrageur can only make profits

if she allows momentum to persist. She therefore optimally forgoes profits. To illustrate this,

we compute the unconditional profits Π she expects to make between time t and t + 1. In

particular, simple computations show that

Π = E
[
x̃t

(
P̃t+1 − P̃t

)]
=

1

λt
E

[(
E
[
P̃t+1 − P̃t|{Q̃j}tj=0

])2
]

= λtE
[
x̃2
t

]
.

We then compare these profits to those of an econometrician, who is not strategic and ignores

price impact (λt ≡ 1). The profits that the arbitrageur optimally forgoes to keep momentum

in the model are therefore given by

Π′ = E

[(
E
[
P̃t+1 − P̃t|{Q̃j}tj=0

])2
]
− Π =

(
1− 1

λt

)
E

[(
E
[
P̃t+1 − P̃t|{Q̃j}tj=0

])2
]
.

(241)

We plot the profits she makes and the profits she forgoes at time t = 1 in Fig. 9. For low

meeting intensities, Fig. 9 shows that the arbitrageur extracts half of the momentum rents,

consistent with the behavior of a monopolist. As the meeting intensity increases, however,

the momentum profits she forgoes significantly increase. The reason is that she now trades

against agents who are better informed on average; accordingly, she has a larger price impact

and therefore trades less aggressively on momentum. We conclude that it is difficult to
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arbitrage away momentum in a market characterized by fast diffusion of information among

investors.

[insert Figure 9 here]

Appendix D

D.1. Dynamic setup (Section 5.1)

This appendix mainly follows Andrei (2013). Consider the following processes for divi-

dends and noisy supply:

Dt = κdDt−1 + εdt (242)

Xt = κxXt−1 + εxt (243)

where 0 ≤ κd ≤ 1 and 0 ≤ κx ≤ 1. The dividend and supply innovations are i.i.d. with

normal distributions: εdt ∼ N (0, 1/H) and εxt ∼ N (0, 1/Φ). There is one riskless bond

assumed to have an infinitely elastic supply at positive constant gross interest rate R.

The economy is populated by a continuum of rational agents, indexed by i, with constant

absolute risk aversion utilities and common risk aversion 1/τ . Each agent lives for two

periods, while the economy goes on forever (overlapping generations). All investors observe

the past and current realizations of dividends and of the stock prices. Additionally, each

investor observes an information signal about the dividend innovation 3-steps ahead:

z̃it = εdt+3 + ε̃it. (244)

As time goes by, investors share their private information at random meetings. The

information structure and the probability density function over the number of private signals

is described in Andrei (2013). As usual in noisy rational expectations, we conjecture a linear
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function of model innovations for the equilibrium price:

Pt = αDt + βXt−3 + (a3 a2 a1)εdt + (b3 b2 b1)εxt . (245)

Proposition 1 in Andrei (2013) describes the rational-expectations equilibrium, which is

found by solving a fixed-point problem provided by the market clearing condition. Infinite-

horizon models with overlapping generations have multiple equilibria (there are 2N equilibria

for a model with N assets). The model studied here has two equilibria, one low volatility

equilibrium and one high volatility equilibrium. We focus on the low volatility equilibrium,

which is the limit of the unique equilibrium in the finite version of the model.

To understand how the two equilibria arise, let’s assume that there is no private infor-

mation. In this case, the equilibrium price has a closed-form solution:

Pt =
κd

R− κd
Dt −

Σ

τ

κ3
x

R− κx
Xt−3 −

Σ

τ

κ2
x

R− κx
εxt−2 −

Σ

τ

κx
R− κx

εxt−1 −
Σ

τ

1

R− κx
εxt , (246)

where Σ ≡ (α + 1)2σ2
d + b2

1σ
2
x. Thus, the coefficient b1 has to solve a quadratic equation:

b1 = − τ

R− κx

[(
R

R− κd

)2

σ2
d + b2

1σ
2
x

]
. (247)

For different parameter values, the above quadratic equation can have two solutions, one

solution, or none. In this particular example (no private information), the autocovariance of

stock returns, Cov (Pt+1 − Pt, Pt+2 − Pt+1), is

Cov (Pt+1 − Pt, Pt+2 − Pt+1) =− α2σ2
d

1− κd
1 + κd

+ β2(κx − 1)2κx
σ2
x

1− κ2
x

+

(
β − b3 b3 − b2 b2 − b1 b1

)


−β(1− κx)

β − b3

b3 − b2

b2 − b1


.

(248)
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It can be shown numerically that this covariance is generally negative when κd < 1 and

κx < 1. In the random walk specification (242) – (243), the covariance is zero.

If agents receive private information, the model has to be solved numerically using the

methodology described in Andrei (2013). More precisely, α, β, a, and b solve the following

equations:

(α + 1)κd −Rα = 0 (249)

K̄tβκx − K̄tRβ −
1

τ
κ3
x = 0 (250)

K̄tb
∗B−1A + L̄tH− K̄tRa = 01×3 (251)

K̄tb
∗ + L̄tB∗ − K̄tRb−

1

τ

(
κ2
x κx 1

)
= 01×3, (252)

where K̄t, b
∗, B, A, L̄t, H, and B∗ are defined in Appendix A.3 of Andrei (2013).

D.2. Proof of Theorem 5.1

To prove Theorem 5.1, we adapt the expression for the price P̃ in Brennan and Cao

(1997) and write

P̃t = βtŨ + αtṼ +
t−1∑
j=0

ξj,tQ̃j − γtX̃t. (253)

The price is informationally equivalent to

Q̃t =
1

βt

(
P̃t −

t−1∑
j=0

ξj,tQ̃j

)
= Ũ +

αt
βt
Ṽ − γt

βt
X̃t. (254)

Furthermore, we can write agent i’s individual demand as

D̃i
t = ωitP̃t +

t∑
k=0

λikQ̃k +
t∑

k=0

θikZ̃
i
k. (255)
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By the law of large numbers, we have that
∫ 1

0
Z̃i
k = Ũ + Ṽ . As a result, when we aggregate

individual demands, we obtain

∫ 1

0

D̃i
t = ω̄tP̃t +

t∑
k=0

λ̄kQ̃k +
t∑

k=0

θ̄kŨ +
t∑

k=0

θ̄kṼ , (256)

where ω̄t =
∑

k∈N πt(k)ωit(k), λ̄t =
∑

k∈N πt(k)λit(k), and θ̄t =
∑

k∈N πt(k)θit(k) are average

demand coefficients across the population of agents. Each average involves the distribution

of types.

Imposing market clearing, we have

t∑
k=0

X̃k −
t∑

k=0

θ̄kŨ −
t∑

k=0

θ̄kṼ = ω̄tP̃t +
t∑

k=0

λ̄kQ̃k. (257)

Substituting

P̃t = βtQ̃t +
t−1∑
j=0

ξj,tQ̃j (258)

into the above equation, we obtain

t∑
k=0

X̃k −
t∑

k=0

θ̄kŨ −
t∑

k=0

θ̄kṼ = ω̄t(βtQ̃t +
t−1∑
j=0

ξj,tQ̃j) +
t∑

k=0

λ̄kQ̃k. (259)

Furthermore, notice that

X̃k =
βk
γk

(
Ũ +

αk
βk
Ṽ − Q̃k

)
. (260)

Substituting and regrouping, we obtain

X̃t +
t−1∑
k=0

βk
γk

(
Ũ +

αk
βk
Ṽ − Q̃k

)
−

t∑
k=0

θ̄kŨ −
t∑

k=0

θ̄kṼ = (ω̄tβt + λ̄t)Q̃t +
t−1∑
j=0

(ξj,tω̄t + λ̄j)Q̃j,

(261)
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or, equivalently,

X̃t +

(
t−1∑
k=0

βk
γk
−

t∑
k=0

θ̄k

)
Ũ +

(
t−1∑
k=0

βk
γk

αk
βk
−

t∑
k=0

θ̄k

)
Ṽ −

t−1∑
k=0

βk
γk
Q̃k =

(ω̄tβt + λ̄t)

(
Ũ +

αt
βt
Ṽ − γt

βt
X̃t

)
+

t−1∑
j=0

(ξj,tω̄t + λ̄j)Q̃j.

(262)

By separation of variables, we get

−βt
γt

= ω̄tβt + λ̄t (263)

t−1∑
k=0

βk
γk
−

t∑
k=0

θ̄k = ω̄tβt + λ̄t (264)

t−1∑
k=0

βk
γk

αk
βk
−

t∑
k=0

θ̄k =
αt
βt

(
ω̄tβt + λ̄t

)
(265)

−βk
γk

= ξk,tω̄t + λ̄k, for k = 0, 1, ..., t− 1. (266)

Without loss of generality, we set

γt
βt

=
1

rSΩ′t
(267)

so that

t∑
k=0

θ̄k =
t∑

k=0

βk
γk

= rS

t∑
k=0

Ωk, (268)

and

αt
βt

=
Λt

rSΩt

(269)
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so that:

t∑
k=0

θ̄k =
t∑

k=0

βk
γk

αk
βk

=
t∑

k=0

Λk. (270)

The system of equations in (49) follows. This system of equations is a fixed point: to

solve it, we solve the problem recursively (as in Appendix A.2, except accounting for the

rumor) over four periods. We then start with guess values for {Ωj}3
j=0 and {Λj}3

j=0 and get,

through the fixed point in (49), new values for these coefficients. Iterating and invoking the

Contraction-Mapping Theorem, we obtain the equilibrium coefficients.
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Table 1
Two consecutive price differences in the dynamic model.

Price Dividend innovations Supply innovations

differences εdt εdt+1 εdt+2 εdt+3 εdt+4 εxt−3 εxt−2 εxt−1 εxt εxt+1

Pt − Pt−1 α− a3 a3 − a2 a2 − a1 a1 0 β − b3 b3 − b2 b2 − b1 b1 0

Pt+1 − Pt 0 α− a3 a3 − a2 a2 − a1 a1 0 β − b3 b3 − b2 b2 − b1 b1

Reversal
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Fig. 1. Evolution of cross-sectional densities. The left-hand side panels depict the evolution of
the probability density function over the total number of signals µ(·) through time. The right-
hand side panels depict the evolution of the probability density function over the additional
number of signals π(·) through time. We fix λ = 1 for this illustration.
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Fig. 2. Information percolation and serial correlation in Returns. Serial correlation of returns
as a function of the meeting intensity λ. Serial correlation is computed at t = 4 for two
different lags: the solid line corresponds to lag l = 1, and the dashed line to lag l = 2. The
calibration used is H = S = Φ = 1 and τ = 1/3.
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Fig. 3. Term structure of momentum. The figure depicts the serial correlation of returns
when the lookback period varies from one to 12 months, as in (32) – (33). There are two
sets of bars, one corresponding to λ = 0.05 and the second to λ = 0.35. The calibration used
is H = S = Φ = 1, and τ = 1/3.
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returns at time t = 4 as a function of the meeting intensity λ. The solid line corresponds to
our definition of momentum (Proposition 5), and the dashed line to the standard definition
of momentum without additional lags (Proposition 6). The right panel depicts the serial
correlation of returns for different lookback periods, as in Moskowitz et al. (2012), when
λ = 0.35. The solid bars include all lags, whereas the dashed bars exclude any additional
lags. The calibration used is H = S = Φ = 1 and τ = 1/3.

0 0.5 1 1.5 2 2.5 3

−2

−1

0

1

REE Benchmark

λ?(·, t − 1)

Meeting intensity λ

M
om

en
tu
m

tr
ad

in
g
co
effi

ci
en
t

5% (Less informed)
95% (Better informed)

Fig. 5. Information percolation and momentum trading. Momentum trading coefficient from
Eq. (40) as a function of the meeting intensity λ. A positive coefficient means momentum
trading, whereas a negative coefficient means contrarian trading. The solid line corresponds
to the 5% percentile less informed investor, and the dashed line to the 95% percentile better
informed investor. Thus, the area between the two lines represents 90% of the investor
population. The coefficient is represented at time t = 4 with one lag, l = 1. The calibration
used is H = S = Φ = 1 and τ = 1/3.
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Fig. 6. Dynamic model: Price coefficients and serial correlation of returns. The upper panels
plot the term structure of the coefficients a and b of the equilibrium price (44), without
information percolation (λ = 0, solid lines) or with information percolation (λ = 1, dashed
lines). The lower panel depicts the serial correlation of returns, corr(Pt+1−Pt, Pt+2−Pt+1),
for different levels of the meeting intensity λ. There are two cases: (i) the dividend and
supply processes are random walks (solid line) and (ii) the dividend and supply processes
are mean-reverting with AR(1) parameter 0.9 (dashed line). The calibration for the rest of
the parameters ensures the existence of an equilibrium in the stationary model: R = 1.1,
H = 1, S = 10, Φ = 1/100, and τ = 1/3, although most of the calibrations we have tried
yield the same qualitative results.
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Fig. 7. Coefficients {Ω′j}tj=0 from Theorem 5.1 with a rumor. The figure depicts the co-
efficients {Ω′j}tj=0 over time in the presence of a rumor with precision ν = 3. Each line
corresponds to a meeting intensity of λ = 1, λ = 2, and λ = 3. The calibration used is
H = S = Φ = 1 and τ = 1/3.
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Fig. 8. Serial correlation of return and rumors. Serial correlation of stock returns over the
first period (the solid line) and the second period (the dashed line) as a function of the
meeting intensity. The first period serial correlation is defined as the regression coefficient
between P̃1−P̃0 and P̃2−P̃1, whereas the second period serial correlation is defined as P̃2−P̃1

and P̃3 − P̃2. Each panel corresponds to a different rumor precision ν. The calibration used
is H = S = Φ = 1 and τ = 1/3.
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Fig. 9. Profits of the arbitrageur as a function of λ. The dashed line represents the profits
made by the arbitrageur. The shaded area represents the profits that arbitrageur forgoes.
The calibration is H = S = Φ = 1 and τ = 1/3.
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